RU2666834C1 - Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала - Google Patents

Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала Download PDF

Info

Publication number
RU2666834C1
RU2666834C1 RU2017121493A RU2017121493A RU2666834C1 RU 2666834 C1 RU2666834 C1 RU 2666834C1 RU 2017121493 A RU2017121493 A RU 2017121493A RU 2017121493 A RU2017121493 A RU 2017121493A RU 2666834 C1 RU2666834 C1 RU 2666834C1
Authority
RU
Russia
Prior art keywords
section
sectional area
flow
cross
outlet
Prior art date
Application number
RU2017121493A
Other languages
English (en)
Inventor
Владимир Александрович Шишков
Original Assignee
Владимир Александрович Шишков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Александрович Шишков filed Critical Владимир Александрович Шишков
Priority to RU2017121493A priority Critical patent/RU2666834C1/ru
Application granted granted Critical
Publication of RU2666834C1 publication Critical patent/RU2666834C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/12Control devices, e.g. for regulating steam temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к энергетическому машиностроению и криогенным системам и может быть использовано в парогенерирующих системах и устройствах. Задачами изобретения являются повышение эффективности работы и устойчивости течения теплоносителя в парогенерирующих каналах. Указанные задачи в устройстве повышения устойчивости течения теплоносителя и эффективности работы парогенерирующего канала, содержащего дроссельные шайбы, установленные на входе и выходе, с тремя характерными участками - экономайзерным, переходным и подогревательным газовым, решаются тем, что экономайзерный участок имеет площадь поперечного сечения, увеличивающуюся по длине от входа к выходу обратно пропорционально изменению средней плотности жидкой фазы рабочего продукта, а также тем, что переходный участок выполнен с переменной площадью поперечного сечения, увеличивающейся по длине от входа к выходу как минимум в два раза от площади поперечного сечения на выходе экономайзерного участка, а также тем, что подогревательный газовый участок имеет площадь поперечного сечения, увеличивающуюся по длине от входа к выходу обратно пропорционально изменению средней плотности газовой фазы рабочего продукта, и тем, что парогенерирующий канал или его часть выполнены в виде сильфона, причем при продольном внешнем обтекании канала горячим теплоносителем сильфон имеет форму продольных гофр, а при поперечном обтекании в виде поперечных гофр. 3 з.п. ф-лы, 5 ил.

