RU2674206C1 - Способ комплексной переработки сточных вод гальванических производств - Google Patents

Способ комплексной переработки сточных вод гальванических производств Download PDF

Info

Publication number
RU2674206C1
RU2674206C1 RU2018100688A RU2018100688A RU2674206C1 RU 2674206 C1 RU2674206 C1 RU 2674206C1 RU 2018100688 A RU2018100688 A RU 2018100688A RU 2018100688 A RU2018100688 A RU 2018100688A RU 2674206 C1 RU2674206 C1 RU 2674206C1
Authority
RU
Russia
Prior art keywords
solution
carried out
wastewater
precipitate
aluminothermic
Prior art date
Application number
RU2018100688A
Other languages
English (en)
Inventor
Дмитрий Анатольевич Волков
Александр Юрьевич Чириков
Александр Алексеевич Юдаков
Игорь Юрьевич Буравлев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Priority to RU2018100688A priority Critical patent/RU2674206C1/ru
Application granted granted Critical
Publication of RU2674206C1 publication Critical patent/RU2674206C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Изобретение может быть использовано на гальванических производствах в процессах хромирования, химического оксидирования, электрохимической полировки, травления и пассивации металлов и сплавов. Способ включает обработку хромсодержащих сточных вод раствором Na2SO3, подщелачивание 10% раствором NaOH до значения рН 3÷5, обработку полученного материала ферритной суспензией, предварительно приготовленной путем смешения, мас. ч.: FeSO4 - 10, NaOH - 3, NaNO3 – 1. Ферритную суспензию вводят из расчета 1÷2 г содержащегося в полученной суспензии железа на 1 г загрязняющих металлов, причем не менее 80÷100 мг железа на 1 л сточных вод. После этого проводят повторное подщелачивание 10% раствором NaOH до значения рН 7÷9 с получением хромсодержащего осадка. Отделение осадка от раствора осуществляют на магнитном сепараторе, его термообработку проводят в два этапа: при 180÷200°C в течение 1,5÷2,0 ч и при 450÷550°C в течение 15÷30 мин. К прошедшему термообработку осадку добавляют в стехиометрическом соотношении алюминиевую крупку, полученную измельчением алюминиевых отходов, и проводят алюминотермическое восстановление с получением феррохрома и алюминотермического шлака. Способ обеспечивает повышение эффективности переработки хромсодержащих промышленных сточных вод при одновременном снижении расходов на осуществление способа и расширении ассортимента получаемых товарных продуктов. 2 з.п. ф-лы, 1 пр.

