RU2668942C1 - Термолюминофор - Google Patents

Термолюминофор Download PDF

Info

Publication number
RU2668942C1
RU2668942C1 RU2017125639A RU2017125639A RU2668942C1 RU 2668942 C1 RU2668942 C1 RU 2668942C1 RU 2017125639 A RU2017125639 A RU 2017125639A RU 2017125639 A RU2017125639 A RU 2017125639A RU 2668942 C1 RU2668942 C1 RU 2668942C1
Authority
RU
Russia
Prior art keywords
temperature
alon
thermoluminophore
low
aln
Prior art date
Application number
RU2017125639A
Other languages
English (en)
Inventor
Виктор Валерьевич Ягодин
Алексей Владимирович Ищенко
Борис Владимирович Шульгин
Гульнара Фраиловна Гилязетдинова
Максим Николаевич Сарычев
Владимир Юрьевич Иванов
Наиля Сайфулловна Ахмадуллина
Антон Сергеевич Лысенков
Юрий Федорович Каргин
Константин Александрович Солнцев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ)
Priority to RU2017125639A priority Critical patent/RU2668942C1/ru
Application granted granted Critical
Publication of RU2668942C1 publication Critical patent/RU2668942C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/11Thermo-luminescent dosimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона AlON, синтезированного из химически чистого α-AlOи нитрида алюминия, содержащего ряд примесей, при этом имеет состав, в котором содержание основного вещества AlON - не менее 96%; причем в исходном AlN содержание N- не менее 33.0 мас. %, О- не более 1.2%, Fe - не более 0,08-0.1%, С - не более 0.05%, а содержание европия Euв исходном AlN и в конечном продукте алоне AlON составляет 0,3-0,5 ат % (отн. Al). Технический результат – определение дозозатрат элементов и устройств, изготовленных на основе высокотемпературных сверхпроводников, работающих в полях ионизирующих излучений при температуре жидкого азота, а также других устройств, функционирующих при сверхнизких температурах. 2 ил.

