RU2668942C1 - Термолюминофор - Google Patents
Термолюминофор Download PDFInfo
- Publication number
- RU2668942C1 RU2668942C1 RU2017125639A RU2017125639A RU2668942C1 RU 2668942 C1 RU2668942 C1 RU 2668942C1 RU 2017125639 A RU2017125639 A RU 2017125639A RU 2017125639 A RU2017125639 A RU 2017125639A RU 2668942 C1 RU2668942 C1 RU 2668942C1
- Authority
- RU
- Russia
- Prior art keywords
- temperature
- alon
- thermoluminophore
- low
- aln
- Prior art date
Links
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 15
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000004980 dosimetry Methods 0.000 claims abstract description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 3
- 239000012467 final product Substances 0.000 claims description 3
- 230000002829 reductive effect Effects 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 230000005865 ionizing radiation Effects 0.000 abstract description 4
- 238000000904 thermoluminescence Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 239000002887 superconductor Substances 0.000 abstract description 2
- 229910017109 AlON Inorganic materials 0.000 abstract 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000002966 varnish Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- -1 cerium ions Chemical class 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 238000005136 cathodoluminescence Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- AKYVEELUVDHHLT-UHFFFAOYSA-K europium acetylacetonate Chemical compound [Eu+3].CC([O-])=CC(C)=O.CC([O-])=CC(C)=O.CC([O-])=CC(C)=O AKYVEELUVDHHLT-UHFFFAOYSA-K 0.000 description 2
- 229910001940 europium oxide Inorganic materials 0.000 description 2
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000001748 luminescence spectrum Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
- G01T1/10—Luminescent dosimeters
- G01T1/11—Thermo-luminescent dosimeters
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Luminescent Compositions (AREA)
Abstract
Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона AlON, синтезированного из химически чистого α-AlOи нитрида алюминия, содержащего ряд примесей, при этом имеет состав, в котором содержание основного вещества AlON - не менее 96%; причем в исходном AlN содержание N- не менее 33.0 мас. %, О- не более 1.2%, Fe - не более 0,08-0.1%, С - не более 0.05%, а содержание европия Euв исходном AlN и в конечном продукте алоне AlON составляет 0,3-0,5 ат % (отн. Al). Технический результат – определение дозозатрат элементов и устройств, изготовленных на основе высокотемпературных сверхпроводников, работающих в полях ионизирующих излучений при температуре жидкого азота, а также других устройств, функционирующих при сверхнизких температурах. 2 ил.
Description
Изобретение относится к области низкотемпературной термолюминесцентной дозиметрии рентгеновского и гамма-излучения, пригодно для определения дозовой нагрузки/дозозатрат элементов и устройств, работающих в полях ионизирующих излучений при пониженной температуре, включая устройства космического базирования, например, для определения дозозатрат солнечных батарей или других элементов космического базирования, работающих в открытом космосе и подверженных воздействию космической радиации. Предлагаемый термолюминофор пригоден для создания компактных ТСЛ-фотосенсорных датчиков с фотодиодной PIN-регистрацией.
Известен термолюминофор на основе фтористого кальция (В.И. Иванов. Курс дозиметрии. М.: Атомиздат. 1970. 320 с.) для дозиметрии рентгеновского и гамма-излучения, для которого кривые термо-стимулированной люминесценции (ТСЛ) имеют три рабочих максимума при 70-100, 150-190 и 250-300°C. Известный термолюминофор пригоден для регистрации экспозиционных доз рентгеновского и гамма-излучения от 1 мР до 5000 Р с погрешностью ±2%. Однако известный термолюминофор набирает информацию о дозе облучения только при комнатной температуре. Использование термолюминофора на основе фтористого кальция для определения дозовой нагрузки на объекты облучения при низких температурах 25-180 K неизвестно.
