RU2668249C1 - Солнечный опреснитель с параболоцилиндрическими отражателями - Google Patents

Солнечный опреснитель с параболоцилиндрическими отражателями Download PDF

Info

Publication number
RU2668249C1
RU2668249C1 RU2017137089A RU2017137089A RU2668249C1 RU 2668249 C1 RU2668249 C1 RU 2668249C1 RU 2017137089 A RU2017137089 A RU 2017137089A RU 2017137089 A RU2017137089 A RU 2017137089A RU 2668249 C1 RU2668249 C1 RU 2668249C1
Authority
RU
Russia
Prior art keywords
evaporating
reflectors
solar
sun
tubes
Prior art date
Application number
RU2017137089A
Other languages
English (en)
Inventor
Александр Ильич Попов
Сергей Евгеньевич Щеклеин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2017137089A priority Critical patent/RU2668249C1/ru
Application granted granted Critical
Publication of RU2668249C1 publication Critical patent/RU2668249C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Abstract

Изобретение относится к устройствам для дистилляции минерализованных, загрязненных или морских вод посредством использования только солнечной энергии для нагрева воды. Солнечный опреснитель содержит концентратор солнца на параболоцилиндрических отражателях, оснащенных консолями с отверстиями, в которых размещены испаряющие трубы, расположенные в фокусе отражателей, а система слежения за солнцем состоит из гидроцилиндра, шток которого механически соединен с его поршнем и через рычаги с консолями отражателей, герметичного бака, содержащего минеральное масло с рабочим телом и маслопроводом, соединяющим гидроцилиндр с баком, причем конденсатор со сборником дистиллята выполнен из прозрачного корпуса, частично погруженного в резервуар опресняемой воды, и содержит теплоаккумулирующий материал с дополнительной испарительной поверхностью, над которой размещен один конец паропровода, другой его конец соединен с выходами испаряющих труб, входы последних посредством трубопровода подключены к резервуару опресняемой воды. Испаряющие трубы заключены в прозрачные внешние оболочки, из которых выкачан воздух, а со стороны солнца на оболочках размещены зеркальные отражатели по всей их длине и в половину диаметров испаряющих труб. В верхней зоне корпуса конденсатора размещена конденсатная собирающая влагу сетка, закрепленная на сторонах корпуса. На дополнительной испарительной поверхности и на внутренней поверхности испаряющих труб размещена съемная термостойкая ткань. Изобретение обеспечивает упрощение конструкции и повышение надежности опреснителя и его производительности. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к устройствам для дистилляции минерализованных, загрязненных или морских вод (далее по тексту: морских вод) посредством использования только солнечной энергии для нагрева воды.
Известны многочисленные дистилляционные установки, использующие дополнительно электрическую энергию для привода различных механизмов в опреснителях, для создания необходимых температур в их испарителях или конденсаторах.
Известен, например, «Тонкопленочный параболоцилиндрический коллектор» [1], содержащий на опорах набор жестких ребер, пространственно разнесенных вдоль длины системы аккумулирования солнечной энергии и образующих параболическую кривизну на отражающих пленках, систему слежения за солнцем с жесткой сцепкой с ребрами и трубы в фокусе парабол с текучей средой, при этом система управления перемещает тросы системы слежения синхронно, с целью вращать систему аккумулирования солнечной энергии в направление на солнце так, чтобы солнечный свет, падающий на отражающую пленку, отражался на трубу с текучей средой, нагревая ее.
Задача настоящего изобретения состоит в эффективном аккумулировании солнечной энергии с наименьшими затратами и повышении точности слежения за солнцем. Недостатком данного устройства является отсутствие узлов получения пресной воды.
Известно также «Собирающее устройство для солнечной энергии» [2], содержащее отражающий элемент, имеющий в поперечном сечении изогнутую форму, выполненную с отражающей внутренней поверхностью, обращенной к солнцу, и установленный наклонно принимающий элемент, расположенный по линейной фокальной оси отражающего элемента, принимающий отраженную солнечную радиацию и соединенный с циркуляционной системой, содержащей жидкость, причем жидкостный объем ограничен подпружиненными сильфонами, принимающий элемент выполнен из нескольких тонкостенных параллельных труб, жидкость в циркуляционной системе представляет собой раствор имеющий точку кипения около 120 градусов Цельсия, а циркуляционная система снабжена тепловым аккумулятором с теплообменником и нагревательным элементом. Данное оригинальное устройство было бы целесообразно использовать для опреснения воды при температуре от 100 до 120 градусов, однако узлы конденсации и очистки опресненной воды не предусмотрены. Другим недостатком этого устройства является малый объем собираемой им солнечной энергии, зависящий от площади ее сбора, которая в данном варианте незначительна.