Description

Изобретение относится к способам нейтрализации и очистки промышленных сточных вод, содержащих соединения шестивалентного хрома, образующиеся в гальванических производствах в процессах хромирования, хроматирования, химического оксидирования, электрохимической полировки, химического травления и пассивации различных металлов и сплавов, травления пластиков перед металлизацией, и может найти применение в вышеупомянутых гальванических, а также в других производствах, где образуются большие количества хромсодержащих водных растворов (металлургии, кожевенном производстве, органическом синтезе, производстве антикоррозионных красок и др.).
В настоящее время известен обширный ряд различных методов для очистки водных растворов от шестивалентного хрома Cr6+: реагентных, в том числе с применением ферритизации, с использованием сорбентов, безреагентных и сочетающих различные приемы. Однако подавляющее большинство из них направлено на решение проблемы обезвреживания хромсодержащих промышленных стоков и нейтрализации образующихся при этом осадков (шламов) с целью их последующего хранения и/или захоронения. Утилизация гальванических шламов в связи со сложностью и нестабильностью их состава, а также с учетом технических трудностей при выделении их в виде осадков из сточных вод, остается на текущий момент сложной проблемой, особенно в части получения товарных продуктов для использования в промышленности и строительстве.
Известен способ стабилизации суспензий гальванических шламов путем ферритизации (RU 2116978, опубл. 1998.08.10), предусматривающий смешивание гальванических шламов с водорастворимой солью двухвалентного железа при соотношении масс ионов двухвалентного железа и твердой фазы суспензии равном 0,06÷0,08, последующее смешивание со щелочью и нагревание полученной суспензии (значение рН 9÷10) до 70÷80°C со скоростью 3÷4°C/мин. В результате применения известного способа образуется большое количество рыхлого осадка (гальваношлама), который подлежит захоронению на специально выделенном земельном участке, несмотря на то, что обезвреженный осадок содержит ценные элементы, пригодные для использования в промышленности, что снижает эффективность и рентабельность способа.
Известен способ утилизации шламов гальванических производств (RU 2217529, опубл. 2003.11.27), включающий стадии выщелачивания, регенерации, фильтрации и обезвреживания, согласно которому перед выщелачиванием шлам подвергают гидравлической активации водой высокого давления до 15 МПа, затем проводят выщелачивание меди, никеля и цинка сначала раствором соляной кислоты с концентрацией 0,3-0,5 молей/л, а затем в аммиачно-хлоридном растворе, образующемся при добавлении в первый раствор избытка аммиачной воды, с разделением нерастворимой части шлама и водного раствора, содержащего аммиачные комплексы меди, цинка и никеля, который подвергают дальнейшей переработке. Обезвреживание шлама осуществляют путем перевода содержащихся в нем соединений Cr6+ в оксид трехвалентного хрома Cr2O3, для чего проводят термообработку при температуре 800-1200°C. Таким образом, известный способ, с учетом стоимости его аппаратурного оснащения, затрат на нейтрализацию и очистку используемых растворов, энергозатрат и, наконец, количественно-качественного выхода товарной продукции, оказывается в практическом осуществлении сложным и затратным, в итоге малорентабельным.
Известен также способ переработки шламов гальванических производств (RU 2408739, опубл. 2011.01.10.), включающий термообработку шламов на воздухе в две ступени: при 180÷200°C в течение 1,5÷2,0 часов, затем при 450÷550°C в течение 15÷30 мин и последующее проведение алюминотермической реакции с образованием сплава, пригодного для металлургической промышленности, и шлака для использования в строительстве. Алюминотермическую реакцию проводят с использованием термитной смеси, содержащей 20÷50 мас. % алюминия и 50÷80 мас. % окиси железа, которую вводят в реакционную массу в количестве 50÷95 мас. %. При реализации известного способа алюминотермическая реакция осуществима только с использованием дополнительного «подогревающего» компонента - окиси железа, что наряду с энергозатратами на термообработку и на предварительное выделение шлама из сточных вод в значительной мере снижает его рентабельность.