Известен термолюминофор на основе фторида лития LiF-Mg (ТЛД-100) (Cooke D.W., Rhodes J.F. J. Appl. Phys 1981, v. 52(6), p. 4244-4247) для регистрации рентгеновского и гамма-излучения, который имеет низкотемпературные пики термолюминесценции при 20, 40, 60 и 138 K. Однако интенсивность этих низкотемпературных пиков невысока, их использование неэффективно для низкотемпературной дозиметрии. Кроме того, известный термолюминофор обладает синим спектром свечения и не пригоден для разработки устройств, использующих в качестве фотосенсорных датчиков компактные PIN-фотодиоды.
Достаточно близким по составу к заявляемому термолюминофору является известный люминесцентный светосостав на основе алона Al5O6N, активированного ионами церия Се3+ и ионами Eu2+, сведения о котором опубликованы в статье «Effect of Dopant Concentration on the Phase Composition and Luminescence Properties of Eu2+ - and Ce3+ - Doped ALONs». Авторы N.S. Akhmadullina, A.S. Lysenkov, A.A. Ashmarin, Yu.F. Kargin, A.V. Ishchenko and B.V. Shulgin. (ISSN 0020-1685, Inorganic Materials, 2015, Vol. 51, №5, pp. 473-481). Однако этот известный светосостав на основе «of Eu2+ - and Се3+ - Doped ALONs» близок к заявляемому только по входящим в него компонентам, а не по исполняемым функциям, поскольку он представлен в статье (и в Abstract, строки 7-8 и на стр. 474, левая колонка, строки 10-13) только как люминесцентный состав, только как люминофор, обладающий импульсной катодолюминесценцией при соответствующем возбуждении (pulsed cathodoluminescence (PSL)spectra). О термолюминесцентных свойствах светосостава на основе алона Al5O6N, активированного ионами церия Се3+ и ионами Eu2+, в указанной статье (ни в Abstract, строки 7-8; ни на стр. 474, левая колонка, строки 10-13) даже упоминания нет.
Наиболее близким по составу к заявляемому термолюминофору является термолюминофор на основе алона Al5O6N, активированного ионами Eu2+. Сведения о его термолюминесцентных свойствах опубликованы в статье «Thermoluminescence of Aluminium Oxynitride Doped with Ce3+ and Eu2+ Ions». V.V. Yagodin, G.F. Gilyazetdinova, A.V. Ishchenko, B.V. Shulgin, Yu.F. Kargin, N.S. Akhmadullina, A.S. Lysenkov. AIP Conference Proceedings 1886, 020077-1 - 020077-4. Published by the American Institute of Physics. Physics, Technologies and Innovation (PTI-2017). AIP Conf. Proc. 1886, 020077-1 - 020077-4; doi: 10.1063/1.5002974. Однако светосостав на основе алона Al5O6N, допированного ионами Се3+ и Eu2+, известен только как высокотемпературный термолюминофор с максимумами ТСЛ при 350 -360 K. О его возможной ТСЛ-активности в области низких температур, близких к гелиевым температурам в указанной выше статье информации нет.
Техническая проблема, решаемая в настоящем изобретении, связана с разработкой низкотемпературного термолюминофора, для которого максимумы рабочих пиков ТСЛ лежат в области низких температур при 75 K и 170 K (второй пик). Такой термолюминофор (как детектор сопровождения) при определении дозозатрат элементов и устройств, работающих при низких температурах в полях ионизирующих излучений, в том числе в условиях их космического базирования, требует нагрева всего до 120-220 K и обеспечивает более оперативное получение дозиметрической информации при гораздо меньших энергозатратах на работу дозиметрического тракта, поскольку необходимость нагревать ТСЛ-датчик до температур 350-360 K отпадает.