Наиболее близким техническим решением является «Солнечный опреснитель» [3], содержащий корпус, установленный на опорном устройстве, размещенные в нем концентратор солнечного излучения и испарительную камеру, заполненную жидкостью, центральная часть последней установлена в фокусе концентратора, снабжена паропроводом со сборником дистиллята. Кроме того, имеется система слежения за солнцем, состоящая из баллонов с легкокипящей жидкостью, трубопроводов от них к гидроцилиндрам, перемещающим концентраторы на опорном устройстве. Данное устройство должно иметь достаточно высокий КПД, однако устройство весьма сложно в эксплуатации за счет сосредоточения узлов ориентации на солнце, узлов испарения и конденсации в одном корпусе, расположенном на шарнирной опоре. При погружении в водоем следует ожидать его неустойчивую работу даже при слабой волне, а в режиме использования на суше потребуются дополнительные регулируемые во времени разновысотные опоры.
Кроме того, данный опреснитель не предназначен для получения больших объемов дистиллированной воды и не решает проблему очистки и удаления накипи, шламов и других отходов, содержащихся в морской, минерализованной или технической опресняемой воде.
Задачей предполагаемого изобретения является устранение вышеуказанных недостатков и создание солнечного опреснителя с более высокой производительностью.
Технический результат предлагаемого изобретения заключается в следующем:
- увеличена производительность за счет пространственного разделения конструкций нагревателя, конденсатора и устройства слежения за солнцем, что позволяет создать большие поверхности для улавливания солнечной энергии и более эффективные приемы ее дальнейшего использования;
- упрощена конструкция опреснителя, использующего перемещение штока гидроцилиндра при расширении объема рабочих тел в герметичном баке, заполненным минеральным маслом;
- упрощена конструкция и увеличена производительность конденсатора с прозрачным корпусом, нижняя охлаждаемая часть которого размещена в опресняемой воде, а внутри конденсатора на теплоизолирующем слое размещен теплоаккумулирующий материал с дополнительной испаряющей поверхностью;
- увеличена производительность опреснителя за счет размещения испаряющих труб внутри прозрачных оболочек из которых выкачан воздух, а со стороны излучения солнца на оболочках размещены по их длине зеркальные отражатели в половину диаметров оболочек;
- увеличена производительность опреснителя за счет размещения в верхней зоне корпуса конденсатора дополнительной конденсатной сетки;
- увеличена долговечность (надежность) опреснителя путем размещения на испарительной поверхности теплоаккумулирующего материала в конденсаторе и на внутренней поверхности испаряющих труб съемной термостойкой ткани.
Технический результат достигается за счет того, что в солнечном опреснителе с концентратором солнечного излучения, испарительной камерой, заполненной жидкостью, установленной в фокусе концентратора, резервуаром опресняемой воды, трубопроводом, паропроводом, сборником дистиллята и системой слежения за солнцем, управляемой перемещением концентратора на солнце посредством штока гидроцилиндра, концентратор выполнен в виде параболоцилиндрических отражателей, оснащенных консолями с отверстиями, в которых размещены испаряющие трубы испарительной камеры, расположенные в фокусе отражателей, а система слежения состоит из гидроцилиндра, шток которого механически соединен через рычаги с консолями отражателей, герметичного бака, содержащего минеральное масло с рабочими телами и маслопроводом, соединяющим гидроцилиндр с баком. Конденсатор в данном опреснителе со сборником дистиллята выполнен из прозрачного корпуса, погруженного частично в резервуар опресняемой воды, и содержит теплоаккумулирующий материал с дополнительной испарительной поверхностью, над которой размещен один конец паропровода, другой его конец соединен с выходами испаряющих труб испарительной камеры, а входы последних посредством трубопровода подключены к резервуару опресняемой воды.
Кроме того, технический результат достигается также за счет того, что испаряющие трубы заключены в прозрачные внешние оболочки из которых выкачан воздух, а со стороны излучения солнца на оболочках по всей длине размещены зеркальные отражатели в половину их диаметров.
Технический результат достигается так же за счет того, что в верхней зоне конденсатора размещена конденсатная сетка, закрепленная на сторонах корпуса, а на испарительной поверхности теплоаккумулирующего материала в конденсаторе и на внутренней поверхности испарительных туб размещена съемная термостойкая ткань.
