RU2673975C2 - Сегментация исследуемой области, управляемая отслеживанием взгляда - Google Patents

Сегментация исследуемой области, управляемая отслеживанием взгляда Download PDF

Info

Publication number
RU2673975C2
RU2673975C2 RU2017117524A RU2017117524A RU2673975C2 RU 2673975 C2 RU2673975 C2 RU 2673975C2 RU 2017117524 A RU2017117524 A RU 2017117524A RU 2017117524 A RU2017117524 A RU 2017117524A RU 2673975 C2 RU2673975 C2 RU 2673975C2
Authority
RU
Russia
Prior art keywords
image
viewpoints
segmentation
localization point
study area
Prior art date
Application number
RU2017117524A
Other languages
English (en)
Other versions
RU2017117524A (ru
Inventor
Кунко ЛУ
Эрик КОЭН-СОЛАЛЬ
Юэчэнь ЦЯНЬ
Габриэль Райан МАНКОВИЧ
Аксель САЛБАХ
Даниэль БЫСТРОВ
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2017117524A publication Critical patent/RU2017117524A/ru
Application granted granted Critical
Publication of RU2673975C2 publication Critical patent/RU2673975C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/36Applying a local operator, i.e. means to operate on image points situated in the vicinity of a given point; Non-linear local filtering operations, e.g. median filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nonlinear Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)

Abstract

Изобретение относится к области вычислительной техники. Техническим результатом заявленного изобретения является реализация улучшенной сегментации исследуемой области, управляемой посредством отслеживания взгляда. Технический результат достигается за счет того, что система сегментации исследуемой области (ROI) содержит устройство отображения, устройство отслеживания взгляда, устройство сбора точек взгляда, устройство определения границы, устройство определения области, фильтр точек взгляда. Устройство отслеживания взгляда генерирует точки взгляда относительно отображенного изображения. Устройство определения границ оценивает границу на основании выбранных точек взгляда. Устройство определения области выполняет сегментацию исследуемой области. 2 н. и 11 з.п. ф-лы, 7 ил.

