RU2675520C1 - Полимерный материал триботехнического назначения на основе политетрафторэтилена - Google Patents

Полимерный материал триботехнического назначения на основе политетрафторэтилена Download PDF

Info

Publication number
RU2675520C1
RU2675520C1 RU2018111148A RU2018111148A RU2675520C1 RU 2675520 C1 RU2675520 C1 RU 2675520C1 RU 2018111148 A RU2018111148 A RU 2018111148A RU 2018111148 A RU2018111148 A RU 2018111148A RU 2675520 C1 RU2675520 C1 RU 2675520C1
Authority
RU
Russia
Prior art keywords
polymer
carbon fiber
uvis
polytetrafluoroethylene
mixing
Prior art date
Application number
RU2018111148A
Other languages
English (en)
Inventor
Павлина Николаевна Петрова
Марфа Алексеевна Маркова
Анастасия Гаврилиевна Аргунова
Айталина Алексеевна Охлопкова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Сибирского отделения Российской академии наук
Priority to RU2018111148A priority Critical patent/RU2675520C1/ru
Application granted granted Critical
Publication of RU2675520C1 publication Critical patent/RU2675520C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к полимерному материаловедению, представляет собой полимерную композицию на основе политетрафторэтилена, модифицированного углеродным волокнистым активированным материалом марки УВИС-АК-П в количестве 5 мас. %, технология получения которого заключается в поэтапном смешении наполнителя с полимером с использованием технологии механоактивации в планетарной мельнице. Углеродный волокнистый активированный материал марки УВИС-АК-П предварительно смешивают с частью полимера в планетарной мельнице при скорости вращения барабанов 400 об/мин в течение 2 мин с последующим смешением полученной смеси с остальной частью полимера в лопастном смесителе. Содержание углеродного волокнистого материала марки УВИС-АК-П в полимерном композиционном материале составляет 5 мас.%. Технический результат - обеспечение композиционного материала триботехнического назначения повышенной износостойкости без ухудшения физико-механических характеристик при некотором улучшении деформационных характеристик. 1 табл., 1 пр.