На чертеже, Фиг. 1, изображен «Солнечный опреснитель с параболоцилиндрическими отражателями», общий вид, поясняющий принцип его работы, а на Фиг. 2 представлен в разрезе чертеж испаряющей трубы опреснителя, оснащенной дополнительными узлами.
Солнечный опреснитель содержит испарительную камеру, состоящую из нескольких параболоцилиндрических отражателей 1, закрепленных на консолях 2 с отверстиями 3 в которых свободно размещены в фокусе отражателей съемные испаряющие трубы 4, соединенные с подающим воду трубопроводом 5 и отводящим пар или пароводяную смесь паротрубопроводом 6, причем консоли оснащены рычагами 7 поворота отражателей и шарнирно соединены с общей тягой 8 этих рычагов.
Наклоном отражателей на направление солнца управляет система слежения 9, состоящая из штока 10, соединенного с тягой рычагов и с поршнем 11, заключенным в гидравлический цилиндр 12, соединенный с герметичным баком 13, маслопроводом 14, причем бак заполнен рабочими телами 15 с большим температурным коэффициентом расширения и свойством аккумулирования тепла, например, гранулами пластмассы и кристаллогидратами неорганических солей в качестве теплоаккумулирующего материала, например, MgCl2*6H2O, имеющего температуру плавления 116 градусов Цельсия [16], с. 60, а так же -минеральным маслом 16.
Конденсатор 17 пара состоит из прозрачного корпуса 18, в верхней части которого размещена конденсатная собирающая влагу сетка 19 или волокнистый туманоулавливающий фильтр [7], выполняющий задачу увеличения конденсационной поверхности, желобов 20 для отбора пресной воды и отводящих ее патрубков 21, слоя 22 теплоизоляции в основании корпуса, на котором размещен теплоаккумулирующий материал 23 с дополнительной испаряющей поверхностью 24 в зоне выхода (конца) паротрубопровода, причем основание корпуса может размещаться в резервуаре 25 или непосредственно в бассейне с соленой водой на опорах 26.
Для химической очистки растворами дополнительной испарительной поверхности в конденсаторе может использоваться дополнительный заливной патрубок 27, а для механической очистки используется съемное тканевое покрытие 28 из эластичного материала, укладываемое на испарительную поверхность в конденсаторе и во внутрь испаряющих труб (Фиг. 2), которое удаляется вместе со шламом через размыкаемую по линии А-А верхнюю часть корпуса и по необходимости в процессе загрязнения съемных испаряющих труб. В качестве такого покрытия может использоваться керамический текстиль [8].
Вокруг испаряющих труб (Фиг. 2) устанавливается прозрачная внешняя оболочка 29, из которой выкачан воздух, а со стороны излучения солнца на оболочках размещены отражатели (зеркальная пленка) 30 по всей длине оболочек и в половину диаметров испаряющих труб.
Регулирование объема поступающей воды на испарение осуществляется вентилем 31.
«Солнечный опреснитель с параболоцилиндрическими отражателями» работает следующим образом (Фиг. 1). Корпус 18 конденсатора 17 расположен на опорах 26 непосредственно в водоеме (река, море) или в резервуаре 25, откуда через вентиль 31 соленая (загрязненная) вода по трубопроводу 5 поступает в съемные испаряющие трубы 4, находящие в фокусе параболоцилиндрических отражателей 1.
При движении солнца по небосводу интенсивность его излучения в течение дня изменяется и воздействует на герметичный бак 13, внутри которого находятся рабочие тела 15 с большим коэффициентом температурного расширения и свойством аккумулирования тепловой энергии, а также минеральное масло 16. Рабочие тела 15 при увеличении солнечной инсоляции нагреваются, увеличиваются в объеме и выдавливают масло 16 через маслопровод 14 в гидравлический цилиндр 12, поршень 11 которого передвигается и через свой шток 10, соединенный с общей тягой 8 воздействует на рычаги 7 поворота консолей 2 отражателей 1, устанавливая последние по направлению на солнце.
После прохождения солнцем верхней точки на небосводе в полуденное время, за счет тепловой инерции энергии, накопленной аккумулирующим материалом, система слежения продолжает по инерции перемещать наклон параболоцилиндрических отражателей вслед за движением солнца. В вечерние часы, когда интенсивность солнца ослабевает, происходит обратный процесс: рабочее тело 15 уменьшается в объеме, освобождая объем для масла 16, поршень 11 смещается в направление к дну цилиндра, увлекая через шток 10 и общую тягу 8 рычаги 7 консолей 2, которые наклоняют отражатели 1 в исходное положение.
В зависимости от величины солнечной инсоляции в испаряющих трубах 4, находящихся все время благодаря системе слежения за солнцем 9 в фокусе отражателей 1, может формироваться либо паровая фаза, либо пароводяная смесь, которые подаются в конденсатор 17 по паропроводу 6. В случае поступления по паропроводу 6 во внутрь прозрачного корпуса 18 пара, последний поднимается в его верхнюю часть, конденсируется на конденсатной собирающей влагу сетке 19 и на холодных стенках корпуса, стекает и накапливается в желобах 20, откуда отводится по патрубкам 21 в сборник дистиллята (не показан на чертеже).
