RU2667248C1 - Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины - Google Patents

Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины Download PDF

Info

Publication number
RU2667248C1
RU2667248C1 RU2017136232A RU2017136232A RU2667248C1 RU 2667248 C1 RU2667248 C1 RU 2667248C1 RU 2017136232 A RU2017136232 A RU 2017136232A RU 2017136232 A RU2017136232 A RU 2017136232A RU 2667248 C1 RU2667248 C1 RU 2667248C1
Authority
RU
Russia
Prior art keywords
fracture
hydraulic fracturing
horizontal wellbore
interval
hydraulic
Prior art date
Application number
RU2017136232A
Other languages
English (en)
Inventor
Олег Вячеславович Салимов
Радик Зяузятович Зиятдинов
Ильдар Ильясович Гирфанов
Original Assignee
Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Татнефть" имени В.Д. Шашина filed Critical Публичное акционерное общество "Татнефть" имени В.Д. Шашина
Priority to RU2017136232A priority Critical patent/RU2667248C1/ru
Application granted granted Critical
Publication of RU2667248C1 publication Critical patent/RU2667248C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
    • G01V5/107Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources and detecting reflected or back-scattered neutrons

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Geology (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва до и после проведения ГРП геофизическим методом путем спуска на колонне труб геофизического прибора в интервал перфорации пласта, подлежащего гидроразрыву. Перед проведением процесса ГРП в горизонтальном стволе скважины в интервале перфорации обсаженного ствола или интервале ствола, через который планируется проведение ГРП, геофизическим методом проводят нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(1), затем осуществляют проппантный ГРП с применением жидкости разрыва на основе сшитого геля с использованием боратных сшивателей, после проведения ГРП осуществляют технологическую выдержку до спада давления до нуля, затем свабированием осуществляют отбор из скважины жидкости в объеме (V): V=k⋅V, где V- объем использованной для проведения ГРП гелированной жидкости, м; k - коэффициент перевода, k=0,1, далее замещают жидкость в скважине на жидкость с плотностью, равной плотности жидкости при проведении первого ННК-Т(1), затем проводят повторный нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(2) с применением того же геофизического прибора и при той же скорости прохождения в стволе горизонтальной скважины в интервале проведенного гидроразрыва, сравнивают записи проведения ННК-Т(1) с записью проведения ННК-Т(2) в интервале проведения ГРП и определяют пространственную ориентацию трещины в горизонтальном стволе скважины, если длина участка с искажением записи ННК-Т(2) после проведения ГРП - L' относительно длины записи ННК-Т(1) до проведения ГРП - Lи если L'=Lс отклонением до 2 м, то трещина ГРП ориентирована вдоль горизонтального ствола скважины, если L''≤0,5⋅L, то трещина ГРП ориентирована под углом 30÷60° относительно горизонтального ствола скважины, если L'''≤0,25⋅L, то трещина ГРП ориентирована под углом 60+90° относительно горизонтального ствола скважины. Технический результат заключается в повышении эффективности определения направления пространственной ориентации трещины в горизонтальном стволе скважины. 4 ил.