Для решения вышеуказанной технической проблемы предложен термолюминофор, основным рабочим веществом которого является алон Al5O6N, включающий особо чистый оксид алюминия Al2O3, а также технический нитрид алюминия AlN, содержащий примесь европия Eu2+ (0,3-0,5 ат. % отн. Al), а также содержащий N2 - не менее 33,0 мас. %, О2 - не более 1,2 мас %, Fe - 0,08-1 мас %, С - не более 0,05 мас %, с содержанием в термолюминофоре основного вещества Al5O6N не менее 96 мас. %. Для предлагаемого термолюминофора пики ТСЛ расположены низкотемпературный области: первый пик в области 50-100 K (максимум при 75 K), а второй - в области 130-230 K (максимум при 170 K).
Примеры кривых ТСЛ для различных составов ALON : Eu2+ (примеры 1 и 2) приведены на Фиг. 1 и Фиг. 2.
Пример 1. Термолюминофор на основе Al5O6N, активированного ионами европия с концентрацией (относительно алюминия) 0,3 ат % Eu2, получали по известным методикам посредством восстановительного отжига смесей α-Al2O3 и AlN с Eu2O3, или смесей α-Al2O3 и AlN с соответствующим ацетилацетонатным комплексом Eu(асас)3. В качестве исходных компонентов использовали изопропоксид алюминия Al(OiPr)3 марки «х.ч.» (Fluka), оксид европия Eu2O3 марки «х.ч.»,), ацетилацетон марки «х.ч.», лимонную кислоту марки «х.ч.», ацетилацетонат европия Eu(асас)3 и нитрид алюминия AlN, полученный методом самораспространяющегося высокотемпературного синтеза (СВС) в ИСМ РАН (г. Черноголовка). Использовали химически чистый α-Al2O3. Однако, используемый нитрид алюминия AlN содержал ряд примесей: использовали технический порошок нитрида алюминия для клеев герметиков, имеющий состав: N2 - не менее 33.0 мас. %, O2 - не более 1.2 мас %, Fe - не более 0,08-0.1 мас %, углерод С - не более 0.05%; содержание Al5O6N как основного вещества в конечном продукте составляло не менее 96%. В качестве растворителей использовали дистиллированную воду, метанол марки «х.ч.», этанол марки «х.ч.» и изопропанол марки «х.ч.» без дополнительной очистки. Фазовый состав исходных порошков и полученных порошкообразных образцов Al5O6N : Eu2+ (Fe, С) был подтвержден результатами рентгеновского фазового анализа (РФА, дифрактометр XRD 6000 «Shimadzu», CuKα излучение, графитовый монохроматор, ).
В качестве держателя образцов при измерениях ТСЛ использовали медную подложку размером 1,2×1,2 см, которую предварительно покрывали специальным лаком, не обладающим люминесцентными свойствами. Содержащий вышеуказанные примеси исследуемый порошок Al5O6N, массой до 0,5 г насыпали на эту покрытую лаком подложку (расположенную в процессе приготовления пробы горизонтально) в количестве достаточном для обеспечения достаточной толщины образца с сохранением адгезии после высыхания лака. После этого медная подложка с готовым исследуемым образцом, закреплялась вертикально в криопальце RDK - 2050 измерительной установки. В измерительной установке для охлаждения образца термолюминофора до температуры 8 K использовали оптический криостат с системой охлаждения, работающей по замкнутому циклу Гиффорда - Мак-Магона. Термолюминофор при температуре 8 K был облучен рентгеновским излучением, доза 1 кГр (флюенс 3*1012 см-2). Регистрация кривых ТСЛ выполнена в интегральном режиме в диапазоне длин волн от ультрафиолетовых (от 200 нм, - кварцевые входные окна криостата позволяли это делать) до красных, - до 650 нм с использованием ФЭУ-130 при линейном нагреве со скоростью 6 K/мин в диапазоне температур 8 -250 K.