Разделение на верхнюю и нижнюю части корпуса может производиться, например, по линии А-А, при этом нижняя часть корпуса 18 может быть выполнена из другого более прочного материала.
Поскольку нижняя часть корпуса 18 погружена в воду, стенки его верхней конденсационной части всегда находятся в охлажденном состоянии.
Солнечные лучи, проходя через прозрачную верхнюю часть корпуса 18, нагревают и накапливают внутри корпуса тепловую энергию в теплоаккумулирующем материале 23. В случае слабой солнечной инсоляции в испаряющих трубах 4 может образовываться не сухой пар, а пароводяная смесь. В этом случае пароводяная смесь, поступающая в корпус 18 по паропроводу 6, разделяется в корпусе на пар и воду. Пар, как и в предыдущем случае поднимается к верху корпуса на конденсацию, а вода, падающая на дополнительную испарительную поверхность 24 теплоаккумулирующего материала 23 также испаряется и поступает на конденсацию, что увеличивает производительность установки, работающей при разных погодных условиях.
Производительность опреснителя так же будет увеличена (Фиг. 2) при заключении испарительных труб 4 во внешнюю прозрачную (например, стеклянную) оболочку 29, из которой выкачан воздух. Солнечные лучи, отражаясь от параболоцилиндрических отражателей 1 с большей тепловой энергией концентрируются на трубах 4, поскольку воздух плохой проводник тепла. Кроме того, на оболочках 29 со стороны солнца размещены зеркальные (пленочные) отражатели 30, которые возвращают во внутрь оболочек часть вторичного теплового излучения от отражателей, которое могло уходить наружу оболочек.
Накипь, шлам, осадок, в том числе полезных солей и металлов, содержащихся в морской и технической воде, накапливается как в съемных испаряющих трубах 4, так и на дополнительной испарительной поверхности 24, осаждаясь на покрытии 28.
Испаряющие трубы 4 могут быть съемными и после их длительной эксплуатации необходимо очищать химическим или механическим способом. Дополнительную испарительную поверхность 24 возможно промывать химическими растворами, подаваемыми и удаляемыми через дополнительный патрубок 27. Для исключения осадка на внутренней поверхности испаряющих труб 4 (Фиг. 2), также на дополнительной испарительной поверхности 24 (Фиг. 1) предлагается размещать дополнительное эластичное съемное покрытие 28 [8]. После накоплении на покрытии 28 слоя осадка, оно удаляется через съемную верхнюю часть корпуса и устанавливается новое чистое покрытие 28. Аналогично удаляется покрытие 28 (Фиг. 2) из съемных испаряющих труб 4 во время их профилактического обслуживания.
Предлагаемый «Солнечный опреснитель с параболоцилиндрическими отражателями» имеет высокую производительность, не потребляет внешней дополнительной электрической энергии, конструктивно прост и может быть выполнен как в малоразмерном варианте, например, для одного хозяйства, так и в крупногабаритном исполнении для нужд автономного поселения. Учитывая изложенное, следует ожидать его масштабного внедрения.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Пруеимм Мелвин Л. (US). Тонкопленочный параболоцилиндрический солнечный коллектор. Евразийский патент 013199 В1. МПК F24J 2/38 (аналог).
2. Холгер Меллер (FI). Собирающее устройство для солнечной энергии. Патент РФ №2107232. МПК F24J 2/44. Патентообладатель Хелиотхерм (FI) (аналог).
3. Ашурлы З.И.О., Гаджиев М. Г. и др. Солнечный опреснитель. Патент РФ №2044692. МПК C02F 1/14 (прототип).
4. Долинский О.А. и др. Солнечный опреснитель. Авторское свидетельство СССР №1611873. МПК С02Р 1/14(аналог).
5. Дикий Н.А. и др. Солнечный опреснитель. Авторское свидетельство СССР №1370387. МПК F24J 2/32 (аналог).
6. Слесаренко В.Н., Панасенко А.А. Способ опреснения морских вод и устройство для его осуществления. Патент РФ №2453352. МПК B01D 1/22 (аналог).
7. Туманоуловители волокнистые. Типы и основные параметры. ГОСТ Р 50821-95.
8. Ткани керамические. Эксклюзивный текстиль.[электронный ресурс] http://rus-kit.Rosbizinfo.ru; рус - кит.рф.
9. Рахматулин И.Р. Гелиоопреснительная установка с устройством слежения. Патент РФ на полезную модель №144634. МПК C02F 1/14 (аналог).
10. Кирпичникова И.М., Соломин Е.В. и др. Гелиоопреснительная установка. Патент РФ на полезную модель №127063. МПК C02F 1/4 (аналог).
11. Огребков Д.С, Безруких П.П. Солнечный модуль с концентратором. Варианты. Патент РФ на изобретение №2204769. МПК F24J 2/14 (аналог).
12. Патент Германии DE 4406365 (аналог).
13. Патент США №4196717 А, 1977 (аналог).
14. Патент США №4363703 А, 1988 (аналог).
15. Патент Японии №10080688 А, 1988 (аналог).
16. Левенберг В.Д., Ткач М.Р., Гольстрем В.А. Аккумулирование тепла. К., Техника. 1991, 112 с.