Известен способ очистки сточных вод гальванических производств от соединений шестивалентного хрома (RU 2550890, опубл. 2015.05.20), предусматривающий контактирование стоков с содержащим железо дисперсным реагентом, в качестве которого используют дробленую железную либо стальную стружку, при одновременном воздействии создаваемого электромагнитом управляемого магнитного поля и последующую нейтрализацию прореагировавшей смеси щелочью с получением нерастворимого осадка гидроксида хрома Cr(ОН)3. Направление вектора напряженности и величину напряженности магнитного поля меняют путем периодического изменения Полярности и силы тока в обмотках электромагнита. Недостатком известного способа является его сложность, связанная с необходимостью предварительной подготовки путем дробления достаточно твердой железной либо стальной стружки, а также с использованием специального оборудования для создания управляемого магнитного поля. Кроме того, не все модификации гидроксида трехвалентного железа Fe(OH)3 проявляют четко выраженные ферромагнитные свойства, при этом соотношение железо-хром во всех случаях соответствует оптимальному составу шихты. И, наконец, за счет образования рыхлого слоя Fe(OH)3 увеличивается объем образующегося осадка, подлежащего консервации либо захоронению.
Наиболее близким к заявляемому является способ утилизации отработанных электролитов хромирования (RU 2557608, опубл. 2015.07.27) путем нейтрализации 10÷30% водным раствором сульфита натрия Na2SO3 из расчета 3,63÷3,64 мг на 1 мг Cr6+ при рН среды 2,5÷3,0 с последующим подщелачиванием раствором гидроксида натрия NaOH до рН 8,0÷9,5. Полученный осадок гидроксида хрома промывают, сушат при температуре 200÷220°C в течение 1÷2 часов, затем прокаливают при температуре 900÷1100°C в течение не менее 1 часа и подвергают металлотермическому восстановлению до металлического хрома.
К недостаткам известного способа следует отнести, прежде всего, сложность отделения мелкодисперсного хромового осадка от раствора, что в значительной мере снижает эффективность способа, при этом алюминотермическое восстановление оксида хрома (III) требует внесения в реакционную смесь так называемых «подогревающих» добавок, например оксидов железа Fe2O3, либо нагрева реакционной смеси до 500÷600°C, что обусловлено высокой температурой плавления восстанавливаемого металла и образующегося окисла и приводит к удорожанию способа. Кроме того, известный способ предусматривает только извлечение металлического хрома.
Задачей изобретения является создание эффективного и высокорентабельного способа нейтрализации и очистки хромсодержащих промышленных сточных вод, предусматривающего утилизацию образовавшегося осадка (шлама) с получением товарных продуктов, пригодных для вторичного использования в промышленности.
Технический результат способа заключается в повышении эффективности переработки хромсодержащих промышленных сточных вод при одновременном снижении стоимости способа и расширении круга получаемых товарных продуктов.
Указанный технический результат достигают способом переработки сточных вод гальванических производств, предусматривающим их обработку раствором сульфита натрия Na2SO3 и подщелачивание 10% раствором гидроксида натрия NaOH с получением хромсодержащего осадка, отделение осадка от раствора, термообработку осадка и его алюминотермическое восстановление, в котором, в отличие от известного, после подщелачивания до значения рН=3÷5 сточные воды перед осаждением дополнительно обрабатывают предварительно приготовленной ферритной суспензией из расчета 1÷2 грамма содержащегося в ней двухвалентного железа на 1 грамм загрязняющих металлов, при этом не менее 80÷100 мг железа на 1 литр сточных вод, осаждение проводят путем повторного подщелачивания раствором NaOH до значения рН=7÷9, полученный осадок от раствора отделяют на магнитном сепараторе, при этом реакционную массу для алюминотермии получают добавлением к прошедшему термообработку осадку порошка алюминия в стехиометрическом соотношении и проводят алюминотермическое восстановление с получением феррохрома и алюминотермического шлака.
В преимущественном варианте осуществления способа ферритную суспензию готовят путем смешения 10 мас. частей сульфата двухвалентного железа FeSO4, 3 мас. частей гидроксида натрия NaOH и 1 мас. части нитрата натрия NaNO3.
Также в преимущественном варианте осуществления способа для повышения рентабельности способа в реакционной массе используют продукты, полученные измельчением алюминиевых отходов, например, алюминиевой стружки.
Способ осуществляют следующим образом.
Исходные сточные воды, содержащие соединения шестивалентного хрома и других тяжелых и переходных металлов, обрабатывают сульфитом натрия Na2SO3 из расчета 3,60-3,65 мг на 1 мг Cr6+ с восстановлением шестивалентного хрома до трехвалентного и частично нейтрализуют 10-20% водным раствором гидроксида натрия NaOH до рН=3÷5.
Затем в частично нейтрализованные стоки добавляют заранее приготовленную по известной методике (Виноградов С.С. "Экологически безопасное гальваническое производство". "Глобус". М., 2002. - с. 37) ферритную суспензию, которую получают добавлением при перемешивании к 10-20% раствору железного купороса FeSO4 концентрированного раствора гидроксида натрия NaOH и селитры NaNO3, взятых в мольном соотношении FeSO4 : NaOH : NaNO3 = 3:6-7:1 (соответственно, 10:3:1 мас. частей). После перемешивания реагентов в течение 0,5-1,0 часа суспензию оставляют для созревания на несколько часов при комнатной температуре до проявления ферромагнитных свойств.