Description

Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения, пригодно для определения дозовой нагрузки/дозозатрат элементов и устройств, работающих в полях ионизирующих излучений при пониженной температуре, включая устройства космического базирования, например, для определения дозозатрат солнечных батарей или других элементов космического базирования, работающих в открытом космосе и подверженных воздействию космической радиации. Предлагаемый термолюминофор пригоден для создания компактных ТСЛ-фотосенсорных датчиков с фотодиодной PIN-регистрацией.
Известен термолюминофор на основе фтористого кальция (В.И. Иванов. Курс дозиметрии. М.: Атомиздат. 1970. 320 с.) для дозиметрии рентгеновского и гамма-излучения, для которого кривые термо-стимулированной люминесценции (ТСЛ) имеют три рабочих максимума при 70-100, 150-190 и 250-300°C. Известный термолюминофор пригоден для регистрации экспозиционных доз рентгеновского и гамма-излучения от 1 мР до 5000 Р с погрешностью ±2%. Однако известный термолюминофор набирает информацию о дозе облучения только при комнатной температуре. Использование термолюминофора на основе фтористого кальция для определения дозовой нагрузки на объекты облучения при низких температурах 25-180 K неизвестно.
Известен термолюминофор на основе фторида лития LiF-Mg (ТЛД-100) (Cooke D.W., Rhodes J.F. J. Appl. Phys 1981, v. 52(6), p. 4244-4247) для регистрации рентгеновского и гамма-излучения, который имеет низкотемпературные пики термолюминесценции при 20, 40, 60 и 138 K. Однако интенсивность этих низкотемпературных пиков невысока, их использование неэффективно для низкотемпературной дозиметрии. Кроме того, известный термолюминофор обладает синим спектром свечения и не пригоден для разработки устройств, использующих в качестве фотосенсорных датчиков компактные PIN-фотодиоды.
Достаточно близким по составу к заявляемому термолюминофору является известный люминесцентный светосостав на основе алона Al5O6N, активированного ионами церия Се3+ и ионами Eu2+, сведения о котором опубликованы в статье «Effect of Dopant Concentration on the Phase Composition and Luminescence Properties of Eu2+ - and Ce3+ - Doped ALONs». Авторы N.S. Akhmadullina, A.S. Lysenkov, A.A. Ashmarin, Yu.F. Kargin, A.V. Ishchenko and B.V. Shulgin. (ISSN 0020-1685, Inorganic Materials, 2015, Vol. 51, №5, pp. 473-481). Однако этот известный светосостав на основе «of Eu2+ - and Се3+ - Doped ALONs» близок к заявляемому только по входящим в него компонентам, а не по исполняемым функциям, поскольку он представлен в статье (и в Abstract, строки 7-8 и на стр. 474, левая колонка, строки 10-13) только как люминесцентный состав, только как люминофор, обладающий импульсной катодолюминесценцией при соответствующем возбуждении (pulsed cathodoluminescence (PSL)spectra). О термолюминесцентных свойствах светосостава на основе алона Al5O6N, активированного ионами церия Се3+ и ионами Eu2+, в указанной статье (ни в Abstract, строки 7-8; ни на стр. 474, левая колонка, строки 10-13) даже упоминания нет.
Наиболее близким по составу к заявляемому термолюминофору является термолюминофор на основе алона Al5O6N, активированного ионами Eu2+. Сведения о его термолюминесцентных свойствах опубликованы в статье «Thermoluminescence of Aluminium Oxynitride Doped with Ce3+ and Eu2+ Ions». V.V. Yagodin, G.F. Gilyazetdinova, A.V. Ishchenko, B.V. Shulgin, Yu.F. Kargin, N.S. Akhmadullina, A.S. Lysenkov. AIP Conference Proceedings 1886, 020077-1 - 020077-4. Published by the American Institute of Physics. Physics, Technologies and Innovation (PTI-2017). AIP Conf. Proc. 1886, 020077-1 - 020077-4; doi: 10.1063/1.5002974. Однако светосостав на основе алона Al5O6N, допированного ионами Се3+ и Eu2+, известен только как высокотемпературный термолюминофор с максимумами ТСЛ при 350 -360 K. О его возможной ТСЛ-активности в области низких температур, близких к гелиевым температурам в указанной выше статье информации нет.
Техническая проблема, решаемая в настоящем изобретении, связана с разработкой низкотемпературного термолюминофора, для которого максимумы рабочих пиков ТСЛ лежат в области низких температур при 75 K и 170 K (второй пик). Такой термолюминофор (как детектор сопровождения) при определении дозозатрат элементов и устройств, работающих при низких температурах в полях ионизирующих излучений, в том числе в условиях их космического базирования, требует нагрева всего до 120-220 K и обеспечивает более оперативное получение дозиметрической информации при гораздо меньших энергозатратах на работу дозиметрического тракта, поскольку необходимость нагревать ТСЛ-датчик до температур 350-360 K отпадает.