Description

Изобретение относится к нефтедобывающей промышленности, а именно к проведению гидравлического разрыва пласта (ГРП), и может быть использовано для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП.
Известен способ определения параметров системы трещин гидроразрыва (патент RU №2507396, МПК Е21В 47/14, опубл. 20.02.2014 в бюл. №5), включающий возбуждение упругих колебаний источником колебаний в скважине, пересекающей трещины гидроразрыва, регистрацию в точках приема по меньшей мере в одной соседней скважине резонансных колебаний, излучаемых системой трещин гидроразрыва при возбуждении в буровой жидкости упругих колебаний, и определение параметров системы трещин по возникающим при этом в трещинах резонансным колебаниям. С целью повышения однозначности определения параметров системы трещин гидроразрыва возбуждение колебаний в скважине и их регистрацию проводят до и после гидроразрыва. При этом для каждой фиксированной пары источник-приемник формируют разностную сейсмическую запись из записей, полученных до и после гидроразрыва. На разностной сейсмозаписи выделяют сигналы, излучаемые системой трещин, и по этим сигналам судят о параметрах трещин. Причем резонансную частоту системы трещин гидроразрыва определяют по максимуму интенсивности возбуждаемых системой трещин колебаний путем изменения частоты в скважине колебаний в пределах от нижней границы диапазона возбуждаемых непрерывных колебаний до верхней границы. Сейсмические колебания, излучаемые системой трещин гидроразрыва, регистрируют в скважинах, расположенных в различных направлениях от скважины, пересекающей трещины гидроразрыва, и по кинематическим и динамическим параметрам зарегистрированных сигналов судят о параметрах системы трещин, причем дополнительно одновременно с регистрацией колебаний в соседней скважине регистрируют колебания в точках приема, расположенных в приповерхностной зоне.
Недостатки способа:
- во-первых, технологическая сложность реализации способа, связанная с тем, что дополнительно одновременно с регистрацией колебаний в соседней скважине регистрируют колебания в точках приема, расположенных в приповерхностной зоне;
- во-вторых, низкая надежность определения пространственной ориентации трещины гидроразрыва, так как направление трещин регистрируют в скважинах, расположенных в различных направлениях от скважины, пересекающей трещины гидроразрыва, и по кинематическим и динамическим параметрам зарегистрированных сигналов судят о параметрах направления трещины, причем если сигнал слабый, то информация будет недостоверной, т.е. направление развития трещины будет определено ошибочно;
- в-третьих, длительность реализации способа, связанная с регистрацией сигналов о параметрах направления трещины в соседних скважинах.
Также известен способ определения пространственной ориентации трещины гидроразрыва (а.с. №1629521, МПК Е21В 47/10, опубл. 23.02.1991 в бюл. №7), включающий возбуждение вблизи устья скважины поперечной сейсмической волны, после проведения гидроразрыва измерение расположенными на поверхности земли приемниками амплитуд волнового поля, по которым определяют пространственную ориентацию трещины гидроразрыва. Дополнительно возбуждают поперечную волну до проведения гидроразрыва, ориентируют приемники вдоль линии поляризации возбуждаемой волны и измеряют амплитуду волнового поля. Изменяют направление поляризации на угол α, повторяют возбуждение волны и измерение амплитуды волнового поля n раз до момента n⋅α>180°, а пространственную ориентацию трещины гидроразрыва определяют по величине разности амплитуд, измеренных при одинаковом направлении поляризации волны, возбужденной до и после гидроразрыва.
Недостатки способа:
- во-первых, сложность реализации способа, связанная с возбуждением вблизи устья скважины поперечной сейсмической волны, а также дополнительной одновременно с регистрацией колебаний в соседней скважине регистрацией колебаний в точках приема, расположенных в приповерхностной зоне;
- во-вторых, низкая надежность определения пространственной ориентации трещины гидроразрыва, так как приемники амплитуд волнового поля, по которым определяют пространственную ориентацию трещины, расположены на поверхности земли и могут иметь нечеткий сигнал, особенно в скважинах с глубиной до 2000 м, в связи с чем определить направление ориентации трещины будет невозможно;
- в-третьих, низкая эффективность способа, обусловленная тем, что направление пространственной ориентации трещины гидроразрыва определяют расчетным путем по величине разности амплитуд, измеренных при одинаковом направлении поляризации волны, возбужденной до и после гидроразрыва, причем ошибка в расчете может указать иное направление пространственной ориентации трещины гидроразрыва, чем то направление, в котором она сориентирована в действительности;