Количество вносимой ферритной суспензии, которое зависит от содержания в обрабатываемых стоках металлов-загрязнителей, определяют по следующим критериям. Эффективная коагуляция проходит при содержании ферритной суспензии не менее 80-100 мг железа на 1 литр обезвреживаемых сточных вод, при оптимальном соотношении ферритной суспензии и обрабатываемого материала (в пересчете на Fe и суммарное содержание осаждаемых металлов) от 1:1 до 2:1. При меньшем содержании ферритной суспензии и, соответственно, вносимого железа, наблюдается значительное снижение ферромагнитных свойств получаемого осадка, что препятствует его эффективному отделению. Внесение большего количества железа ведет к непроизводительному расходу реагентов, однако допустимо при очистке слабоконцентрированных сточных вод (содержащих до 100 мг/л металлов-загрязнителей).
После внесения ферритной суспензии в обрабатываемый материал проводят его окончательную нейтрализацию до рН=7÷9 с помощью 10-20% водного раствора гидроксида натрия при перемешивании и получают осадок шлама. При этом ферритные частицы выступают в качестве сорбента и центров коагуляции. Полученный осадок шлама имеет повышенную плотность: толщина его слоя на 30÷50% меньше, чем без ферритной обработки, при этом он обладает ферромагнитными свойствами, что позволяет легко отделять осадок от жидкости с помощью магнитного сепаратора.
Нейтрализованную жидкость направляют в отстойник. Выпавший осадок отделяют на магнитном сепараторе типа СОЖ и утилизируют методом алюминотермии.
При внесении ферритной суспензии в обрабатываемый материал в заявляемых количествах, обеспечивающих необходимое содержание железа в обрабатываемом материале, приготовление реакционной массы (шихты) для проведения алюминотермии не требует применения дополнительных «разогревающих» компонентов, увеличивающих энергетику термохимической реакции.
Полученный осадок шлама подвергают термообработке в две ступени. На первой обработку ведут при 180÷200°C в течение 1,5÷2,0 часов, на второй - при 450÷550°C в течение 15÷30 мин.
Затем готовят шихту для алюминотермии, добавляя к обработанному шламу в стехиометрическом соотношении дисперсный материал, полученный измельчением отходов алюминия. Преимущественно используют алюминиевую крупку, полученную дроблением алюминиевой стружки. Реакционную массу загружают в тигель, который помещают в аппарат для металлотермического восстановления шламов, описанный в патенте RU 2419659, опубл. 2011.05.27, и инициируют алюминотермическую реакцию. После окончания реакции извлекают образовавшийся спек, отделяют королек металлического сплава (феррохрома) и отправляют его на вторичное использование, в частности, в черной металлургии. Алюминотермический шлак, который по химическому составу аналогичен абразиву, используемому в пескоструйных установках, дробят и также используют в качестве абразива.
Пример конкретного осуществления способа
Образец промышленных сточных вод объемом 83,0 л с суммарным содержанием металлов (Fe, Cu, Cr, Ni, Zn) 60 мг/л, в том числе Cr(VI) 23 мг/л, и значением рН=2 подвергали переработке предлагаемым способом. Шестивалентный хром Cr6+ восстанавливали с помощью 16,0 г сульфита натрия Na2SO3, взятого в виде 10% раствора. После получасовой выдержки полученный состав, содержащий соли трехвалентного хрома, частично нейтрализовали 10% раствором гидроксида натрия, взятым в количестве, обеспечивающем значение рН состава 3,5. Затем в него добавляли созревшую ферритную суспензию, заранее приготовленную из 50 г сульфата двухвалентного железа, 15,0 г гидроксида натрия и 50,0 г нитрата натрия (все реактивы технические). Нейтрализацию 10% раствором гидроксида натрия проводили при перемешивании до значения рН=7,5.
После отстаивания получено 3,1 л осадка шлама с четко выраженными ферромагнитными свойствами, при этом остаточное содержание загрязняющих металлов в очищенной сточной жидкости, определенное методом атомной абсорбции с использованием спектрометра Thermo Scientific SOLAAR М Series (Thermo, США), не превышало ПДК.
Осадок шлама, выделенный с помощью магнитной сепарации, подвергали термообработке в две ступени: на первой при 180°C в течение 1,5 часов, затем при 550°C в течение 30 мин. Готовили реакционную массу, добавляя к полученному шламу дробленую стружку алюминия в соотношении шлам : алюминий = 1:3. После прохождения алюминотермической реакции извлекали образовавшийся спек и отделяли королек металлического сплава (по данным рентгено-флуоресцентного анализа, следующего состава, мас. %: Fe 77-78, Cr 13,5, остальное Al, Cu) массой около 13,0 г и алюминотермический шлак (мас. %: Al2O3 78,6; оксиды Fe, Cr, Si, Cu - остальное).
Точное определение массы алюминотермического шлака не представляется возможным вследствие его разбрызгивания по стенкам тигля.