Для решения вышеуказанной технической проблемы предложен термолюминофор, основным рабочим веществом которого является алон Al5O6N, включающий особо чистый оксид алюминия Al2O3, а также технический нитрид алюминия AlN, содержащий примесь европия Eu2+ (0,3-0,5 ат. % отн. Al), а также содержащий N2 - не менее 33,0 мас. %, О2 - не более 1,2 мас %, Fe - 0,08-1 мас %, С - не более 0,05 мас %, с содержанием в термолюминофоре основного вещества Al5O6N не менее 96 мас. %. Для предлагаемого термолюминофора пики ТСЛ расположены низкотемпературный области: первый пик в области 50-100 K (максимум при 75 K), а второй - в области 130-230 K (максимум при 170 K).
Примеры кривых ТСЛ для различных составов ALON : Eu2+ (примеры 1 и 2) приведены на Фиг. 1 и Фиг. 2.
Пример 1. Термолюминофор на основе Al5O6N, активированного ионами европия с концентрацией (относительно алюминия) 0,3 ат % Eu2, получали по известным методикам посредством восстановительного отжига смесей α-Al2O3 и AlN с Eu2O3, или смесей α-Al2O3 и AlN с соответствующим ацетилацетонатным комплексом Eu(асас)3. В качестве исходных компонентов использовали изопропоксид алюминия Al(OiPr)3 марки «х.ч.» (Fluka), оксид европия Eu2O3 марки «х.ч.»,), ацетилацетон марки «х.ч.», лимонную кислоту марки «х.ч.», ацетилацетонат европия Eu(асас)3 и нитрид алюминия AlN, полученный методом самораспространяющегося высокотемпературного синтеза (СВС) в ИСМ РАН (г. Черноголовка). Использовали химически чистый α-Al2O3. Однако, используемый нитрид алюминия AlN содержал ряд примесей: использовали технический порошок нитрида алюминия для клеев герметиков, имеющий состав: N2 - не менее 33.0 мас. %, O2 - не более 1.2 мас %, Fe - не более 0,08-0.1 мас %, углерод С - не более 0.05%; содержание Al5O6N как основного вещества в конечном продукте составляло не менее 96%. В качестве растворителей использовали дистиллированную воду, метанол марки «х.ч.», этанол марки «х.ч.» и изопропанол марки «х.ч.» без дополнительной очистки. Фазовый состав исходных порошков и полученных порошкообразных образцов Al5O6N : Eu2+ (Fe, С) был подтвержден результатами рентгеновского фазового анализа (РФА, дифрактометр XRD 6000 «Shimadzu», CuKα излучение, графитовый монохроматор,
Figure 00000001
).
В качестве держателя образцов при измерениях ТСЛ использовали медную подложку размером 1,2×1,2 см, которую предварительно покрывали специальным лаком, не обладающим люминесцентными свойствами. Содержащий вышеуказанные примеси исследуемый порошок Al5O6N, массой до 0,5 г насыпали на эту покрытую лаком подложку (расположенную в процессе приготовления пробы горизонтально) в количестве достаточном для обеспечения достаточной толщины образца с сохранением адгезии после высыхания лака. После этого медная подложка с готовым исследуемым образцом, закреплялась вертикально в криопальце RDK - 2050 измерительной установки. В измерительной установке для охлаждения образца термолюминофора до температуры 8 K использовали оптический криостат с системой охлаждения, работающей по замкнутому циклу Гиффорда - Мак-Магона. Термолюминофор при температуре 8 K был облучен рентгеновским излучением, доза 1 кГр (флюенс 3*1012 см-2). Регистрация кривых ТСЛ выполнена в интегральном режиме в диапазоне длин волн от ультрафиолетовых (от 200 нм, - кварцевые входные окна криостата позволяли это делать) до красных, - до 650 нм с использованием ФЭУ-130 при линейном нагреве со скоростью 6 K/мин в диапазоне температур 8 -250 K.
Кривые ТСЛ термолюминофора на основе алона ALON : Eu2+, Fe, С (с концентрацией ионов европия 0,3 ат % Eu2+) приведены на Фиг. 1. Самый низкотемпературный пик ТСЛ предложенного термолюминофора расположен при температуре 70-80 K. Более интенсивный основной рабочий пик для низкотемпературного диапазона измерений имеет максимум при 160-170 K, он полностью показан на Фиг. 1 в диапазоне температур 100-250 K. Основной рабочий пик пригоден для определения дозозатрат элементов и устройств, изготовленных на основе высокотемпературных сверхпроводников, функционирующих в этой области температур, а также для определения дозозатрат других устройств, работающих в полях ионизирующих излучений при температуре от жидкого гелия до жидкого азота.