Description

Изобретение относится к полимерному материаловедению, представляет собой полимерную композицию на основе политетрафторэтилена, модифицированную углеродным волокнистым активированным материалом марки УВИС-АК-П, и может быть использовано в машиностроении для изготовления деталей узлов трения.
Уровень техники
В связи с возрастающими требованиями к показателям прочности, износостойкости и надежности деталей и конструкций различного назначения необходимы новые технологические способы создания полимерных композиционных материалов (ПКМ). Одними из наполнителей, оказывающих модифицирующее воздействие на структуру ПТФЭ и существенно повышающих прочность и износостойкость композитов на основе ПТФЭ, являются углеродные наполнители-модификаторы различной дисперсности и формы частиц. Полимерные материалы, содержащие различные углеродные волокна, являются сравнительно новым классом ПКМ, и эти композиты, несмотря на высокую стоимость, получили в последние годы наиболее интенсивное развитие благодаря своим уникальным свойствам, а именно: высоким значениям прочности и жесткости; низкой плотности; химической инертности; тепло- и электропроводности и многофункциональностью назначения.
Известны антифрикционные полимерные материалы на основе политетрафторэтилена [1. Машков Ю.К., Полещенко К.Н., Поворознюк С.Н., Орлов П.В. Трение и модифицирование материалов трибосистем. - М.: Наука, 2000. - 280 с.], содержащие в качестве компонентов порошки кокса (Ф-4К20), дисульфида молибдена (Ф-4М15), стекловолокно (Ф-4С15), кокс и дисульфид молибдена (Ф-4К15М5). Известным материалам присущи недостатки недостаточная прочность и износостойкость, предел прочности этих композитов находится в пределах 11-16 МПа.
Известен антифрикционный композиционный материал [2. Машков Ю.К., Сухарина Н.Н., Зябликов B.C., Гадиева Л.М. А.С. №1812190. Антифрикционный композиционный материал], который содержит, мас. %: политетрафторэтилен 80-82; дисульфид молибдена 1-3; порошок оловянно-свинцовистой бронзы 5-12 и углеродный наполнитель 5-12. Углеродный наполнитель представляет собой углеродное волокно длиной 0,05-0,50 мм, полученное из выдержанного в течение не менее 48 часов в жидком фреоне карбонизированного углеволокнистого материала, высушенного и измельченного в присутствии порошка политетрафторэтилена до волокон указанной длины. Предел прочности материала при растяжении 22-24 МПа, скорость изнашивания при трении по стальному контртелу без смазки составляет 0,065-0,068 мг/ч при скорости скольжения 1 м/с, контактном давлении 3 МПа. Несмотря на полученные результаты недостатками данного полимерного композита являются также многокомпонентность, сложность и многостадийность получения композитов, заключающийся в необходимости проведения дополнительных операций как предварительная выдержка в течение не менее 48 часов в жидком фреоне карбонизированного углеволокнистого материала, затем их сушка и измельчение в присутствии политетрафторэтилена.
Известен антифрикционный полимерный материал на основе политетрафторэтилена [3. Машков Ю.К., Мамаев О.А., Овчар З.Н., Зябликов B.C. Патент РФ №2307130 Полимерный антифрикционный композиционный материал], содержащий дисульфид молибдена, скрытокристаллический графит с удельной поверхностью 50-75 м /г, углеродный наполнитель с длиной волокна 0,05-0,5 мм. Углеродное волокно с указанной длиной получают, например, из карбонизированного углеволокнистого материала марок УРАЛ Т-10 или других марок, при этом его разрезают на небольшие кусочки и измельчают в мельнице в присутствии порошка фторопласта-4 (ПТФЭ) в течение 3-9 мин при частоте вращения 7000 мин-1, затем добавляют остальные компоненты и смешивают все в смесителе с частотой вращения ротора 2800-3000 мин-1. Несмотря на относительную простоту получения и высокие показатели предела прочности, износостойкости и низкий коэффициент трения данного полимерного материала основным недостатком является все-таки недостаточная износостойкость и многокомпонентность.
Известно изобретение [4. Амиров P.P., Неклюдов С.А., Амирова Л.М. Способ получения композиций на основе углеродных нанотрубок и полиолефинов. Патент РФ №2490204]. Достижение технического результата данного изобретения заключается в диспергировании углеродных нанотрубок путем ультразвуковой обработки: углеродные нанотрубки в течение 0,5-1 ч механически растирают в воде с добавлением водорастворимого полимера с концентрацией 0,01-0,1 мас. %, после чего полученную суспензию диспергируют ультразвуком в течение 30 мин при максимальной температуре среды не выше 70°С с последующим нанесением ее на поверхность гранул полиолефина и сушкой полученных гранул нанокомпозита, содержащих до 0,5 мас. % углеродных трубок. При этом, полученные нанокомпозитные материалы обладают высокой объемной и поверхностной электропроводностью, теплопроводностью и высокой жесткостью, при одновременном увеличении модуля упругости при растяжении до 50%, и предела прочности на разрыв до 30%. Несмотря на полученные результаты недостатками данного способа являются сложность и многостадийность получения нанокомпозитов, заключающийся в необходимости проведения дополнительных операций как предварительная механическая обработка углеродных нанотрубок (УН) в жидкой среде, затем их ультразвуковое диспергирование с последующим нанесением суспензии УН на поверхность полимерных гранул, далее следует операция сушки гранул.