Description

Настоящее изобретение в целом относится к медицинской визуализации. В частности, настоящее изобретение применимо для сегментации исследуемых областей на медицинских изображениях и будет описано в настоящем документе со ссылкой на эту область применения. Однако следует понимать, что оно также применимо в других областях использования и необязательно ограничивается вышеуказанным применением.
Сегментацию исследуемых областей (Region of Interest, ROI) используют при анализе тканей и структур на медицинских изображениях, например, с целью обнаружения заболевания и/или анализа прогрессирования заболевания. Сегментация включает определение границ структуры и/или тканей и может включать измерения, основанные на определенных границах и других характеристиках, таких как интенсивность, размер, форма и/или изменение показателей измерений от одного изображения к другому. Сегментацию используют во многих методах визуализации, таких как магнитно-резонансная томография (МРТ), ультразвуковое исследование (УЗ), рентгеновская компьютерная томография (РКТ), позитронно-эмиссионная томография (ПЭТ), однофотонная эмиссионная компьютерная томография (ОФЭКТ), их комбинации и т.п.
Сегментация целевых исследуемых областей (ИО) может быть затруднена по причине изменения интенсивности, размера и форм ввиду природы ИО, при этом доступны различные методы и различные параметры визуализации для каждого метода. Целевые ИО, подлежащие анализу, могут включать в себя опухоли, узлы, лимфатические узлы, ткани, имеющие непрозрачность наподобие матового стекла, которые может распознавать обученный медицинский работник, но которые не могут быть получены из медицинского атласа. С помощью методов представляют различные виды изображений структур и/или метаболические активности. Целевые ИО могут обладать обнаруживаемыми признаками, общими с окружающими структурами/органами/тканями. В каждом методе могут использоваться различные параметры визуализации, которые для одного и того же субъекта и в одно и то же время представляют различные виды изображений.
Одним из подходов является определение целевой ИО медицинским работником вручную с помощью набора инструментов для указания на целевую ИО. Например, с помощью инструмента рисования линий и/или инструмента рисования многоугольных форм медицинский работник очерчивает аппроксимацию целевой ИО. Как правило, в основе инструментов лежит компьютерная мышь и/или световое перо, используемые для рисования форм вдоль границы. Алгоритм сегментации дополнительно детализирует грубо нарисованную форму для сегментации тканей и/или структуры. Данный подход предполагает направление вычислительных ресурсов компьютера на целевую ИО, заданную вручную, и занимает у медицинского работника достаточно много времени, что снижает производительность при анализе медицинским работником большого количества изображений. Данный процесс является утомительным и отнимающим много времени, и в целом рассматривается как неэкономичный, даже для изображений отдельного субъекта, не говоря уже о большом количестве субъектов, для которых были сформированы изображения в приборе, осуществляющем визуализацию.
Другим подходом является полная автоматизация, которая выполняет сегментацию всех тканей и/или структур на изображении без ввода со стороны медицинского работника. Несмотря на то, что данный подход экономит ограниченные ресурсы медицинского работника, алгоритмы сегментации иногда не дают результата ввиду изменчивости структур. Существенные количества вычислительных ресурсов и времени тратятся на сегментацию структур, не используемых при анализе.
Гибридные подходы включают различные аспекты каждого их указанных методов, при которых ввод со стороны медицинского работника, как правило, задает точку и/или многоугольную форму с помощью устройства ввода, управляемого вручную. Устройства ручного ввода требуют сноровки и времени для координации движений устройства с представлениями местоположения ввода относительно изображения. Основные операционные системы включают в себя параметры для управления курсором с помощью мыши, такие как скорость щелчка, скорость указателя, траектории указателя, представление указателя и т.п., отражающие воздействие устройства ввода на продуктивность и производительность отдельного пользователя компьютера.
В US 2006/112334 А1 раскрыт способ модификации части цифрового изображения. В одном из вариантов реализации, цифровое изображение отображают на дисплее и определяют данные о взгляде пользователя, просматривающего изображение на дисплее. После этого определяют часть изображения, просматриваемого пользователем, которая соответствует полученным данным о взгляде для определения области взгляда. Полученную область взгляда модифицируют для генерирования модифицированной области взгляда, и отображают результирующую модифицированную область взгляда на дисплее.
В US 2005/069206 А1 раскрыты системы и способы анализа зрительного внимания к изображению. Согласно одному из аспектов, зрительное внимание к изображению моделируют путем предварительной обработки изображения для генерирования количественного набора блоков изображения. После этого из количественных блоков изображения генерируют основанную на контрасте карту особенностей изображения для моделирования от одного до трех уровней зрительного внимания к изображению.
Нижеследующее описание раскрывает новую и улучшенную сегментацию исследуемой области, управляемую посредством отслеживания взгляда, которая решает вышеуказанные и прочие проблемы.
Согласно одному из аспектов, система сегментации исследуемой области (ИО) содержит устройство отображения, устройство отслеживания взгляда, устройство сбора точек взгляда, устройство определения границ и устройство определения области. Устройство отображения отображает изображение. Устройство отслеживания взгляда предоставляет отслеженные точки взгляда относительно отображенного изображения. Устройство сбора точек взгляда выбирает точки взгляда из предоставленных точек взгляда, соответствующих исследуемой области (ИО) на отображенном изображении. Устройство определения границ оценивает границу на основании выбранных точек взгляда. Устройство определения области выполняет сегментацию ИО на основании оцененной границы.
Согласно другому аспекту, способ сегментации исследуемой области (ИО) включает отображение изображения. Генерируют точки взгляда относительно отображенного изображения. Выбирают точки взгляда из сгенерированных точек взгляда, соответствующих исследуемой области (ИО) на отображенном изображении. Оценивают границу на основании выбранных точек взгляда. Выполняют сегментацию ИО на основании оцененной границы.
Одним из преимуществ является определение целевой исследуемой области с помощью кластера точек взгляда.
Другое преимущество заключается в ускорении ввода медицинским работником при определении целевой ИО.
Другое преимущество заключается в специфике ввода при определении целевой ИО.
Другое преимущество заключается в минимизации взаимодействия с пользователем.
Другое преимущество заключается в распределении полученных изначально пространственных местоположений и/или величин изображения, указывающих на целевую ИО.
Другое преимущество заключается в ускорении сегментации от первоначального ввода до сегментированной целевой ИО.
Другие дополнительные преимущества станут понятны специалисту в данной области техники после ознакомления и понимания следующего подробного описания.