Кривые ТСЛ термолюминофора на основе алона ALON : Eu2+, Fe, С (с концентрацией ионов европия 0,3 ат % Eu2+) приведены на Фиг. 1. Самый низкотемпературный пик ТСЛ предложенного термолюминофора расположен при температуре 70-80 K. Более интенсивный основной рабочий пик для низкотемпературного диапазона измерений имеет максимум при 160-170 K, он полностью показан на Фиг. 1 в диапазоне температур 100-250 K. Основной рабочий пик пригоден для определения дозозатрат элементов и устройств, изготовленных на основе высокотемпературных сверхпроводников, функционирующих в этой области температур, а также для определения дозозатрат других устройств, работающих в полях ионизирующих излучений при температуре от жидкого гелия до жидкого азота.
Для предложенного термолюминофора спектр свечения, имея максимумом при 500 нм, захватывает и красную область. Последнее позволяет применять предложенный темолюминофор для создания дозиметрических систем с компактной фотодиодной PIN-регистрацией, поскольку сенсорные PIN-структуры характеризуются повышенной чувствительностью в оранжево-красном (и инфракрасном) диапазонах спектра.
Пример 2.
Термолюминофор на основе Al5O6N, активированного ионами европия с концентрацией (относительно алюминия) 0,5 ат % Eu2 получали по известным методикам, как и в Примере 1, посредством восстановительного отжига смесей α-Al2O3 и AlN с Eu2O3, а также с соответствующим ацетилацетонатным комплексом Eu(асас)3. В качестве исходных компонентов использовали изопропоксид алюминия Al(OiPr)3 марки «х.ч.» (Fluka), оксид европия Eu2O3 марки «х.ч.», ацетилацетон марки «х.ч.», лимонную кислоту марки «х.ч.», ацетилацетонат европия Eu(асас)3 и нитрид алюминия AlN, полученный методом самораспространяющегося высокотемпературного синтеза (СВС) в ИСМ РАН (г.Черноголовка). Нитрид алюминия AlN (использовали технический порошок нитрида алюминия для клеев герметиков) в отличие от химически чистого α-Al2O3, содержал ряд примесей и имел состав: N2 - не менее 33.0 мас. %, О2 - не более 1.2%, Fe - не более 0,08-0.1%, С - не более 0.05%; содержание основного вещества Al5O6N в конечном продукте - не менее 96%. В качестве растворителей использовали дистиллированную воду, метанол марки «х.ч.», этанол марки «х.ч.» и изопропанол марки «х.ч.» без дополнительной очистки. Фазовый состав исходных порошков и полученных порошкообразных образцов Al5O6N : Eu2+ был подтвержден результатами рентгеновского фазового анализа (РФА, дифрактометр XRD 6000 «Shimadzu», CuKα излучение, графитовый монохроматор .
В качестве держателя образцов, как и в Примере 1, использовали медную подложку размером 1,2×1,2 см, которую предварительно покрывали специальным лаком, не обладающим люминесцентными свойствами. Исследуемый (имеющий вышеуказанные примеси) порошок Al5O6N массой до 0,5 г насыпали на эту покрытую лаком подложку, расположенную в процессе приготовления пробы горизонтально, в количестве необходимом для обеспечения достаточной толщины образца с сохранением адгезии после высыхания лака. Затем медную подложку с исследуемым образцом, закрепляли вертикально в криопальце измерительной установки.
В используемой измерительной установке для охлаждения образца термолюминофора до температуры 8 K применяли оптический криостат с системой охлаждения, работающей по замкнутому циклу Гиффорда - Мак-Магона. Термолюминофор при температуре 8 K был облучен рентгеновским излучением, с той же дозой, что и Примере 1, то есть 1 кГр (флюенс 3*1012 см-2). Регистрация кривых ТСЛ выполнена в интегральном режиме в диапазоне длин волн от ультрафиолетовых до красных, - до 650 нм, с использованием ФЭУ-130, при линейном нагреве со скоростью 6 K/мин в диапазоне температур 8-250 К.