Известны составы для получения композиционного материала, включающие политетрафторэтилен, медьсодержащий углеродный наполнитель и дополнительно фторсодержащий олигомер марок «Эпилам» или «Фолекокс» [5. Струк В.А., Костюкович Г.А., Кравченко В.И., Авдейчик С.В., Овчинников Е.В. Патент РФ №2278875. Состав для получения композиционного материала], а также содержащий политетрафторэтилен, углеродный наполнитель, фторсодержащий олигомер марок «Эпилам» или «Фолекокс» и дополнительно нанодисперсный модификатор [6. Струк В.А., Костюкович Г.А., Кравченко В.И., Овчинников Е.В., Горбацевич Г.Н. Патент РФ №2269550. Состав для получения композиционного герметизирующего материала]. В первом случае [5] для получения композитов сначала получают медьсодержащий углеродный наполнитель по двум технологиям, заключающихся в обработке углеграфитового волокна водным или спиртовым раствором солей меди, что является трудоемкой и длительной операцией. Затем полученный углеродный наполнитель обрабатывают раствором олигомера, после чего высушивают до полного удаления растворителя, что также существенно увеличивает продолжительность получения композиционного материала. Во втором случае [6] в отличие от состава, заявленного в патенте РФ №2278875, исключается стадия обработки углеграфитового волокна водным или спиртовым раствором солей меди, и дополнительно содержит нанодисперсный наномодификатор. В обоих случаях использование растворов олигомеров во фреоне и наномодификаторов (патент РФ №2269550) приводит к удорожанию процесса получения композиционных материалов.
Известны материалы на основе ПТФЭ с содержанием углеродных волокон в количестве 15-20 мас. % с торговой маркой «Флувис» и «Флубон», которые применяются для изготовления деталей подвижных и неподвижных сопряжений в различных герметизирующих системах, композит «Флувис» применяется в особо ответственных узлах трения, где ресурс работы и надежность оборудования оправдывают использование достаточно дорогого материала [7. Г.А. Сиренко. Антифрикционные карбопластики.-Киев: Техника, 1995.-С. 195; 8. www.mpri.org.bv]. Данные композиты относятся к высоконаполненным и дорогостоящим материалам.
Известен способ получения антифрикционного композита на основе политетрафторэтилена и углеродного волокнистого наполнителя с длиной 0,5-10 мм [8. Будник А.Ф., Сиренко Г.А., Колесников С.И. А.с. №1723084 Способ «БУСИКО» изготовления антифрикционного материала], заключающийся в смешении политетрафторэтилена и 5-50% измельченного углеродного волокна при числе оборотов рабочих органов n, равном 5000-22500 об/мин в смесителе, спекании смеси при 360-390°С в течение 30 мин, затем измельчении спекшейся массы при n=5000-22500 об/мин и классификации этой массы по размерам 50-300 мкм, в количестве 5-95%, которые смешивают с политетрафторэтиленом при n=5000-22500 об/мин. Недостатком данных композитов являются многостадийность и продолжительность времени их получения из-за повторной операции спекания композитной массы с последующим измельчением и классификацией их по размерам. Этот материал по составу наиболее близок по своей физической сущности к предлагаемому композитному материалу, однако триботехнические испытания проведены в различных условиях по сравнению с заявляемым композитом (скорость скольжения, температура испытания, нагрузка на образец при трении, путь трения), что затрудняет корректное сравнение результатов испытаний.
Известны полимерные материалы на основе политетрафторэтилена, содержащий углеродный наполнитель терморасширенный графит в количестве 5-15 мас. % [9. Охлопкова А.А., Слепцова С.А., Стручкова Т.С Патент РФ №2454439 Полимерный материал триботехнического назначения]. Полимерный композиционный материал получают путем смешения компонентов в лопастном смесителе с предварительной термообработкой графита. Несмотря на низкий коэффициент трения и высокую износостойкость, сравнимая с заявляемой композицией, данные композиты обладают низкими значениями относительного удлинения при разрыве, что ограничивает его области применения.
Наиболее близким по технической сущности и условиям проведения физико-механических и триботехнических испытаний материалов является композит на основе ПТФЭ и углеродных волокон марки «Белум» [10. А.П. Васильев, А.А. Охлопкова, Т.С. Стручкова и др. Эксплуатационные характеристики политетрафторэтилена разных марок, модифицированных углеродными волокнами //Вестник СВФУ.- Якутск, 2017.- С. 34-46]. В данной работе проведены исследования и сравнения эксплуатационных свойств ПКМ на основе ПТФЭ марок ПН и ТМ наполненных модифицированными углеродными волокнами (УВ) марки «Белум». Данная композиция взята как прототип.