Настоящее изобретение может быть реализовано с использованием различных компонентов и схем размещения компонентов, а также посредством различных этапов и последовательностей этапов. Чертежи служат лишь в целях иллюстрации предпочтительных вариантов реализации и не должны рассматриваться в качестве ограничения настоящего изобретения.
На фиг. 1 схематически изображен вариант реализации системы сегментации исследуемой области, управляемой отслеживанием взгляда.
На фиг. 2 схематически изображен пример медицинского изображения с разнесенным видом отображенного изображения и точек взгляда.
На фиг. 3 изображен пример медицинского изображения с калибровочной настройкой.
На фиг. 4 изображен пример медицинского изображения с отфильтрованными точками взгляда.
На фиг. 5 изображен пример медицинского изображения с исходной границей, основанной на отфильтрованных точках взгляда.
На фиг. 6 изображен пример медицинского изображения с сегментированной ИО.
На фиг. 7 изображена диаграмма одного способа использования варианта реализации сегментации ИО, управляемой точкой взгляда.
На фиг. 1 схематически изображен вариант реализации системы 10 сегментации исследуемой области, управляемой отслеживанием взгляда. Компьютер или вычислительное устройство 12 принимает изображение 14 из хранилища 16 или от устройства 18 медицинской визуализации, которое генерирует медицинское изображение субъекта. Компьютер 12 подходящим образом реализован в виде рабочей станции, портативного компьютера, смартфона, планшета и т.п. Отображенное изображение может представлять собой двумерное изображение, двумерные срезы трехмерного объемного представления, двумерное представление трехмерного объема и т.п. Отображенное изображение 14 может содержать движение. Хранилище 16 содержит доступное системное хранилище, такое как система передачи и архивации изображений (СПАИ), рентгенологическую систему отделения, систему историй болезни пациента и/или хранилище с непосредственным доступом, такое как «облачное» хранилище, локальное хранилище и т.п. Устройство 18 медицинской визуализации представляет собой устройство, которое генерирует медицинские изображения субъекта, такое как сканер магнитно-резонансной томографии (МРТ), сканер компьютерной томографии (КТ), сканер позитронно-эмиссионной томографии (ПЭТ), сканер однофотонной эмиссионной компьютерной томографии (ОФЭКТ), ультразвуковой (УЗ) сканер, их комбинации, и т.п. Компьютер 12 содержит устройство 20 отображения, которое отображает принятое изображение. Компьютер 12 содержит один или более процессоров 26 для обработки данных.
Компьютер 12 содержит одно или более устройств 22 ввода, таких как мышь, световое перо, клавиатура, микрофон, сенсорный экран и т.п., с помощью которых вводят опорную точку или точку 24 локализации относительно отображенного изображения 14. Например, с помощью указателя манипулятора-мыши, расположенного в исследуемой области (ИО) 25, щелчок кнопки мыши определяет точку 24 локализации в пространстве и времени. Точка 24 локализации может быть представлена на отображенном изображении, например, цветной точкой или геометрической формой, контрастными перекрестными нитями и т.п.
Устройство или средство 28 отслеживания взгляда генерирует точки 30 взгляда относительно отображенного изображения 14. Устройство 28 отслеживания взгляда может быть установлено относительно компьютера 12 и/или устройства 20 отображения, и/или содержать устройство, выполненное с возможностью ношения на теле, такое как очки, и т.п. Например, портативные системы отслеживания взгляда Tobii™, присоединяемые и калибруемые с портативными компьютерами и рабочими станциями, используют микропроекторы для создания паттернов корнеальных рефлексов для оценки направления взгляда. Датчики изображений записывают паттерны корнеальных рефлексов с разрешением, достаточным для определения точек взгляда. Устройство 28 отслеживания взгляда может содержать калибровочные операции для калибровки точек 30 взгляда относительно устройства 20 отображения и/или отображенного изображения 14. Устройство 28 отслеживания взгляда может содержать профили, откалиброванные под взгляд отдельных пользователей. Устройство 28 отслеживания взгляда генерирует точки 30 взгляда в режиме реального времени, таком как, например, 30 точек взгляда в секунду.
В одном из вариантов реализации, устройство 28 отслеживания взгляда отслеживает и представляет входные данные, указывающие на точку 24 локализации. Например, в случае, когда взгляд направлен на локализованную область на протяжении заданного периода времени и/или когда он сопровождается другим вводом, таким как голосовая команда, точка локализации фиксируется в пространстве и времени.
Устройство сбора точек взгляда, процессор, компьютерная подпрограмма или средство 32 выбирает точки взгляда из сгенерированных точек 30 взгляда, соответствующих ИО 25 на отображенном изображении 14. Каждая точка взгляда соотнесена с системой координат отображенного изображения 14. Точка 24 локализации задает пространственную и временную близость точек 30 взгляда. Например, точка локализации в ИО определяет расстояние до каждой точки взгляда относительно ИО, временное соотношение с ИО в примере с изображениями, основанными на движении, и временное соотношение с точкой локализации, такое как ± 1 секунда времени точки локализации.
Временная близость может содержать точки 30 взгляда в заданном временном окне или интервале [Т0, T1] относительно точки 24 локализации. Например, выбранные точки взгляда включают точки взгляда, отслеженные во временном интервале за одну секунду до точки локализации. В другом примере, выбранные точки взгляда включают точки взгляда, отслеженные во временном интервале между одной секундой перед точкой локализации и полусекундой после точки локализации. Точки взгляда отбирают часто, например, 30 раз в секунду. Заданный интервал [Т0, T1] выбирают достаточно большим для генерирования подходящей выборки или выбора отслеженных точек 30 взгляда. Заданный временной интервал [Т0, T1] определяют во временной близости к точке 24 локализации, например, времени перед и/или после фиксации точки локализации для расположения точек взгляда в пространственной близости к ИО. Распределение выбранных точек взгляда обеспечивает больше информации, например, вариантности, чем ввод одного местоположения, указывающего на ИО.
Фильтр точек взгляда, процессор, компьютерная подпрограмма или средство 34 фильтрует выбранные точки взгляда в соответствии с характеристиками изображения соответствующей ИО 25. Например, точки 30 взгляда, соответствующие интенсивностям пикселов, подобным интенсивности пиксела точки 24 локализации, включаются в отфильтрованные точки взгляда. Характеристики изображения могут содержать пространственное измерение и/или значения пикселов изображения. Фильтр 34 точек взгляда использует анализ характеристик изображения между пространственными местоположениями точек 30 взгляда и точкой 24 локализации методом максимального правдоподобия.
Устройство определения границы, процессор, компьютерная подпрограмма или средство 36 оценивает границу на основании выбранных точек взгляда. В одном варианте реализации, выбранные точки взгляда представляют собой точки взгляда, отфильтрованные фильтром 34 точек взгляда. Граница изменяется от дискретных точек в точках 30 взгляда к непрерывной ограничивающей области или объему, который аппроксимирует область или объем отображенного изображения 14 в ИО 25.