Кривые ТСЛ термолюминофора Al5O6N, активированного ионами европия с концентрацией 0,5 ат % Eu2+, с добавками примеси железа (не более 0,08-0,1 мас %) и примеси углерода (не более 0,05 мас %) приведены на Фиг. 2. Самый низкотемпературный пик ТСЛ предложенного термолюминофора расположен при температуре 70-80 K. Основной рабочий пик для низкотемпературного диапазона для предложенного термолюминофора (в области температур 100-250 K) имеет максимум при 160-170 K. Он показан на Фиг. 2. Интенсивность обеих вышеуказанных пиков пиков ТСЛ для термолюминофора с концентрацией 0,5 ат % Eu2 в два раза выше, чем для образцов с концентрацией 0,3 ат % Eu2. Как показали дополнительные измерения концентрация допанта 0,5 ат % Eu2 является оптимальной для данного типа термолюминофора. Дополнительная примесь железа, атомный номер которого (Z=26) в два раза превышает атомный номер Al (Z=13), обеспечивает при радиационном воздействии повышенное светозапасание и соответственно повышенный световыход термолюминесцеции. Для предложенного термолюминофора на основе Al5O6N с концентрацией 0,5 ат % Eu2 и с добавками примесей железа и углерода спектр свечения, имея максимумом при 500 нм, захватывает и красную область. Последнее позволяет рекомендовать предложенный темолюминофор для создания дозиметрических систем с компактной PIN-фотодиодной регистрацией.
Диапазон измеряемых доз предлагаемого термолюминофора путем дополнительных измерений определен в области 0,1-50 кГр (флюенс 3*1011 - 1,5*1014 см-2) и выше.
Claims (1)
- Термолюминофор для низкотемпературной ТСЛ-дозиметрии на основе алона Al5O6N, (не менее 96 мас. % в конечном продукте), получаемый методом восстановительного отжига смеси, состоящей из двух компонент: особо чистого оксида алюминия Al2O3 (первая компонента) и носителя активирующих примесей - технически чистого нитрида алюминия AlN (вторая компонента), отличающийся тем, что вторая компонента имеет состав: N2 - не менее 33,0 мас. %, О2 - не более 1,2 мас %, Fe - не более 0,08-0,1 мас %, С - не более 0,05 мас %, а примесь основных активирующих ионов - ионов европия Eu2+ в AlN составляет 0,3-0,5 ат. % отн. Al.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017125639A RU2668942C1 (ru) | 2017-07-17 | 2017-07-17 | Термолюминофор |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017125639A RU2668942C1 (ru) | 2017-07-17 | 2017-07-17 | Термолюминофор |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2668942C1 true RU2668942C1 (ru) | 2018-10-05 |
Family
ID=63798143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017125639A RU2668942C1 (ru) | 2017-07-17 | 2017-07-17 | Термолюминофор |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2668942C1 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1011666A1 (ru) * | 1981-11-04 | 1983-04-15 | Ордена Ленина физико-технический институт им.А.Ф.Иоффе | Термолюминофор дл композиционного детектора ионизирующего излучени |
US6723995B2 (en) * | 2001-11-22 | 2004-04-20 | Ftni Inc. | Direct conversion flat panel X-ray detector with automatic cancellation of ghost images |
RU2445646C2 (ru) * | 2008-06-11 | 2012-03-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н.Ельцина" (ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н.Ельцина") | Рабочее вещество для термолюминесцентного детектора нейтронов |
-
2017
- 2017-07-17 RU RU2017125639A patent/RU2668942C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1011666A1 (ru) * | 1981-11-04 | 1983-04-15 | Ордена Ленина физико-технический институт им.А.Ф.Иоффе | Термолюминофор дл композиционного детектора ионизирующего излучени |