- в-четвертых, длительность реализации способа, связанная с многократными повторениями возбуждения волны и измерения амплитуды волнового поля n раз до момента n/α>180°, что увеличивает трудозатраты на реализацию способа.
Наиболее близким по технической сущности и достигаемому результату является способ определения пространственной ориентации трещины гидроразрыва (патент RU №2626502, МПК Е21В 43/267, опубл. 28.07.2017 в бюл. №22), включающий проведение ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва после проведения ГРП. Перед проведением ГРП в скважину в интервал пласта, подлежащего гидроразрыву, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта, извлекают колонну труб с геофизическим прибором из скважины, производят ГРП с образованием и креплением трещины разрыва проппантом, причем в процессе крепления трещины проппант закачивают двумя порциями, первой порцией закачивают проппант в 4/5 части от его общей массы, а второй порцией закачивают маркированный проппант, содержащий 0,4 мас.% гадолиния (Gd64 157,25) в 1/5 части от общей массы проппанта, при этом фракции проппанта одинаковы в обеих порциях, по окончании крепления трещины стравливают давление из скважины и промывают забой скважины от излишков маркированного проппанта, извлекают колонну труб с пакером из скважины, в скважину в интервал пласта с трещиной, закрепленной в призабойной зоне маркированным проппантом, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта и трещины разрыва и определяют пространственную ориентацию трещины гидроразрыва.
Недостатки способа:
- во-первых, данный способ предназначен для применения только в вертикальных скважинах и имеет низкую эффективность при определении ориентации трещин в горизонтальных скважинах;
- во-вторых, сложный в реализации способ, связанный с тем, что в процессе ГРП вместе с проппантом необходимо порционно закачивать гадолиний, т.е. маркировать закачиваемый проппант, а затем промывать забой скважины от маркированного проппанта;
- в-третьих, низкая точность определения пространственной ориентации трещины, обусловленная тем, что после проведения ГРП в процессе промывки скважины гадолиний оседает на забой скважины, что искажает дальнейшие показания геофизического прибора;
- в-четвертых, дополнительные затраты при реализации способа, связанные с приобретением гадолиния, который является дорогим, что увеличивает стоимость проведения процесса ГРП;
- в-пятых, данный способ реализуется только в обсаженном стволе вертикальной скважины.
Техническими задачами изобретения являются повышение эффективности определения направления пространственной ориентации трещины в горизонтальном стволе скважины, упрощение технологии реализации способа, а также повышение точности определения пространственной ориентации трещины и снижение стоимости реализации способа с возможностью реализации способа как в необсаженном, так и в обсаженном горизонтальном стволе скважины.
Технические задачи решаются способом определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины, включающим проведение гидроразрыва пласта - ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва до и после проведения ГРП геофизическим методом путем спуска на колонне труб геофизического прибора в интервал перфорации пласта, подлежащего гидроразрыву.
Новым является то, что перед проведением процесса ГРП в горизонтальном стволе скважины в интервале перфорации обсаженного ствола или интервале ствола, через который планируется проведение ГРП, геофизическим методом проводят нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(1), затем осуществляют проппантный ГРП с применением жидкости разрыва на основе сшитого геля с использованием боратных сшивателей, после проведения ГРП осуществляют технологическую выдержку до спада давления до нуля, затем свабированием осуществляют отбор из скважины жидкости в объеме (Vo):
Vo=k-Vг,
где Vг - объем использованной для проведения ГРП гелированной жидкости, м3;
k - коэффициент перевода, k=0,1,
далее замещают жидкость в скважине на жидкость с плотностью, равной плотности жидкости при проведении первого ННК-Т(1), затем проводят повторный нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(2) с применением того же геофизического прибора и при той же скорости прохождения в стволе горизонтальной скважины в интервале проведенного гидроразрыва, сравнивают записи проведения ННК-Т(1) с записью проведения ННК-Т(2) в интервале проведения ГРП и определяют пространственную ориентацию трещины в горизонтальном стволе скважины, если длина участка с искажением записи ННК-Т(2) после проведения ГРП-L2' относительно длины записи ННК-Т(1) до проведения ГРП - L1 и если L2'=L1 с отклонением до 2 м, то трещина ГРП ориентирована вдоль горизонтального ствола скважины, если L2''≤0,5⋅L1, то трещина ГРП ориентирована под углом 30÷60° относительно горизонтального ствола скважины, если L2'''≤0,25⋅L1, то трещина ГРП ориентирована под углом 60÷90° относительно горизонтального ствола скважины.