Устройство определения области, выполняющий сегментацию процессор, компьютерная подпрограмма или средство 38 сегментирует ИО 25 на основании сгенерированной границы. Устройство определения области использует алгоритм для расширения и/или сужения границы до ИО 25 на основании характеристик изображения, а также использует сгенерированную границу в качестве первичной оценки для входных данных автоматизированного алгоритма сегментации. Сегментированную ИО 25 отдельно отображают на отображенном изображении 14 и/или сохраняют в хранилище 40 данных об изображении, таком как доступное системное хранилище и/или хранилище с непосредственным доступом. Область и/или измерения объема могут быть выполнены с помощью сегментированной ИО 25. Например, сегментированная ИО может быть использована для определения роста опухоли на основании сегментации ИО на одном изображении субъекта и на более позднем изображении того же субъекта.
Устройство 32 сбора точек взгляда, фильтр 34 точек взгляда, устройство 36 определения границы и устройство 38 определения области подходящим образом реализованы в устройстве 26 обработки данных, таком как электронный процессор или электронное устройство обработки, содержащееся в компьютере 12, или в сетевом служебном компьютере, функционально соединенном с компьютером 12 по сети, или т.п. Более того, раскрытые технологии сбора, фильтрации, определения границы и сегментации подходящим образом реализованы с помощью энергонезависимого носителя информации, хранящего инструкции (например, программное обеспечение), выполненные с возможностью чтения устройством обработки данных и выполнения устройством обработки данных для выполнения раскрытых технологий.
На фиг. 2 изображен пример медицинского изображения 50 и увеличенный вид 52 части отображенного изображения 14, на котором изображены выбранные точки 54 взгляда. ИО 25 представляет собой белесую область, по существу покрытую выбранными точками 54 взгляда. Выбранные точки 54 взгляда изображены в шахматном порядке. Выбранные точки 54 взгляда могут быть обозначены различными цветами, формами и/или интенсивностями, отличающимися от отображенного изображения 14. Точка 24 локализации обозначена белым кругом. Точка локализации может быть обозначена различными цветами, формами и/или различными интенсивностями, которые отличаются от отображенного изображения 14 и выбранных точек 54 взгляда. Например, точка локализации обозначена мигающей точкой, а точки взгляда обозначены желтыми точками на полутоновом сером изображении. Выбранные точки 54 взгляда собраны в перечень из точек, сгенерированных устройством отслеживания взгляда за одну секунду до щелчка мышью. Точки, собранные в перечень, пространственно связаны с точкой 24 локализации и с отображенным изображением 14.
На фиг. 3 показан увеличенный вид 52 примера медицинского изображения с точками взгляда, на котором изображена калибровочная настройка или дополнительный ввод с одного или более устройств 22 ввода. Точка 24 локализации и выбранные точки 54 взгляда отображены на расстоянии от ИО 25. Устройство 32 сбора точек взгляда калибрует пространственное расположение выбранных точек 54 взгляда относительно ИО 25. Например, после ввода пространственного расположения 56, такого как ввод щелчком мыши или перетаскивание с нажатой кнопкой мыши на необходимую ИО 25, калибровка точек взгляда в устройстве 32 основана на несовпадении между точкой 24 локализации и перемещенной точкой 60 локализации. Расстояние между точкой 24 локализации и перемещенной точкой 60 локализации обеспечивает калибровочную меру, применяемую к выбранным точкам 54 взгляда, основанным на точке 24 локализации. Калиброванное измерение учитывает как систематические погрешности пользователей, так и системные ошибки. Надлежащим образом выровненная точка локализации, например полученный в результате переход, представлена на увеличенном виде 52 на фиг. 2.
На фиг. 4 изображен увеличенный вид примера медицинского изображения с отфильтрованными точками 60 взгляда. В одном варианте реализации, анализ методом максимального правдоподобия, выполняемый фильтром 34 точек взгляда, детализирует выбранные точки 54 взгляда до поднабора. В анализе методом максимального правдоподобия используют сходство интенсивностей, сходство градиентов и/или пространственное расстояние между пикселами точки 24 локализации и каждой точкой взгляда для фильтрации. Предусмотрены другие технологии фильтрации. Выбранные точки 54 взгляда, которые вероятно являются схожими, включают в отфильтрованный поднабор; а выбранные точки 54 взгляда, которые вероятно не являются схожими, исключают. Например, выбранные точки взгляда, изображенные на фиг. 2, которые расположены в темной области, исключены, а выбранные точки взгляда, расположенные в белесой области ИО включены в отфильтрованные точки 60 взгляда. На медицинских изображениях с учетом природы ИО, в каждом методе доступны различные методы и различные медицинские параметры, а выбранные точки 54 взгляда зашумлены, например, точки взгляда расположены около и за пределами ИО, и исключаются в результате фильтрации.
На фиг. 5 изображен пример медицинского изображения с исходной границей 70, основанной на отфильтрованных точках 60 взгляда. Устройство 36 определения границы генерирует границу с помощью модели или алгоритма активного контура, и/или алгоритма сквозного счета. Алгоритмы преобразуют пространственные точки со значениями пикселов, представленные точками взгляда или отфильтрованными точками взгляда, в непрерывную границу. Исходная граница 70 может быть отображена на устройстве 20 отображения. На представленном в качестве примера медицинском изображении, исходная граница 70 представлена в виде непрерывно ограниченной области с жирной линией в шахматном порядке. Исходная граница 70 может быть представлена с помощью различных текстур, цветов, выделений и т.д., отличающихся по контрасту от отображенного изображения 14.
На фиг. 6 изображен пример медицинского изображения с сегментированной ИО 80. Устройство 38 определения области сегментирует ИО 25 с использованием исходной границы 70 в качестве входных данных. Устройство 38 определения области сегментирует ИО 25 с помощью технологии автоматической сегментации области, такой как алгоритм наращивания областей, алгоритм активного контура, алгоритм выделения краев и/или алгоритм сквозного счета, основанный на области. В одном варианте реализации, функция стоимости сравнивает значений пикселов из местоположений пикселов в пределах текущей границы для определения включения в модифицированную границу. Сегментированная ИО 80 может быть отображена на отображенном изображении 14, отображена отдельно, дополнительно использована для измерений области или объема, и/или сохранена в хранилище 40 данных об изображении. На представленном в качестве примера медицинском изображении, сегментированная ИО 80 представлена непрерывной «шахматной» линией, окружающей ИО 25, которая отображена белесой на темной окружающей области. Сегментированная ИО 80 может быть отображена с помощью цвета, текстур, подсветок и т.д., отличающихся по контрастности от отображенного изображения 14.
На фиг. 7 представлен способ использования варианта реализации сегментации ИО, управляемой точкой взгляда, в виде блок-схемы. На этапе или посредством модуля 90 калибруют отслеживание взгляда. Калибровка отслеживания взгляда с помощью устройства 28 отслеживания взгляда калибрует взгляд пользователя до системы координат устройства 20 отображения. Калибровка может включать построение и/или обновление профиля пользователя, который сохраняют и повторно используют. Например, может быть отображена точка и измеренную точку взгляда пользователя калибруют до отображаемой точки. Калибровка может быть уточнена посредством повторения данной технологии при отображении дополнительных точек в различных местоположениях на экране.