Задачей изобретения является получение композиционного материала с повышенной износостойкостью, характеризующегося достаточно высокими деформационно-прочностными показателями на основе ПТФЭ и углеродного волокнистого активированного материала марки УВИС-АК-П.
Осуществление изобретения
Поставленная задача решается за счет наполнения политетрафторэтилена (ГОСТ 10007-80) порошком углеродного волокнистого активированного материала марки УВИС-АК-П. При этом наполнитель на первой стадии смешивается с частью полимера на планетарной мельнице, затем в полученную порошковую композицию добавляется остальная часть полимера и смешивается в лопастном смесителе.
ПТФЭ (фторопласт-4) - промышленный продукт ГОСТ 10007-80 марки ПН, представляющий собой белый, рыхлый порошок со степенью кристалличности до спекания 95-98%, после спекания 50-70% и плотностью 2,17 - 2,19 г/см3, Тпл 327°С.
Используемый в качестве наполнителя углеродный волокнистый активированный материал марки УВИС-АК-П на основе гидратцеллюлозного углеродного волокна производства ООО НПЦ «УВИКОМ» (Россия), представляет собой материал в виде порошка с диаметр частиц 5,5-7,5 мкм и длиной до 100 мкм. Углеродный волокнистый активированный материал имеет большие сорбционные способности: удельная поверхность до 2000 м2/г; суммарная пористость 0,3-0,8 см3/г; адсобрционная активность по индикатору метилену голубому не менее 100-300 мг/г; воздухопроницаемость 100-200 дм32 ×сек [11. www.uvicom.com].
Сущность изобретения заключается в следующем. Предварительное диспергирование и смешение части полимера с порошками углеродного волокнистого активированного материала марки УВИС-АК-П в планетарной мельнице в течение 2 минут при скорости вращения барабанов 400 об/мин, и последующее смешение полученной смеси с остальной частью полимера в лопастном смесителе при скорости вращения 3000 об/мин. В результате такого поэтапного смешения компонентов с использованием технологии механической активации в планетарной мельнице достигается комплексное улучшение технических свойств полимерного композита.
Технология получения композиционных материалов заявляемого состава заключается в следующем.
Пример. 47,5 г политетрафторэтилена и 5 г углеродных волокон марки УВИС-АК-П смешивают и подвергают механической активации в планетарной мельнице с скоростью вращения барабанов 400 об/мин в течение 2 мин, затем полученную смесь смешивают с оставшейся частью политетрафторэтилена в лопастном смесителе со скоростью 3000 об/мин до однородной массы. Затем композицию помещают в холодную пресс-форму и прессуют изделие при удельном давлении 50 МПа. Спекание изделий производят в электрической печи при температуре 370±5°С. Охлаждение спеченных изделий проводят непосредственно в печи.
Физико-механические свойства - предел прочности при растяжении, относительное удлинение при разрыве и прочность при сжатии определяли на испытательной машине «UTS-2» при комнатной температуре и скорости перемещения подвижных захватов 100 мм/мин. Скорость изнашивания полимерных композитов определяли на машине трения UMT-2 (CETR, США), схема «палец-диск» (образец - цилиндр диаметром 10 мм, выстой 20 мм, контртело - стальной диск из стали 40Х с твердостью 48-52 HRC и шероховатостью 0,06-0,07 мкм, нагрузка 160 Н, скорость скольжения - 0,2 м/с).
Физико-механические и триботехнические характеристики полученных композитов приведены в табл. 1.
Figure 00000001
Примечание: σр - прочность при растяжении, МПа; εр - относительное удлинение при разрыве, %.
Как видно из табл. 1, оптимальные свойства наблюдаются у композита с содержанием углеродного волокна 5 мас. % полученные с использованием совместной механоактивации полимера с УВ при скорости вращения барабанов планетарной мельницы 400 об/мин. Как следует из данных таблицы 1 заявленный состав при одинаковом значении прочности при растяжении превосходит прототип по износостойкости в 6,25 раза и по значению относительного удлинения при разрыве на 13-23,5%. По сравнению с исходным полимером повышение износостойкости у этого композита составляет в 2024 раза при некотором улучшении деформационных характеристик.
Таким образом, разработанная технология введения УВ в полимерную матрицу с использованием технологии механоактивации является эффективным решением, позволяющим получить материалы, триботехнического назначение с улучшенными эксплуатационными свойствами с сохранением и в некоторой степени улучшением физико-механических характеристик. Применение полимерного композита заявленного состава позволит повысить ресурс работы изделий в технике и оборудованиях и расширить их область применения.