На фиг. 1-4 схематично показан порядок реализации предлагаемого способа.
Суть способа заключается в следующем.
Перед проведением процесса ГРП в горизонтальном стволе 1 скважины (см. фиг. 1-4) в интервале перфорации 2 длиной L1 или интервале открытого ствола, через который планируется проведение ГРП, спускают геофизический прибор на колонне труб. В горизонтальном стволе геофизическим методом проводят нейтрон-нейтронный каротаж по тепловым нейтронам ННК-Т(1)-3'. Плотность жидкости, находящейся в стволе горизонтальной скважины, равна 1000 кг/м3.
Осуществляют проппантный ГРП (по любой известной технологии) с применением жидкости разрыва на основе сшитого геля с использованием боратных сшивателей. После проведения ГРП осуществляют технологическую выдержку до спада давления до нуля, например, в течение 30 мин.
Свабированием осуществляют отбор из скважины жидкости в объеме (Vo):
Vo=k⋅Vг,
где Vг - объем использованной для проведения ГРП гелированной жидкости, м3;
k - коэффициент перевода, k=0,1.
Например, объем использованной для проведения ГРП гелированной жидкости Vг=50 м. Тогда, подставляя числовые значения, получим: Vo=0,1⋅50 м3=5,0 м3.
Свабированием по горизонтальному стволу скважины отбирают 5,0 м3 жидкости. Отбор жидкости из горизонтального ствола 1 скважины проводят с целью промывки интервала проведения ГРП от пленки геля для повышения достоверности дальнейших геофизических исследований. Коэффициент перевода k=0,1 получен опытным путем исходя из необходимого объема отбора жидкости из скважины для промывки интервала проведения ГРП от пленки геля после проведения ГРП.
С помощью насосного агрегата замещают жидкость в скважине, например жидкость в скважине после проведения ГРП плотностью 1100 кг/м3 замещают на жидкость с плотностью, равной плотности жидкости при проведении первого ННК-Т(1), т.е. на жидкость с плотностью 1000 кг/м3, например в объеме горизонтального ствола скважины, равного 25 м3. Это исключает искажение данных при дальнейшей интерпретации полученных геофизических данных.
Затем проводят повторный ННК-Т(2)-3'' (см. фиг. 2-4) с применением того же геофизического прибора и при той же скорости прохождения в стволе горизонтальной скважины в интервале проведенного гидроразрыва.
Сравнивают записи проведения ННК-Т(1)-3' и ННК-Т(2)-3'' в интервале проведения ГРП. На показания ННК-Т большое влияние оказывают элементы-поглотители, обладающие большим сечением захвата тепловых нейтронов.
Бор, входящий в состав сшивателя для гелирования воды, имеет аномально высокую способность захвата тепловых нейтронов, поэтому записи нейтронного каротажа до ГРП и после будут отличаться.
Определяют ориентацию трещины относительно ствола скважины.
Фиг. 1. L1 - длина интервала перфорации 2, м. Запись ННК-Т (1) до проведения ГРП.
Фиг. 2. L2' - длина участка с искажением записи ННК-Т (2) после ГРП относительно ННК-Т(1) до проведения ГРП. Если L2'=L1 с отклонением до 2 м, то трещина 4 ГРП ориентирована вдоль горизонтального ствола скважины.
Фиг. 3. L2'' - длина участка с искажением записи ННК-Т (2) после ГРП относительно ННК-Т(1) до проведения ГРП. Если L2''≤0,5⋅L1, то трещина 4 ГРП ориентирована под углом 30÷60° относительно горизонтального ствола скважины.
Фиг. 4. L2''' - длина участка с искажением записи ННК-Т (2) после ГРП относительно ННК-Т(1) до проведения ГРП. Если L2'''≤0,25⋅L1, то трещина 4 ГРП ориентирована под углом 60÷90° относительно горизонтального ствола скважины.
На основе полученных результатов определяют направления горизонтальных стволов скважин, оптимизируют сетку скважин для разбуривания с учетом информации о преимущественном направлении трещин ГРП.
Предлагаемый способ позволяет эффективно определять ориентацию трещин в горизонтальных стволах скважин как в необсаженных, так и в обсаженных.
Упрощается процесс реализации способа, так как проппантный ГРП осуществляют по любой известной технологии без маркировки проппанта гадолинием и порционной закачки проппанта с ним, кроме того, исключается промывка забоя скважины от маркированного проппанта.
Исключаются дополнительные затраты при реализации способа, связанные с приобретением гадолиния, который является дорогим, что также снижает стоимость проведения процесса ГРП.
Повышается точность определения пространственной ориентации трещины, так как из-за отсутствия применения гадолиния при реализации способа исключается его оседание на забой скважины, а это повышает точность показаний геофизического прибора.
Предлагаемый способ позволяет:
- повысить эффективность определения направления пространственной ориентации трещины в горизонтальном стволе скважины;
- упростить технологию реализации способа;
- повысить точность определения пространственной ориентации трещины;
- снизить стоимости реализации способа;
- реализовать способ как в необсаженном, так и в обсаженном горизонтальном стволе скважины.