Claims (4)

1. Солнечный опреснитель с параболоцилиндрическими отражателями, содержащий концентратор солнечного излучения, испарительную камеру, заполненную жидкостью, установленную в фокусе концентратора, водоем (резервуар) опресняемой воды, трубопровод, паропровод, сборник дистиллята и систему слежения за солнцем, управляющую перемещением концентратора на солнце посредством штока гидроцилиндра, отличающийся тем, что концентратор содержит параболоцилиндрические отражатели, оснащенные консолями с отверстиями, в которых размещены испаряющие трубы испарительной камеры, расположенные в фокусе отражателей, а система слежения состоит из гидроцилиндра, шток которого механически соединен с его поршнем и через рычаги с консолями отражателей, герметичного бака, содержащего минеральное масло с рабочим телом и маслопроводом, соединяющим гидроцилиндр с баком, причем конденсатор со сборником дистиллята выполнен из прозрачного корпуса, погруженного частично в резервуар опресняемой воды, и содержит теплоаккумулирующий материал с дополнительной испарительной поверхностью, над которой размещен один конец паропровода, другой его конец соединен с выходами испаряющих труб, входы последних посредством трубопровода подключены к резервуару опресняемой воды.
2. Солнечный опреснитель с параболоцилиндрическими отражателями по п. 1, отличающийся тем, что испаряющие трубы испарительной камеры заключены в прозрачные внешние оболочки, из которых выкачан воздух, а со стороны излучения солнца на оболочках размещены зеркальные отражатели в половину диаметров испаряющих труб.
3. Солнечный опреснитель с параболоцилиндрическими отражателями по п. 1, отличающийся тем, что в верхней зоне конденсатора размещена конденсатная собирающая влагу сетка, закрепленная на сторонах корпуса.
4. Солнечный опреснитель с параболоцилиндрическими отражателями по п. 1, отличающийся тем, что на испарительной поверхности теплоаккумулирующего материала и на внутренней поверхности испаряющих труб размещена съемная термостойкая ткань.
RU2017137089A 2017-10-20 2017-10-20 Солнечный опреснитель с параболоцилиндрическими отражателями RU2668249C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017137089A RU2668249C1 (ru) 2017-10-20 2017-10-20 Солнечный опреснитель с параболоцилиндрическими отражателями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017137089A RU2668249C1 (ru) 2017-10-20 2017-10-20 Солнечный опреснитель с параболоцилиндрическими отражателями