Claims (2)

  1. Полимерный материал триботехнического назначения, содержащий политетрафторэтилен и углеродный наполнитель, отличающийся тем, что в качестве наполнителя содержит углеродный волокнистый активированный материал марки УВИС-АК-П, технология получения которого включает предварительное смешение части полимера с УВИС-АК-П в планетарной мельнице со скоростью вращения барабанов 400 об/мин в течение 2 минут с последующим смешением полученной смеси с остальной частью полимера в лопастном смесителе, при этом соотношение компонентов составляет, мас. %:
  2. Углеродный волокнистый активированный материал марки УВИС-АК-П 5 Политетрафторэтилен (ПТФЭ) 95
RU2018111148A 2018-03-28 2018-03-28 Полимерный материал триботехнического назначения на основе политетрафторэтилена RU2675520C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018111148A RU2675520C1 (ru) 2018-03-28 2018-03-28 Полимерный материал триботехнического назначения на основе политетрафторэтилена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018111148A RU2675520C1 (ru) 2018-03-28 2018-03-28 Полимерный материал триботехнического назначения на основе политетрафторэтилена

Publications (1)

Publication Number Publication Date
RU2675520C1 true RU2675520C1 (ru) 2018-12-19

Family

ID=64753523

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018111148A RU2675520C1 (ru) 2018-03-28 2018-03-28 Полимерный материал триботехнического назначения на основе политетрафторэтилена

Country Status (1)

Country Link
RU (1) RU2675520C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727417C1 (ru) * 2019-09-23 2020-07-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет технологий и управления имени К.Г. Разумовского (Первый казачий университет" Антифрикционный нанокомпозит
RU2773476C1 (ru) * 2020-12-29 2022-06-06 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Московский Государственный Университет Технологий И Управления Имени К.Г. Разумовского (Первый Казачий Университет)" Антифрикционная полимерная композиция

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1723084A1 (ru) * 1990-01-09 1992-03-30 Сумской филиал Харьковского политехнического института им.В.И.Ленина "Способ "Бусико" изготовлени антифрикционного материала"
RU2178801C2 (ru) * 1997-10-15 2002-01-27 Якутский государственный университет Способ получения антифрикционной композиции
RU2542039C1 (ru) * 2013-12-10 2015-02-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Способ изготовления высокотемпературного антифрикционного материала
RU2546161C2 (ru) * 2013-05-29 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ изготовления изделий из полимерных композиционных материалов на основе политетрафторэтилена и устройство для изготовления изделий

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1723084A1 (ru) * 1990-01-09 1992-03-30 Сумской филиал Харьковского политехнического института им.В.И.Ленина "Способ "Бусико" изготовлени антифрикционного материала"
RU2178801C2 (ru) * 1997-10-15 2002-01-27 Якутский государственный университет Способ получения антифрикционной композиции
RU2546161C2 (ru) * 2013-05-29 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ изготовления изделий из полимерных композиционных материалов на основе политетрафторэтилена и устройство для изготовления изделий
RU2542039C1 (ru) * 2013-12-10 2015-02-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Способ изготовления высокотемпературного антифрикционного материала