Claims (5)

  1. Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины, включающий проведение гидроразрыва пласта - ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва до и после проведения ГРП геофизическим методом путем спуска на колонне труб геофизического прибора в интервал перфорации пласта, подлежащего гидроразрыву, отличающийся тем, что перед проведением процесса ГРП в горизонтальном стволе скважины в интервале перфорации обсаженного ствола или интервале ствола, через который планируется проведение ГРП, геофизическим методом проводят нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(1), затем осуществляют проппантный ГРП с применением жидкости разрыва на основе сшитого геля с использованием боратных сшивателей, после проведения ГРП осуществляют технологическую выдержку до спада давления до нуля, затем свабированием осуществляют отбор из скважины жидкости в объеме (Vo):
  2. Vo=k⋅Vг,
  3. где Vг - объем использованной для проведения ГРП гелированной жидкости, м3;
  4. k - коэффициент перевода, k=0,1,
  5. далее замещают жидкость в скважине на жидкость с плотностью, равной плотности жидкости при проведении первого ННК-Т(1), затем проводят повторный нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(2) с применением того же геофизического прибора и при той же скорости прохождения в стволе горизонтальной скважины в интервале проведенного гидроразрыва, сравнивают записи проведения ННК-Т(1) с записью проведения ННК-Т(2) в интервале проведения ГРП и определяют пространственную ориентацию трещины в горизонтальном стволе скважины, если длина участка с искажением записи ННК-Т(2) после проведения ГРП - L2' относительно длины записи ННК-Т(1) до проведения ГРП - L1 и если L2'=L1 с отклонением до 2 м, то трещина ГРП ориентирована вдоль горизонтального ствола скважины, если L2ʺ≤0,5⋅L1, то трещина ГРП ориентирована под углом 30÷60° относительно горизонтального ствола скважины, если L2ʺ'≤0,25⋅L1, то трещина ГРП ориентирована под углом 60÷90° относительно горизонтального ствола скважины.
RU2017136232A 2017-10-12 2017-10-12 Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины RU2667248C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017136232A RU2667248C1 (ru) 2017-10-12 2017-10-12 Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017136232A RU2667248C1 (ru) 2017-10-12 2017-10-12 Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Publications (1)

Publication Number Publication Date
RU2667248C1 true RU2667248C1 (ru) 2018-09-18

Family

ID=63580480

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017136232A RU2667248C1 (ru) 2017-10-12 2017-10-12 Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Country Status (1)