Claims (3)

1. Способ комплексной переработки сточных вод гальванических производств, предусматривающий их обработку раствором сульфита натрия Na2SO3 и подщелачивание раствором гидроксида натрия NaOH с получением хромсодержащего осадка, отделение осадка от раствора, его сушку, термообработку и алюминотермическое восстановление, отличающийся тем, что после подщелачивания до значения рН 3÷5 сточные воды перед осаждением дополнительно обрабатывают предварительно приготовленной ферритной суспензией из расчета 1÷2 г содержащегося в ней железа на 1 грамм загрязняющих металлов, причем не менее 80÷100 мг железа на 1 л сточных вод, осаждение проводят повторным подщелачиванием до значения рН 7÷9, при этом отделение осадка от раствора проводят на магнитном сепараторе, термообработку осуществляют в два этапа: при 180÷200°C в течение 1,5÷2,0 ч и при 450÷550°C в течение 15÷30 мин, реакционную массу для алюминотермии получают добавлением в стехиометрическом соотношении дисперсного материала, полученного измельчением алюминия, к прошедшему термообработку осадку и проводят алюминотермическое восстановление с получением содержащего феррохром сплава и алюминотермического шлака.
2. Способ по п. 1, отличающийся тем, что ферритную суспензию готовят путем смешения 10 мас. ч. сульфата двухвалентного железа FeSO4, 3 мас. ч. гидроксида натрия NaOH и 1 мас. ч. нитрата натрия NaNO3.
3. Способ по п. 1, отличающийся тем, что алюминотермическое восстановление проводят с использованием алюминиевой крупки, полученной измельчением алюминиевых отходов, преимущественно алюминиевой стружки.
RU2018100688A 2018-01-10 2018-01-10 Способ комплексной переработки сточных вод гальванических производств RU2674206C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018100688A RU2674206C1 (ru) 2018-01-10 2018-01-10 Способ комплексной переработки сточных вод гальванических производств

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018100688A RU2674206C1 (ru) 2018-01-10 2018-01-10 Способ комплексной переработки сточных вод гальванических производств

Publications (1)

Publication Number Publication Date
RU2674206C1 true RU2674206C1 (ru) 2018-12-05

Family

ID=64603735

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018100688A RU2674206C1 (ru) 2018-01-10 2018-01-10 Способ комплексной переработки сточных вод гальванических производств

Country Status (1)