На этапе или посредством модуля 92 изображение 14 отображают на экране. Отображаемое изображение 14 может быть принято из хранилища 16 данных об изображении, таком как доступное системное хранилище, хранилище с непосредственным доступом и т.п.
На этапе или посредством модуля 94 генерируют точки 30 взгляда относительно отображенного изображения 14 с помощью устройства 28 отслеживания взгляда. Каждая точка взгляда содержит временной и пространственный параметр. Например, точка взгляда содержит временную метку, Ti, и местоположение, (xi, yi), относительно устройства отображения и/или отображенного изображения. Местоположения относительно устройства отображения преобразуют в местоположения относительно отображенного изображения.
На этапе или посредством модуля 96, точки 30 взгляда выбирают из сгенерированных точек 30 взгляда, соответствующих ИО 25 на отображенном изображении 14. Ввод с одного или более устройств 22 ввода определяет точку 24 локализации. Ввод фиксирует точку в пространстве и времени. Соответствующий заданный временной интервал используют для выбора точек взгляда, выбранных из сгенерированных точек 30 взгляда в пределах заданного временного интервала. Например, щелчок мыши вводит местоположение изображения и происходит во время Tm, при этом Tm соответствует заданному временному интервалу, составляющему 0,8 секунды, смещенному на 0,2 секунды перед вводом, [Tm - 1.0 секунда, Tm - 0.2 секунды], выбирает сгенерированные точки взгляда, которые имели место в пределах интервала [Tm - 1.0 секунда, Tm - 0.2 секунды]. Выбранные точки 54 взгляда указывают на ввод пользователем ИО 25, подлежащей использованию для сегментации.
На этапе принятия решения или посредством модуля 98 определяют калибровку. Калибровка использует входные данные для выполнения преобразования выбранных точек 54 взгляда. Например, при отображении выбранных точек взгляда, система приостанавливает ввод. На этапе или посредством модуля 100, выбранные точки 54 взгляда калибруют с помощью входных данных. Например, операция ввода перетаскиванием с нажатой кнопкой мыши преобразует выбранные точки взгляда относительно отображенного изображения, например, передвигает отображенные точки взгляда. Переход может использовать точку 24 локализации в качестве опорной точки для преобразования. В одном варианте реализации, преобразование использует выбранные точки взгляда в качестве соединенного облака или кластера точек взгляда для перемещения облака или кластера за одну операцию ввода.
Выбранные точки 54 взгляда могут быть отфильтрованы на этапе или посредством модуля 102. Фильтр использует анализ значений пикселов точки 24 локализации и значений пикселов выбранных точек 54 взгляда методом максимального правдоподобия для определения включения/исключения в отфильтрованных точках 60 взгляда. Анализ методом максимального правдоподобия использует сходство интенсивности, сходство градиента и/или пространственное расстояние. Например, для исключения выбранных точек взгляда, превышающих максимальное расстояние, используют расстояние от точки локализации. В одном варианте реализации, отображают отфильтрованные точки 60 взгляда, и дополнительный ввод может также удалить отдельные отфильтрованные точки взгляда.
На этапе или посредством модуля 104 генерируют исходную оцененную границу 70 на основании отфильтрованных точек 60 взгляда. В одном варианте реализации, границу 70 генерируют на основании выбранных точек 54 взгляда. Границу 70 генерируют с помощью устройства 36 определения границы, используя, например, алгоритм активного контура или алгоритм сквозного счета. Алгоритмы используют в качестве входных данных отфильтрованные точки 60 взгляда, а также местоположения и значения пикселов отображенного изображения 14, и генерируют непрерывную границу, например, волнообразную границу.
На этапе или посредством модуля 106, ИО 25 сегментируют на основании оцененной границы 70. Устройство 38 определения области использует технологию автоматической сегментации для расширения/сужения оцененной границы 70 до сегментированной ИО 80. Технология автоматической сегментации включает, например, алгоритм наращивания областей, алгоритм активного контура, алгоритм выделения краев и/или алгоритм сквозного счета, основанный на области.
Этапы могут повторяться для других ИО. Этапы могут включать повтор других этапов и/или возвращение к ним. Например, могут повторять калибровку 100 выбранных точек. В другом примере, исходя из отображения выбранных точек 54 взгляда и/или отфильтрованных точек 60 взгляда, обработка может вернуться обратно к генерированию 94 точек взгляда или калибровке 90 отслеживания взгляда.
Следует понимать, что для конкретных иллюстративных вариантов реализации, представленных в данном документе, описаны некоторые структурные и/или функциональные признаки, включенные в определенные элементы и/или компоненты. Однако предполагается, что эти признаки могут, в такой же или схожей степени, а также подобным образом быть включены в другие элементы и/или компоненты, где это применимо. Следует также понимать, что различные аспекты иллюстративных вариантов реализации могут быть выборочно реализованы соответствующим образом для получения других альтернативных вариантов реализации, пригодных для желаемых применений, при этом в других альтернативных вариантах реализации, таким образом, будут реализованы соответствующие преимущества включенных в данный документ аспектов изобретения.
Следует также понимать, что конкретные элементы или компоненты, описанные в настоящем документе, могут обладать своей функциональностью, пригодным образом реализованной в качестве аппаратного обеспечения, программного обеспечения, встроенного программного обеспечения или их комбинации. Дополнительно, следует понимать, что некоторые элементы, описанные в настоящем документе, объединенные вместе, могут быть отдельными элементами или иным образом разделены при подходящих условиях. Подобным образом, множество конкретных функций, описанные выполняющимися одним конкретным элементом, могут выполняться множеством различных элементов, действующих независимо для выполнения отдельных функций; или некоторые отдельные функции могут быть разделены и выполняться множеством различных элементов, действующих совместно. При необходимости, некоторые элементы или компоненты, также описанные и/или показанные в настоящем документе как отличающиеся друг от друга, могут быть физически или функционально скомбинированы, где это применимо.
Иными словами, настоящее изобретение было описано со ссылкой на предпочтительные варианты осуществления. Очевидно, что специалистам после ознакомления и понимания данного раскрытия будут очевидны модификации и изменения. Предполагается, что изобретение должно пониматься как включающее все такие модификации и изменения в такой степени, как они представлены в рамках прилагаемой формулы изобретения или ее эквивалентов. То есть, следует понимать, что вышеописанные и другие признаки и функции, или их альтернативы, могут быть скомбинированы желаемым образом во множество других различных систем или применений, а также то, что ряд непредусмотренных или неочевидных альтернатив, модификаций, вариаций или улучшений, описанных в настоящем документе, могут быть соответствующим образом выполнены специалистом в данной области техники, которые, как предполагается, также охватываются прилагаемой формулой изобретения.