Publications (1)

Publication Number Publication Date
RU2668249C1 true RU2668249C1 (ru) 2018-09-27

Family

ID=63669041

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017137089A RU2668249C1 (ru) 2017-10-20 2017-10-20 Солнечный опреснитель с параболоцилиндрическими отражателями

Country Status (1)

Country Link
RU (1) RU2668249C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090591A1 (es) * 2020-10-27 2022-05-05 Munoz Saiz Manuel Sistema concentrador y captador de energía solar
RU2772145C1 (ru) * 2018-10-17 2022-05-18 Сатиш МАХНА Системы опреснения воды
IT202100001505A1 (it) 2021-01-26 2022-07-26 Smartgrubs Srlu Dispositivo a pannello per desalinizzare l’acqua e raccogliere i sali e/o detriti, impianto e loro procedimento di funzionamento.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075063A (en) * 1976-02-17 1978-02-21 Yaw Jenn Tsay Solar powered distilling device
US4363703A (en) * 1980-11-06 1982-12-14 Institute Of Gas Technology Thermal gradient humidification-dehumidification desalination system
SU1370387A1 (ru) * 1986-06-13 1988-01-30 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Солнечный опреснитель
DE4406365A1 (de) * 1994-02-26 1995-08-31 Wernfried Langer Verfahren und Vorrichtung zum Reinigen und/oder Destillieren von Flüssigkeiten
RU2044692C1 (ru) * 1992-11-30 1995-09-27 Общество с ограниченной ответственностью "Астросолар" Солнечный опреснитель
RU2567324C1 (ru) * 2014-03-28 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный технологический университет" Солнечно-ветровая опреснительная установка