Country Link
RU (1) RU2674206C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362477A (zh) * 2018-12-26 2020-07-03 山东新海表面技术科技有限公司 一种含铬废水的处理方法
RU2744806C1 (ru) * 2019-10-04 2021-03-15 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения магнитоуправляемого сорбционного материала
RU2748672C1 (ru) * 2020-05-29 2021-05-28 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ очистки промышленных сточных вод от тяжелых металлов
CN114853210A (zh) * 2022-04-30 2022-08-05 美图(福建)铝业有限公司 铝材生产废水的处理液及处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN184274B (ru) * 1995-07-16 2000-07-22 Tata Iron & Steel Co Ltd
RU2218311C2 (ru) * 2001-09-28 2003-12-10 Руденок Владимир Афанасьевич Способ переработки концентрированных растворов нанесения гальванических покрытий
RU2235795C1 (ru) * 2002-12-25 2004-09-10 Беляев Игорь Васильевич Способ переработки гальваношламов
US7799232B2 (en) * 2004-04-26 2010-09-21 Mitsubishi Materials Corporation Method of treating wastewater with reducing water purification material
RU2422374C2 (ru) * 2005-11-30 2011-06-27 Индустрие Де Нора С.П.А. Электрохимическая обработка растворов, содержащих шестивалентный хром
RU2557608C1 (ru) * 2014-04-03 2015-07-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ утилизации отработанных электролитов хромирования
CN107299233A (zh) * 2017-05-25 2017-10-27 昆明理工大学 一种微波铝热还原金属铬的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN184274B (ru) * 1995-07-16 2000-07-22 Tata Iron & Steel Co Ltd
RU2218311C2 (ru) * 2001-09-28 2003-12-10 Руденок Владимир Афанасьевич Способ переработки концентрированных растворов нанесения гальванических покрытий
RU2235795C1 (ru) * 2002-12-25 2004-09-10 Беляев Игорь Васильевич Способ переработки гальваношламов
US7799232B2 (en) * 2004-04-26 2010-09-21 Mitsubishi Materials Corporation Method of treating wastewater with reducing water purification material
RU2422374C2 (ru) * 2005-11-30 2011-06-27 Индустрие Де Нора С.П.А. Электрохимическая обработка растворов, содержащих шестивалентный хром
RU2557608C1 (ru) * 2014-04-03 2015-07-27 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ утилизации отработанных электролитов хромирования
CN107299233A (zh) * 2017-05-25 2017-10-27 昆明理工大学 一种微波铝热还原金属铬的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362477A (zh) * 2018-12-26 2020-07-03 山东新海表面技术科技有限公司 一种含铬废水的处理方法
RU2744806C1 (ru) * 2019-10-04 2021-03-15 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения магнитоуправляемого сорбционного материала
RU2748672C1 (ru) * 2020-05-29 2021-05-28 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ очистки промышленных сточных вод от тяжелых металлов
CN114853210A (zh) * 2022-04-30 2022-08-05 美图(福建)铝业有限公司 铝材生产废水的处理液及处理工艺

Similar Documents

Publication Publication Date Title
RU2674206C1 (ru) Способ комплексной переработки сточных вод гальванических производств
CN107324303B (zh) 一种从多金属危险废物中分离精制铁、铬的方法
CA2555564A1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
JPH05504910A (ja) 高密度スラッジの改良した再循環を用いる廃水処理方法
AU2015339815A1 (en) Method for removing iron in the manufacture of phosphoric acid
CA2924309C (en) A method for the treatment of metals
Torras et al. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry
JP2013075252A (ja) 排水からセシウムと重金属類を除去する処理方法
Heuss-Aßbichler et al. A new procedure for recovering heavy metals in industrial wastewater
US4548718A (en) Treating cyanide-containing effluents
CN108706844A (zh) 多金属危险废物中铁、铬、铝的分离回收方法及其应用
Demirel et al. Removal of Cu, Ni and Zn from wastewaters by the ferrite process
RU2731269C1 (ru) Способ переработки ингибитора коррозии, содержащего соединения шестивалентного хрома и морскую воду
CN113060817B (zh) 一种矿物改性材料处理电镀含铬废水的方法
Institution of Mining and Metallurgy and the Society of Chemical Industry et al. Norzink removal of cobalt from zinc sulphate electrolytes
CN103880218A (zh) 一种钒冶炼废水的全循环技术
JPH0128635B2 (ru)
Salhi Recovery of nickel and copper from metal fInishing hydroxide sludges by ammoniacal leaching
RU2698810C2 (ru) Способ извлечения хрома (vi) из растворов с получением железо-хромового осадка
RU2608968C1 (ru) Способ переработки жидких радиоактивных отходов
Gök et al. Recycle of Contaminated Zinc-Nickel Plating Bath by Selective Recovery of Iron
Pardus et al. Co-precipitation of Heavy Metals with Chromium in Brass Mill Wastewater
CN114263915B (zh) 硝酸铜废水的旋转蒸发残渣处理方法
Liu et al. Novel Method for Producing Chromic Oxide without Hexavalent Chromium Pollution by Acid Leaching
RU2791260C1 (ru) Способ очистки промывных сточных вод от шестивалентного хрома