Claims (46)

1. Система (10) сегментации исследуемой области (ROI), содержащая:
устройство (20) отображения, выполненное с возможностью отображения изображения (14);
устройство (28) отслеживания взгляда, выполненное с возможностью генерирования точек взгляда относительно отображенного изображения (14);
устройство (32) сбора точек взгляда, выполненное с возможностью выбора точек взгляда из сгенерированных точек (30) взгляда, соответствующих исследуемой области (25) отображенного изображения (14);
устройство (36) определения границы, выполненное с возможностью оценки границы (70) на основании выбранных точек (54, 60) взгляда; и
устройство (38) определения области, выполненное с возможностью сегментации исследуемой области (25) на основании сгенерированной границы (70),
фильтр (34) точек взгляда, выполненный с возможностью фильтрации выбранных точек взгляда в соответствии с характеристиками изображения точки (24) локализации, причем фильтр (34) точек взгляда выполнен с возможностью фильтрации с помощью анализа методом максимального правдоподобия по меньшей мере одного из следующего:
сходства интенсивности между пикселом изображения, соответствующим точке локализации, и пикселами изображения, соответствующими выбранным точкам взгляда;
сходства градиента между пикселом изображения, соответствующим точке локализации, и пикселами изображения, соответствующими выбранным точкам взгляда; или
пространственного расстояния между пикселом изображения, соответствующим точке локализации, и пикселами изображения, соответствующими выбранным точкам взгляда.
2. Система (10) сегментации исследуемой области по п. 1, в которой устройство (32) сбора точек взгляда дополнительно выполнено с возможностью генерирования точки (24) локализации из сгенерированных точек (30) взгляда, при этом точка локализации определяет пространственное расположение на отображенном изображении в пределах исследуемой области, и точка локализации задает пространственную и временную близость выбранных точек (54) взгляда; причем
устройство (20) отображения дополнительно выполнено с возможностью отображения визуального представления точки (24) локализации относительно отображенного изображения (14).
3. Система (10) сегментации исследуемой области по п. 1, которая дополнительно содержит:
компьютерное устройство (22) ввода, выполненное с возможностью ввода точки (24) локализации, определяющей пространственное расположение на отображенном изображении в пределах исследуемой области, при этом точка локализации задает временную близость выбранных точек (54) взгляда; причем
устройство (20) отображения дополнительно выполнено с возможностью отображения визуального представления точки (24) локализации относительно отображенного изображения (14).
4. Система (10) сегментации исследуемой области по одному из пп. 1-3, в которой устройство (36) определения границы дополнительно выполнено с возможностью генерирования границы (70) на основании отфильтрованных точек (60) взгляда.
5. Система (10) сегментации исследуемой области по одному из пп. 2-4, в которой устройство (20) отображения выполнено с возможностью отображения визуальных представлений выбранных точек (54) взгляда; а
устройство (32) сбора точек взгляда дополнительно выполнено с возможностью калибровки пространственного расположения выбранных точек взгляда относительно исследуемой области на основании ввода с компьютерного устройства (22) ввода, определяющего местоположение (56) отображенного изображения (14).
6. Система (10) сегментации исследуемой области по одному из пп. 1-5, в которой устройство (36) определения границы выполнено с возможностью генерирования оцененной границы (70) с помощью по меньшей мере одного из следующего: алгоритма активного контура и алгоритма сквозного счета.
7. Система сегментации исследуемой области по одному из пп. 1-6, в которой устройство (38) определения области выполнено с возможностью дальнейшей сегментации исследуемой области (25) на основании по меньшей мере одного из следующего:
алгоритма наращивания областей;
алгоритма активного контура;
алгоритма выделения краев; или
алгоритма сквозного счета.
8. Система сегментации исследуемой области по одному из пп. 1-7, в которой устройство (28) отслеживания взгляда содержит по меньшей мере одно из следующего: неподвижно установленного устройства и устройства, выполненного с возможностью ношения на теле.
9. Система сегментации исследуемой области по одному из пп. 1-8, в которой отображенное изображение (14) принято по меньшей мере от одного из следующего:
системы передачи и архивации изображений (16); и
устройства (18) медицинской визуализации.
10. Способ сегментации исследуемой области (ROI), включающий:
отображение (92) изображения;
генерирование (94) точек взгляда относительно отображенного изображения;
выбор (96) точек взгляда из сгенерированных точек (30) взгляда, соответствующих исследуемой области (25) отображенного изображения (14);
оценку (104) границы (70) на основании выбранных точек (54) взгляда; и
сегментацию (106) исследуемой области (25) на основании оцененной границы,
фильтрацию (102) выбранных точек взгляда в соответствии с характеристиками изображения точки (24) локализации, причем
фильтрация (102) использует анализ методом максимального правдоподобия по меньшей мере одного из следующего:
сходства интенсивности между пикселом изображения, соответствующим точке локализации, и пикселами изображения, соответствующими выбранным точкам взгляда;
сходства градиента между пикселом изображения, соответствующим точке локализации, и пикселами изображения, соответствующими выбранным точкам взгляда; или
пространственного расстояния между пикселом изображения, соответствующим точке локализации, и пикселами изображения, соответствующими выбранным точкам взгляда.
11. Способ сегментации исследуемой области по п. 10, в котором выбор (96) включает:
ввод точки локализации, определяющей пространственное расположение на отображенном изображении в пределах исследуемой области, причем точка локализации определяет временную близость выбранных точек взгляда; и
отображение визуального представления точки локализации относительно указанного изображения.
12. Способ сегментации исследуемой области по одному из пп. 10, 11, в котором оценка (104) границы основана на отфильтрованных точках взгляда.
13. Способ сегментации исследуемой области по одному из пп. 10-12, который дополнительно включает:
отображение визуального представления выбранных точек взгляда и
калибровку (100) пространственного расположения выбранных точек взгляда относительно исследуемой области на основании ввода местоположения (56) изображения с компьютерного устройства (22) ввода.
RU2017117524A 2014-10-23 2015-10-10 Сегментация исследуемой области, управляемая отслеживанием взгляда RU2673975C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462067464P 2014-10-23 2014-10-23
US62/067,464 2014-10-23
PCT/IB2015/057760 WO2016063167A1 (en) 2014-10-23 2015-10-10 Gaze-tracking driven region of interest segmentation