US6723995B2 (en) * | 2001-11-22 | 2004-04-20 | Ftni Inc. | Direct conversion flat panel X-ray detector with automatic cancellation of ghost images |
RU2445646C2 (ru) * | 2008-06-11 | 2012-03-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н.Ельцина" (ФГАОУ ВПО "УрФУ имени первого Президента России Б.Н.Ельцина") | Рабочее вещество для термолюминесцентного детектора нейтронов |
Non-Patent Citations (1)
Title |
---|
N. S. Akhmadullina, A. S. Lysenkov et al. Effect of Dopant Concentration on the Phase Composition and Luminescence Properties of Eu2+ - and Ce3+ - Doped AlONs. Inorganic Materials, 2015, Vol. 51, No. 5. pp. 473-481. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ueda et al. | Thermal ionization and thermally activated crossover quenching processes for 5 d-4 f luminescence in Y 3 A l 5− x G ax O 12: P r 3+ | |
Lakshminarasimhan et al. | Luminescence and afterglow in Sr2SiO4: Eu2+, RE3+ [RE= Ce, Nd, Sm and Dy] phosphors—Role of co-dopants in search for afterglow | |
Aitasalo et al. | Low temperature thermoluminescence properties of Eu2+ and R3+ doped CaAl2O4 | |
Jiang et al. | Thermoluminescence studies of LiSrBO3: RE3+ (RE= Dy, Tb, Tm and Ce) | |
Grippa et al. | Crystal growth and scintillation properties of CsCaBr3: Eu2+ (CsCa1− xEuxBr3, 0≤ x≤ 0.08) | |
Nagpure et al. | Synthesis and luminescence characteristics of terbium (III) activated NaSrBO3 | |
Lastusaari et al. | Wavelength-sensitive energy storage in Sr 3 MgSi 2 O 8: Eu 2+, Dy 3+ | |
Venevtsev et al. | Temperature Quenching of Radio-and Photoluminescence of Y 3 (Ga, Al) 5 O 12: Ce 3+ and Gd 3 (Ga, Al) 5 O 12: Ce 3+ Garnet Ceramics | |
Yawalkar et al. | Investigation of luminescence processes in Li 6 Gd (BO 3) 3: Eu 3+ phosphor | |
More et al. | Synthesis and dosimetric characterization of LiCaPO4: Eu phosphor | |
Li et al. | Synthesis, photoluminescence, thermoluminescence and dosimetry properties of novel phosphor Zn (BO2) 2: Tb | |
Ju et al. | Persistent luminescence in CaAl2Si2O8: Eu2+, R3+ (R= Pr, Nd, Dy, Ho and Er) | |
Annalakshmi et al. | Synthesis and study on the luminescence properties of cadmium borate phosphors | |
Guo et al. | Thermoluminescent properties of Eu2+ and RE3+ co-doped phosphors CaGa2S4: Eu2+, RE3+ (RE= Ln, excluding Pm, Eu and Lu) | |
Sidletskiy et al. | Crystal composition and afterglow in mixed silicates: the role of melting temperature | |
Shi et al. | Luminescence properties and host sensitization study of Ba3La (PO4) 3: Ce3+ with (V) UV and X-ray excitation | |
Wang et al. | A novel red long lasting phosphorescent (LLP) material β-Zn3 (PO4) 2: Mn2+, Sm3+ | |
Naregundi et al. | Thermoluminescence response and trap features of gamma-irradiated Sr2Al2SiO7: Dy3+ phosphors | |
Nagirnyi et al. | Recombination luminescence in Li2B4O7 doped with manganese and copper | |
Onoda et al. | Thermally stimulated luminescence properties of Eu-doped AlN ceramic | |
Patra et al. | Silver doped lithium tetraborate (Li2B4O7) single crystals as efficient dosimeter material with sub-micro-Gy sensitivity | |
Dotsenko et al. | Luminescence properties and electronic structure of Sm 3+-doped YAl 3 B 4 O 12 | |
Wang et al. | Afterglow-suppressed Lu2O3: Eu3+ nanoscintillators for high-resolution and dynamic digital radiographic imaging | |
Wisniewski et al. | Rb3Lu (PO4) 2: Ce and Cs3Lu (PO4) 2: Ce–new promising scintillator materials | |
Oza et al. | Synthesis and thermoluminescence characterizations of Sr2B5O9Cl: Dy3+ phosphor for TL dosimetry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190718 |