Country Link
RU (1) RU2667248C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1629521A1 (ru) * 1988-10-19 1991-02-23 Центральная Геофизическая Экспедиция Министерства Нефтяной Промышленности Ссср Способ определени пространственной ориентации трещины гидроразрыва
US5996726A (en) * 1998-01-29 1999-12-07 Gas Research Institute System and method for determining the distribution and orientation of natural fractures
US20030032350A1 (en) * 2001-08-07 2003-02-13 Kajander Richard Emil Method of making foam coated mat online and coated mat product
RU2491421C2 (ru) * 2010-11-08 2013-08-27 Моументив Спешелти Кемикалс Инк. Способ и композиция для определения геометрии трещин подземных пластов
RU2537456C1 (ru) * 2013-10-29 2015-01-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой и тяжелой нефти с термическим воздействием
RU2626502C1 (ru) * 2016-04-26 2017-07-28 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ определения пространственной ориентации трещины гидроразрыва

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1629521A1 (ru) * 1988-10-19 1991-02-23 Центральная Геофизическая Экспедиция Министерства Нефтяной Промышленности Ссср Способ определени пространственной ориентации трещины гидроразрыва
US5996726A (en) * 1998-01-29 1999-12-07 Gas Research Institute System and method for determining the distribution and orientation of natural fractures
US20030032350A1 (en) * 2001-08-07 2003-02-13 Kajander Richard Emil Method of making foam coated mat online and coated mat product
RU2491421C2 (ru) * 2010-11-08 2013-08-27 Моументив Спешелти Кемикалс Инк. Способ и композиция для определения геометрии трещин подземных пластов
RU2537456C1 (ru) * 2013-10-29 2015-01-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой и тяжелой нефти с термическим воздействием
RU2626502C1 (ru) * 2016-04-26 2017-07-28 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ определения пространственной ориентации трещины гидроразрыва

Similar Documents

Publication Publication Date Title
US11299980B2 (en) Method for fracture activity monitoring and pressure wave resonance analyses for estimating geophysical parameters of hydraulic fractures using fracture waves
CA2646770C (en) Time-lapsed diffusivity logging for monitoring enhanced oil recovery
CA2984451C (en) Diagnostic lateral wellbores and methods of use
Arop Geomechanical review of hydraulic fracturing technology
Juhlin et al. Storage of nuclear waste in very deep boreholes: Feasibility study and assessment of economic potential. Pt. 1 and 2
US20180283153A1 (en) Methods and materials for evaluating and improving the production of geo-specific shale reservoirs
US9194967B2 (en) Tomographic imaging of fracture-fault permeability zones during drilling operations
RU2626502C1 (ru) Способ определения пространственной ориентации трещины гидроразрыва
Vidal et al. Pre-and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock
WO2017035370A1 (en) Methods and materials for evaluating and improving the production of geo-specific shale reservoirs
Becker et al. Measuring hydraulic connection in fractured bedrock with periodic hydraulic tests and distributed acoustic sensing
US20190017369A1 (en) Evaluation of cased hole perforations in under-pressured gas sand reservoirs with stoneley wave logging
WO2016209822A1 (en) Predicting hydraulic fracture propagation
RU2690068C1 (ru) Способ определения границ ВЧР методом прямого МСК в комплексе с методом преломленных волн
RU2667248C1 (ru) Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины
RU2390805C1 (ru) Способ контроля геометрических и гидродинамических параметров гидроразрыва пласта
Al-Qasim Monitoring and surveillance of subsurface multiphase flow and well integrity
Kiguchi et al. Estimating the permeability of the Nojima Fault Zone by a hydrophone vertical seismic profiling experiment
Vij et al. LWD as the absolute formation evaluation technology: present-day capabilities, limitations, and future developments of LWD technology
Aamri et al. Real-Time Data Harvesting: A Confirmation of Fracture Geometry Development and Production Using Fiber Optic in Deep Tight Gas Wells
Meehan Rock mechanics issues in petroleum engineering
Griffin Induced fracture orientation determination in the Kuparuk Reservoir
Fitz-Patrick et al. A Comprehensive Fracture Diagnostics Experiment: Part 1—An Overview
Chou et al. Characterising the spatial distribution of transmissivity in the mountainous region: Results from watersheds in central Taiwan
US20210222546A1 (en) Method For Evaluating Hydraulic Fracturing