Publications (2)

Publication Number Publication Date
RU2017117524A RU2017117524A (ru) 2018-11-23
RU2673975C2 true RU2673975C2 (ru) 2018-12-03

Family

ID=54360498

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017117524A RU2673975C2 (ru) 2014-10-23 2015-10-10 Сегментация исследуемой области, управляемая отслеживанием взгляда

Country Status (6)

Country Link
US (1) US10133348B2 (ru)
EP (1) EP3210163B1 (ru)
JP (1) JP2017536873A (ru)
CN (1) CN107077211B (ru)
RU (1) RU2673975C2 (ru)
WO (1) WO2016063167A1 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802795B2 (ja) * 2014-12-16 2020-12-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 自動放射線読み取りセッション検出
WO2016112531A1 (en) * 2015-01-16 2016-07-21 Hewlett-Packard Development Company, L.P. User gaze detection
CN107533360B (zh) * 2015-12-07 2021-06-15 华为技术有限公司 一种显示、处理的方法及相关装置
WO2017153355A1 (de) * 2016-03-07 2017-09-14 SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH Verfahren und vorrichtung zum durchführen einer blickabbildung
US10956544B1 (en) 2016-04-01 2021-03-23 Massachusetts Mutual Life Insurance Company Access control through head imaging and biometric authentication
US10733275B1 (en) * 2016-04-01 2020-08-04 Massachusetts Mutual Life Insurance Company Access control through head imaging and biometric authentication
SK289010B6 (sk) 2016-10-17 2022-11-24 Ústav experimentálnej fyziky SAV, v. v. i. Spôsob interaktívnej kvantifikácie digitalizovaných 3D objektov pomocou kamery snímajúcej pohľad
KR102377250B1 (ko) * 2017-08-24 2022-03-22 래디언트 비전 시스템즈, 엘엘씨 분수 픽셀들을 사용하여 전자 시각 디스플레이들을 측정하기 위한 방법들 및 시스템들
US10959696B1 (en) * 2019-11-25 2021-03-30 Robert Edwin Douglas Method and apparatus for an improved localizer for 3D imaging
CN108683841B (zh) * 2018-04-13 2021-02-19 维沃移动通信有限公司 图像处理方法及移动终端
US10748021B2 (en) * 2018-05-11 2020-08-18 Samsung Electronics Co., Ltd. Method of analyzing objects in images recorded by a camera of a head mounted device
CN108919957A (zh) * 2018-07-16 2018-11-30 北京七鑫易维信息技术有限公司 一种图像传输方法、装置、终端设备及存储介质
EP3921808A4 (en) * 2019-02-20 2022-03-30 Samsung Electronics Co., Ltd. APPARATUS AND METHOD FOR DISPLAYING CONTENT ON AN AUGMENTED REALITY DEVICE
KR102235196B1 (ko) * 2019-04-17 2021-04-02 이진균 의료 영상 세그멘테이션 장치 및 이를 이용한 모델링 방법
DE102019211536A1 (de) * 2019-08-01 2021-02-04 Siemens Healthcare Gmbh Automatische Lokalisierung einer Struktur
EP3786765A1 (en) * 2019-08-29 2021-03-03 Leica Instruments (Singapore) Pte. Ltd. Microscope, control circuit, method and computer program for generating information on at least one inspected region of an image
US11490968B2 (en) 2020-07-29 2022-11-08 Karl Storz Se & Co. Kg Devices, systems, and methods for labeling objects of interest during a medical procedure
US11567569B2 (en) 2021-04-08 2023-01-31 Google Llc Object selection based on eye tracking in wearable device
CN113537295B (zh) * 2021-06-22 2023-10-24 北京航空航天大学 基于离群点引导的视线估计跨场景适配方法和装置
CN113837171B (zh) * 2021-11-26 2022-02-08 成都数之联科技有限公司 候选区域提取方法及系统及装置及介质及目标检测方法
US11556174B1 (en) * 2022-03-30 2023-01-17 Motorola Mobility Llc Monitoring system having contextual gaze-detection-based selection/triggering of caregiver functions
WO2024120958A1 (en) * 2022-12-09 2024-06-13 Koninklijke Philips N.V. Method, system, and computer program element for controlling an interface displaying medical images
CN116030247B (zh) * 2023-03-20 2023-06-27 之江实验室 一种医学图像样本生成方法、装置、存储介质及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816985A2 (en) * 1996-06-25 1998-01-07 Sun Microsystems, Inc. Method, system, apparatus and computer program product for assisting a user of a computer to re-establish a lost context
US6697506B1 (en) * 1999-03-17 2004-02-24 Siemens Corporate Research, Inc. Mark-free computer-assisted diagnosis method and system for assisting diagnosis of abnormalities in digital medical images using diagnosis based image enhancement
US20060112334A1 (en) * 2004-11-22 2006-05-25 Serguei Endrikhovski Diagnostic system having gaze tracking
CN102221881A (zh) * 2011-05-20 2011-10-19 北京航空航天大学 基于仿生代理与视线追踪兴趣区域分析的人机交互方法
WO2012154418A1 (en) * 2011-05-11 2012-11-15 Google Inc. Gaze tracking system
WO2013169237A1 (en) * 2012-05-09 2013-11-14 Intel Corporation Eye tracking based selective accentuation of portions of a display
RU2012144651A (ru) * 2010-03-22 2014-04-27 Конинклейке Филипс Электроникс Н.В. Система и способ для отслеживания точки взгляда наблюдателя