Для предложенного термолюминофора спектр свечения, имея максимумом при 500 нм, захватывает и красную область. Последнее позволяет применять предложенный темолюминофор для создания дозиметрических систем с компактной фотодиодной PIN-регистрацией, поскольку сенсорные PIN-структуры характеризуются повышенной чувствительностью в оранжево-красном (и инфракрасном) диапазонах спектра.
Пример 2.
Термолюминофор на основе Al5O6N, активированного ионами европия с концентрацией (относительно алюминия) 0,5 ат % Eu2 получали по известным методикам, как и в Примере 1, посредством восстановительного отжига смесей α-Al2O3 и AlN с Eu2O3, а также с соответствующим ацетилацетонатным комплексом Eu(асас)3. В качестве исходных компонентов использовали изопропоксид алюминия Al(OiPr)3 марки «х.ч.» (Fluka), оксид европия Eu2O3 марки «х.ч.», ацетилацетон марки «х.ч.», лимонную кислоту марки «х.ч.», ацетилацетонат европия Eu(асас)3 и нитрид алюминия AlN, полученный методом самораспространяющегося высокотемпературного синтеза (СВС) в ИСМ РАН (г.Черноголовка). Нитрид алюминия AlN (использовали технический порошок нитрида алюминия для клеев герметиков) в отличие от химически чистого α-Al2O3, содержал ряд примесей и имел состав: N2 - не менее 33.0 мас. %, О2 - не более 1.2%, Fe - не более 0,08-0.1%, С - не более 0.05%; содержание основного вещества Al5O6N в конечном продукте - не менее 96%. В качестве растворителей использовали дистиллированную воду, метанол марки «х.ч.», этанол марки «х.ч.» и изопропанол марки «х.ч.» без дополнительной очистки. Фазовый состав исходных порошков и полученных порошкообразных образцов Al5O6N : Eu2+ был подтвержден результатами рентгеновского фазового анализа (РФА, дифрактометр XRD 6000 «Shimadzu», CuKα излучение, графитовый монохроматор
Figure 00000002
.
В качестве держателя образцов, как и в Примере 1, использовали медную подложку размером 1,2×1,2 см, которую предварительно покрывали специальным лаком, не обладающим люминесцентными свойствами. Исследуемый (имеющий вышеуказанные примеси) порошок Al5O6N массой до 0,5 г насыпали на эту покрытую лаком подложку, расположенную в процессе приготовления пробы горизонтально, в количестве необходимом для обеспечения достаточной толщины образца с сохранением адгезии после высыхания лака. Затем медную подложку с исследуемым образцом, закрепляли вертикально в криопальце измерительной установки.
В используемой измерительной установке для охлаждения образца термолюминофора до температуры 8 K применяли оптический криостат с системой охлаждения, работающей по замкнутому циклу Гиффорда - Мак-Магона. Термолюминофор при температуре 8 K был облучен рентгеновским излучением, с той же дозой, что и Примере 1, то есть 1 кГр (флюенс 3*1012 см-2). Регистрация кривых ТСЛ выполнена в интегральном режиме в диапазоне длин волн от ультрафиолетовых до красных, - до 650 нм, с использованием ФЭУ-130, при линейном нагреве со скоростью 6 K/мин в диапазоне температур 8-250 К.
Кривые ТСЛ термолюминофора Al5O6N, активированного ионами европия с концентрацией 0,5 ат % Eu2+, с добавками примеси железа (не более 0,08-0,1 мас %) и примеси углерода (не более 0,05 мас %) приведены на Фиг. 2. Самый низкотемпературный пик ТСЛ предложенного термолюминофора расположен при температуре 70-80 K. Основной рабочий пик для низкотемпературного диапазона для предложенного термолюминофора (в области температур 100-250 K) имеет максимум при 160-170 K. Он показан на Фиг. 2. Интенсивность обеих вышеуказанных пиков пиков ТСЛ для термолюминофора с концентрацией 0,5 ат % Eu2 в два раза выше, чем для образцов с концентрацией 0,3 ат % Eu2. Как показали дополнительные измерения концентрация допанта 0,5 ат % Eu2 является оптимальной для данного типа термолюминофора. Дополнительная примесь железа, атомный номер которого (Z=26) в два раза превышает атомный номер Al (Z=13), обеспечивает при радиационном воздействии повышенное светозапасание и соответственно повышенный световыход термолюминесцеции. Для предложенного термолюминофора на основе Al5O6N с концентрацией 0,5 ат % Eu2 и с добавками примесей железа и углерода спектр свечения, имея максимумом при 500 нм, захватывает и красную область. Последнее позволяет рекомендовать предложенный темолюминофор для создания дозиметрических систем с компактной PIN-фотодиодной регистрацией.
Диапазон измеряемых доз предлагаемого термолюминофора путем дополнительных измерений определен в области 0,1-50 кГр (флюенс 3*1011 - 1,5*1014 см-2) и выше.