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075063A (en) * 1976-02-17 1978-02-21 Yaw Jenn Tsay Solar powered distilling device
US4363703A (en) * 1980-11-06 1982-12-14 Institute Of Gas Technology Thermal gradient humidification-dehumidification desalination system
SU1370387A1 (ru) * 1986-06-13 1988-01-30 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Солнечный опреснитель
RU2044692C1 (ru) * 1992-11-30 1995-09-27 Общество с ограниченной ответственностью "Астросолар" Солнечный опреснитель
DE4406365A1 (de) * 1994-02-26 1995-08-31 Wernfried Langer Verfahren und Vorrichtung zum Reinigen und/oder Destillieren von Flüssigkeiten
RU2567324C1 (ru) * 2014-03-28 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный технологический университет" Солнечно-ветровая опреснительная установка

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2772145C1 (ru) * 2018-10-17 2022-05-18 Сатиш МАХНА Системы опреснения воды
WO2022090591A1 (es) * 2020-10-27 2022-05-05 Munoz Saiz Manuel Sistema concentrador y captador de energía solar
IT202100001505A1 (it) 2021-01-26 2022-07-26 Smartgrubs Srlu Dispositivo a pannello per desalinizzare l’acqua e raccogliere i sali e/o detriti, impianto e loro procedimento di funzionamento.
WO2022162522A1 (en) * 2021-01-26 2022-08-04 Smartgrubs Srlu Panel device for desalinazing water and collecting salts and/or debris, plant, and operating process thereof

Similar Documents

Publication Publication Date Title
US5645693A (en) Plant for sea water desalinizing using solar energy
US11820674B2 (en) Solar-powered continuous distillation assembly having efficient heat recovery
WO2019053638A1 (en) PHOTOTHERMIC DISTILLATION APPARATUS
US20120112473A1 (en) Solar desalination system with reciprocating solar engine pumps
US8419904B2 (en) Systems and methods for solar water purification
US8951391B2 (en) Solar distillation device
CN107027304B (zh) 多效太阳能蒸馏系统及相关方法
US20180169541A1 (en) Solar desalination device and method
Ahmed Seasonal performance evaluation of solar stills connected to passive external condensers
US9180383B2 (en) Throughput solar still
RU2668249C1 (ru) Солнечный опреснитель с параболоцилиндрическими отражателями
US20150344325A1 (en) Device and method for solar distillation
EP0593465B1 (en) Plant for sea water desalinizing using solar energy preferably accompanied by electric power generation
Sharon et al. A review on role of solar photovoltaic (PV) modules in enhancing sustainable water production capacity of solar distillation units
CN105460995A (zh) 太阳能蒸馏净水设备
RU150516U1 (ru) Солнечный опреснитель
WO2011010173A2 (en) Three wall vacuum tube solar collector located in the focus of a non moving semicylindrical parabolic reflector used for production of steam to get electric and thermal energy
Rizwan et al. Experimental verification and analysis of Solar Parabolic Collector for water distillation
WO2009009873A1 (en) Solar water desalination unit with superheater and heat exchangers
RU216261U1 (ru) Солнечный опреснитель с параболоцилиндрическими отражателями
UA137735U (uk) Сонячний портативний дистилятор води із лінзою френеля
JP3003844U (ja) 太陽熱エネルギを用いる海水脱塩装置
Fadhel et al. A Review on ImprovementTechniques of Freshwater Productivity for Solar Distillation Systems
KR101721203B1 (ko) 태양열과 폐열을 이용한 담수장치
AU2021107372A4 (en) Design and Optimization of Solar Water distillation by Using Thermal Method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191021