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735598B1 (fr) * 1995-06-16 1997-07-11 Alsthom Cge Alcatel Methode d'extraction de contours par une approche mixte contour actif et amorce/guidage
US7176881B2 (en) * 2002-05-08 2007-02-13 Fujinon Corporation Presentation system, material presenting device, and photographing device for presentation
US7400761B2 (en) * 2003-09-30 2008-07-15 Microsoft Corporation Contrast-based image attention analysis framework
EP2014237B1 (en) * 2006-04-18 2012-05-16 Panasonic Corporation Ultrasonograph
WO2008104082A1 (en) * 2007-03-01 2008-09-04 Titan Medical Inc. Methods, systems and devices for threedimensional input, and control methods and systems based thereon
US7556377B2 (en) 2007-09-28 2009-07-07 International Business Machines Corporation System and method of detecting eye fixations using adaptive thresholds
JP5874636B2 (ja) * 2010-08-27 2016-03-02 コニカミノルタ株式会社 診断支援システム及びプログラム
US20120326969A1 (en) * 2011-06-24 2012-12-27 Krishnan Ramanathan Image slideshow based on gaze of a user
WO2013066790A1 (en) * 2011-11-02 2013-05-10 Intuitive Surgical Operations, Inc. Method and system for stereo gaze tracking
CN102521595B (zh) * 2011-12-07 2014-01-15 中南大学 一种基于眼动数据和底层特征的图像感兴趣区域提取方法
US9239956B2 (en) * 2012-06-28 2016-01-19 Oliver Hein Method and apparatus for coding of eye and eye movement data
WO2014051010A1 (ja) * 2012-09-28 2014-04-03 株式会社Jvcケンウッド 診断支援装置および診断支援方法
US10775882B2 (en) * 2016-01-21 2020-09-15 Microsoft Technology Licensing, Llc Implicitly adaptive eye-tracking user interface
JP6740699B2 (ja) * 2016-05-10 2020-08-19 コニカミノルタ株式会社 画像解析システム
JP6812685B2 (ja) * 2016-07-13 2021-01-13 コニカミノルタ株式会社 動態解析装置
US10049457B2 (en) * 2016-08-29 2018-08-14 CephX Technologies Ltd. Automated cephalometric analysis using machine learning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816985A2 (en) * 1996-06-25 1998-01-07 Sun Microsystems, Inc. Method, system, apparatus and computer program product for assisting a user of a computer to re-establish a lost context
US6697506B1 (en) * 1999-03-17 2004-02-24 Siemens Corporate Research, Inc. Mark-free computer-assisted diagnosis method and system for assisting diagnosis of abnormalities in digital medical images using diagnosis based image enhancement
US20060112334A1 (en) * 2004-11-22 2006-05-25 Serguei Endrikhovski Diagnostic system having gaze tracking
RU2012144651A (ru) * 2010-03-22 2014-04-27 Конинклейке Филипс Электроникс Н.В. Система и способ для отслеживания точки взгляда наблюдателя
WO2012154418A1 (en) * 2011-05-11 2012-11-15 Google Inc. Gaze tracking system
CN102221881A (zh) * 2011-05-20 2011-10-19 北京航空航天大学 基于仿生代理与视线追踪兴趣区域分析的人机交互方法
WO2013169237A1 (en) * 2012-05-09 2013-11-14 Intel Corporation Eye tracking based selective accentuation of portions of a display

Also Published As

Publication number Publication date
CN107077211B (zh) 2021-02-02
EP3210163A1 (en) 2017-08-30
US20170242481A1 (en) 2017-08-24
EP3210163B1 (en) 2020-12-23
CN107077211A (zh) 2017-08-18
WO2016063167A1 (en) 2016-04-28
JP2017536873A (ja) 2017-12-14
US10133348B2 (en) 2018-11-20
RU2017117524A (ru) 2018-11-23

Similar Documents

Publication Publication Date Title
RU2673975C2 (ru) Сегментация исследуемой области, управляемая отслеживанием взгляда
US10885392B2 (en) Learning annotation of objects in image
US10262189B2 (en) Evaluation of co-registered images of differently stained tissue slices
CA2776186C (en) Image display of a centerline of tubular structure
JP2019533805A (ja) 視覚化されたスライド全域画像分析を提供するためのデジタル病理学システムおよび関連するワークフロー
EP3289563B1 (en) Brain tissue classification
US10188361B2 (en) System for synthetic display of multi-modality data
US10535189B2 (en) Image display of a centerline of tubular structure
CN109416835B (zh) 医学图像中的变化检测
US11263754B2 (en) Systems and methods for volumetric segmentation of structures in planar medical images
US20160217570A1 (en) Support apparatus for supporting a user in a diagnosis process
CN105684040B (zh) 支持肿瘤响应测量的方法
KR101203047B1 (ko) 뇌 자기공명영상 기반의 정량 분석 시스템
Nishio et al. Tumor segmentation on FDG-PET: usefulness of locally connected conditional random fields