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
П.Н.Петрова и др. Разработка материалов триботехнического назначения на основе политетрафторэтилена и углеродных волокон марки УВИС-АК-П. Вопросы материаловедения, 2017, N4 (92), с. 1-10. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727417C1 (ru) * 2019-09-23 2020-07-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет технологий и управления имени К.Г. Разумовского (Первый казачий университет" Антифрикционный нанокомпозит
RU2773476C1 (ru) * 2020-12-29 2022-06-06 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Московский Государственный Университет Технологий И Управления Имени К.Г. Разумовского (Первый Казачий Университет)" Антифрикционная полимерная композиция

Similar Documents

Publication Publication Date Title
Singh et al. Functionalized graphite–reinforced cross-linked poly (vinyl alcohol) nanocomposites for vibration isolator application: morphology, mechanical, and thermal assessment
Zhang et al. Reinforced natural rubber nanocomposites using graphene oxide as a reinforcing agent and their in situ reduction into highly conductive materials
Xin et al. Synergistic effects of carbon nanotube/nano-MoS 2 hybrid on tribological performance of polyimide nanocomposite films
Wang et al. Mechanical and tribological characteristics of carbon nanotube-reinforced polyvinylidene fluoride (PVDF)/epoxy composites
RU2675520C1 (ru) Полимерный материал триботехнического назначения на основе политетрафторэтилена
Bhagabati et al. Chlorinated polyethylene (CPE)/ethylene methacrylate copolymer (EMA)/sepiolite nanocomposite via a facile one-step covalent modification technique
Zhao et al. RETRACTED ARTICLE: Effects of Copper Nanoparticles Located in Different Regions of Polytetrafluoroethylene/Polyimide Blends on the Morphology, Mechanical and Tribological Properties of PTFE Composites
Cadambi et al. Optimized process for the inclusion of carbon nanotubes in elastomers with improved thermal and mechanical properties
RU2403269C2 (ru) Способ изготовления полимерного нанокомпозиционного материала и материал, изготовленный этим способом
RU2307130C1 (ru) Полимерный антифрикционный композиционный материал
Shadrinov et al. Structure and properties of nitrile-butadiene rubber filled with carbon and basalt fibers
WO2019074394A1 (ru) Способ изготовления изделия сложной формы на основе гибридной композитной матрицы
Ono et al. Influence of addition of PTFE on the tribological properties of CF reinforced plant-derived semi-aromatic polyamide (PA10T) biomass composites
Dolmatov Composition materials based on elastomer and polymer matrices filled with nanodiamonds of detonation synthesis
Panin et al. Mechanical and Tribological Characteristics of Nano-and Microcomposites with UHMWPE–PTFE polymer–polymer matrix
RU2552744C2 (ru) Базальтофторопластовый композиционный материал триботехнического назначения
RU2484107C1 (ru) Полимерная композиция триботехнического назначения
RU2688134C1 (ru) Полимерная композиция триботехнического назначения на основе сверхвысокомолекулярного полиэтилена и 2-меркаптобензотиазола
He et al. Reduction of the filler network interaction in novel inner liner compound based on SBR/rectorite nanocomposite by glycerin
Berladir et al. Mechanically activated polytetrafluoroethylene: morphology and supramolecular structure
RU2386648C2 (ru) Антифрикционная композиция и способ ее получения
RU2467033C1 (ru) Нанокомпозиционный конструкционный материал на основе политетрафторэтилена
RU2816004C1 (ru) Композиционный материал на основе сверхвысокомолекулярного полиэтилена, модифицированного пластификатором
RU2354667C1 (ru) Полимерная композиция триботехнического назначения
Nishitani et al. Effect of addition of PP-g-MA on the tribological properties of hemp fiber reinforced plant-derived Polyamide1010 biomass composites

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20191203