Claims (1)

  1. Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона Al5O6N, (не менее 96 мас. % в конечном продукте), получаемый методом восстановительного отжига смеси, состоящей из двух компонент: особо чистого оксида алюминия Al2O3 (первая компонента) и носителя активирующих примесей - технически чистого нитрида алюминия AlN (вторая компонента), отличающийся тем, что вторая компонента имеет состав: N2 - не менее 33,0 мас. %, О2 - не более 1,2 мас %, Fe - не более 0,08-0,1 мас %, С - не более 0,05 мас %, а примесь основных активирующих ионов - ионов европия Eu2+ в AlN составляет 0,3-0,5 ат. % отн. Al.
RU2017125639A 2017-07-17 2017-07-17 Термолюминофор RU2668942C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017125639A RU2668942C1 (ru) 2017-07-17 2017-07-17 Термолюминофор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017125639A RU2668942C1 (ru) 2017-07-17 2017-07-17 Термолюминофор

Publications (1)

Publication Number Publication Date
RU2668942C1 true RU2668942C1 (ru) 2018-10-05

Family

ID=63798143

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017125639A RU2668942C1 (ru) 2017-07-17 2017-07-17 Термолюминофор

Country Status (1)

Country Link
RU (1) RU2668942C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1011666A1 (ru) * 1981-11-04 1983-04-15 Ордена Ленина физико-технический институт им.А.Ф.Иоффе Термолюминофор дл композиционного детектора ионизирующего излучени
US6723995B2 (en) * 2001-11-22 2004-04-20 Ftni Inc. Direct conversion flat panel X-ray detector with automatic cancellation of ghost images
RU2445646C2 (ru) * 2008-06-11 2012-03-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н.Ельцина" (ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н.Ельцина") Рабочее вещество для термолюминесцентного детектора нейтронов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1011666A1 (ru) * 1981-11-04 1983-04-15 Ордена Ленина физико-технический институт им.А.Ф.Иоффе Термолюминофор дл композиционного детектора ионизирующего излучени
US6723995B2 (en) * 2001-11-22 2004-04-20 Ftni Inc. Direct conversion flat panel X-ray detector with automatic cancellation of ghost images
RU2445646C2 (ru) * 2008-06-11 2012-03-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н.Ельцина" (ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н.Ельцина") Рабочее вещество для термолюминесцентного детектора нейтронов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. S. Akhmadullina, A. S. Lysenkov et al. Effect of Dopant Concentration on the Phase Composition and Luminescence Properties of Eu2+ - and Ce3+ - Doped AlONs. Inorganic Materials, 2015, Vol. 51, No. 5. pp. 473-481. *

Similar Documents

Publication Publication Date Title
Ueda et al. Thermal ionization and thermally activated crossover quenching processes for 5 d-4 f luminescence in Y 3 A l 5− x G ax O 12: P r 3+
Lakshminarasimhan et al. Luminescence and afterglow in Sr2SiO4: Eu2+, RE3+ [RE= Ce, Nd, Sm and Dy] phosphors—Role of co-dopants in search for afterglow
Aitasalo et al. Low temperature thermoluminescence properties of Eu2+ and R3+ doped CaAl2O4
Jiang et al. Thermoluminescence studies of LiSrBO3: RE3+ (RE= Dy, Tb, Tm and Ce)
Grippa et al. Crystal growth and scintillation properties of CsCaBr3: Eu2+ (CsCa1− xEuxBr3, 0≤ x≤ 0.08)
Nagpure et al. Synthesis and luminescence characteristics of terbium (III) activated NaSrBO3
Lastusaari et al. Wavelength-sensitive energy storage in Sr 3 MgSi 2 O 8: Eu 2+, Dy 3+
Venevtsev et al. Temperature Quenching of Radio-and Photoluminescence of Y 3 (Ga, Al) 5 O 12: Ce 3+ and Gd 3 (Ga, Al) 5 O 12: Ce 3+ Garnet Ceramics
Yawalkar et al. Investigation of luminescence processes in Li 6 Gd (BO 3) 3: Eu 3+ phosphor
More et al. Synthesis and dosimetric characterization of LiCaPO4: Eu phosphor
Li et al. Synthesis, photoluminescence, thermoluminescence and dosimetry properties of novel phosphor Zn (BO2) 2: Tb
Ju et al. Persistent luminescence in CaAl2Si2O8: Eu2+, R3+ (R= Pr, Nd, Dy, Ho and Er)
Annalakshmi et al. Synthesis and study on the luminescence properties of cadmium borate phosphors
Guo et al. Thermoluminescent properties of Eu2+ and RE3+ co-doped phosphors CaGa2S4: Eu2+, RE3+ (RE= Ln, excluding Pm, Eu and Lu)
Sidletskiy et al. Crystal composition and afterglow in mixed silicates: the role of melting temperature
Shi et al. Luminescence properties and host sensitization study of Ba3La (PO4) 3: Ce3+ with (V) UV and X-ray excitation
Wang et al. A novel red long lasting phosphorescent (LLP) material β-Zn3 (PO4) 2: Mn2+, Sm3+
Naregundi et al. Thermoluminescence response and trap features of gamma-irradiated Sr2Al2SiO7: Dy3+ phosphors
Nagirnyi et al. Recombination luminescence in Li2B4O7 doped with manganese and copper
Onoda et al. Thermally stimulated luminescence properties of Eu-doped AlN ceramic
Patra et al. Silver doped lithium tetraborate (Li2B4O7) single crystals as efficient dosimeter material with sub-micro-Gy sensitivity
Dotsenko et al. Luminescence properties and electronic structure of Sm 3+-doped YAl 3 B 4 O 12
Wang et al. Afterglow-suppressed Lu2O3: Eu3+ nanoscintillators for high-resolution and dynamic digital radiographic imaging
Wisniewski et al. Rb3Lu (PO4) 2: Ce and Cs3Lu (PO4) 2: Ce–new promising scintillator materials
Oza et al. Synthesis and thermoluminescence characterizations of Sr2B5O9Cl: Dy3+ phosphor for TL dosimetry

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190718