Description

Изобретение относится к парогенерирующим устройствам и может быть использовано в энергетическом машиностроении и криогенных системах.
Известен способ и устройство для повышения устойчивости системы, заключающийся в выборе места расположения гидравлического сопротивления по длине трубопровода парогененирующего канала (см. параграф 16.10 в книге: Теплопередача в двухфазном потоке. Под ред. Д. Баттервороса и Г. Хьюитта: пер. с англ. - М: Энергия, 1980. - 328 с).
Недостаток способа и устройства в том, что он трудоемок для осуществления, т.к. необходимо провести значительное количество экспериментальных работ по определению места постановки гидравлического сопротивления для обеспечения устойчивости системы, а также в том, что не всегда можно добиться устойчивости течения теплоносителя без дополнительных мероприятий, например, дополнительного увеличения гидравлического сопротивления на входе в парогенерирующий канал.
Известен способ и устройство для повышения устойчивости системы заключающийся в локализации процесса испарения жидкого продукта между двумя гидравлическими сопротивлениями (см. стр. 39, рис. 1.1., Устойчивость кипящих аппаратов. И.И. Морозов, В.А. Герлига. Атомиздат. 1969. - 280 с.).
Недостаток способа и устройства в том, что не всегда возможно обеспечение устойчивости системы без значительного увеличения гидравлического сопротивления на входе и выходе парогенерирующего канала, что требует дополнительной мощности на прокачку рабочего продукта через этот канал. Кроме этого каналы по длине имеют постоянное сечение, что не позволяет поддерживать эффективную теплопередачу через стенку постоянной площади.
Задачами изобретения являются повышение эффективности работы и устойчивости течения теплоносителя в парогенерирующем канале.
Указанные задачи в устройстве повышения устойчивости течения и эффективности работы парогенерирующего канала, содержащего дроссельные шайбы, установленные на входе и выходе, с тремя характерными участками экономайзерным, переходным и подогревательным газовым, решаются тем, что экономайзерный участок имеет площадь поперечного сечения, увеличивающуюся по длине от входа к выходу, обратно пропорционально изменению средней плотности жидкой фазы рабочего продукта, а также тем, что переходный участок выполнен с переменной площадью поперечного сечения, увеличивающуюся по длине от входа к выходу как минимум в два раза от площади поперечного сечения на выходе экономайзерного участка, а также тем, что подогревательный газовый участок имеет площадь поперечного сечения, увеличивающуюся по длине от входа к выходу, обратно пропорционально изменению средней плотности газовой фазы рабочего продукта и тем, что парогенерирующий канал или его часть выполнены в виде сильфона, причем, при продольном внешнем обтекании канала горячим теплоносителем сильфон имеет форму продольных гофр, а при поперечном обтекании в виде поперечных гофр.
В известных технических решениях признаков сходных с признаками, отличающими заявляемое решение от прототипа, не обнаружено, следовательно, это решение обладает существенными отличиями. Приведенная совокупность признаков в сравнении с известным уровнем техники позволяет сделать вывод о соответствии заявляемого технического решения условию «новизна». В то же время, заявляемое техническое решение применимо в промышленности, в частности в энергетическом машиностроении и криогенных системах и может быть использовано в парогенерирующих системах и устройствах, поэтому оно соответствует условию «промышленная применимость».
Изобретение поясняется следующими схемами.
На фиг. 1 представлена схема устройства повышения устойчивости течения в парогенерирующем канале с увеличением от входа к выходу площади поперечного сечения на экономайзерном участке в обратной зависимости от изменения плотности жидкой фазы рабочего продукта.
На фиг. 2 представлена схема устройства повышения устойчивости течения в парогенерирующем канале с увеличением от входа к выходу площади поперечного сечения на переходном участке как минимум в два раза.
На фиг. 3 представлена схема устройства повышения устойчивости течения в парогенерирующем канале с увеличением от входа к выходу площади поперечного сечения на подогревательном газовом участке в обратной зависимости от изменения плотности газовой фазы рабочего продукта.
На фиг. 4 представлена схема устройства повышения устойчивости течения в парогенерирующем канале, часть которого, а именно переходный участок, выполнен в виде сильфона с поперечным расположением гофр при поперечном наружным обтеканием горячим теплоносителем.
На фиг. 5 представлена схема устройства повышения устойчивости течения в парогенерирующем канале, часть которого, а именно переходный участок, выполнен в виде сильфона с продольным расположением гофр при продольном наружным обтеканием горячим теплоносителем.
Устройство по п. 1 (фиг. 1) формулы содержит парогенерирующий канал, состоящий из входного гидравлического сопротивления 1, экономайзерного участка 2 с увеличивающейся площадью поперечного сечения F2>F1 от входа к выходу для нагрева жидкой фазы 3 рабочего продукта до линии насыщения, по длине экономайзерного участка 2 расположен увеличивающийся по толщине пограничный слой 4 паровой фазы рабочего продукта, далее расположены переходный участок 5 и подогревательный участок 6 с постоянными площадями поперечного сечения F2=F3=F4, на выходе которого расположено выходное гидравлическое сопротивление 7.
Устройство по п. 2 (фиг. 2) формулы, в отличие от фиг. 1, содержит переходный участок 5 с увеличивающейся площадью поперечного сечения F3≥2F2 по его длине от входа к выходу, а подогревательный участок 6 имеет постоянное поперечное сечение F3=F4.
Устройство по п. 3 (фиг. 3) формулы, в отличие от фиг. 1 и фиг. 2, содержит подогревательный газовый участок 6 с увеличивающейся площадью поперечного сечения по его длине от входа к выходу F4>F3.
Устройство по п. 4 (фиг. 4 и фиг. 5) формулы, в отличие от фиг. 1, фиг. 2 и фиг. 3, содержит часть парогенерирующего канала, а именно переходный участок 5 в виде сильфона с поперечным расположением гофр при поперечном внешнем обтекании горячим Q теплоносителем фиг. 4 и с продольным расположением гофр при продольном внешнем обтекании горячим Q теплоносителем фиг. 5.
Устройство по п. 1 (фиг. 1) работает следующим образом. На экономайзерном участке 2 жидкая фаза 3 рабочего продукта нагревается до температуры на линии насыщения. При неразрывности течения рабочего продукта 3 расход на выходе из экономайзерного участка 2 равен расходу на входе: ρ1 W1 F12 W2 F2, где ρ - средняя плотность рабочего продукта по сечению канала, W - скорость, F - площадь сечения, индекс 1 - на входе в экономайзерный участок 2, индекс 2 - на выходе экономайзерного участка 2. Скорость на входе W1=W2 равна скорости на выходе из экономайзерного участка 2, площадь поперечного сечения F2 на выходе экономайзерного участка 2 обратно пропорциональна изменению средней плотности рабочего продукта: F21 F1 / ρ2. Увеличение площади поперечного сечения на экономайзерном участке 2 позволяет не увеличивать гидравлическое сопротивление по его длине, что положительно сказывается на устойчивости течения рабочего продукта. Кроме этого, из-за уменьшения плотности жидкой фазы 3 рабочего продукта по длине экономайзерного участка 2 снижается коэффициент теплопередачи от греющей среды к рабочему продукту, но из-за увеличения площади внешней теплопередающей поверхности по длине экономайзерного участка 2 увеличивается количество подводимой теплоты Q от горячего теплоносителя к рабочему продукту.
Устройство по п. 2 формулы (фиг. 2) работает следующим образом. На переходном участке при постоянной температуре происходит изменение фазового состояния рабочего продукта от жидкого состояния до пара. На выходе переходного участка 5 скорость течения выше, чем на его входе: W2<W3. Если бы площади на входе и выходе переходного участка 5 были равны, то увеличение скорости на его выходе было бы обратно пропорционально изменению средней плотности рабочего продукта: W22 W2 / ρ3, но это увеличение составляет для различных рабочих продуктов от 10 до 100 раз. Увеличение динамической составляющей давления по сравнению со статической составляющей рабочего продукта в газовой нагревательной части парогенерирующего канала приводит к тому, что возможны возникновения стержневого течения жидкой фазы 3, когда она достигает выходного гидравлического сопротивления 7, где испаряется и за счет резкого роста сопротивления на выходной шайбе 7 приводит к временному запиранию канала. Для снижения динамической составляющей давления в нагревательном газовом участке канала в предлагаемом устройстве площадь поперечного сечения на выходе переходного участка 5 выше, чем на входе как минимум в два раза: F3≥2F2.
Устройство по п. 3 формулы (фиг. 3) работает следующим образом. На подогревательном участке 6 увеличивается температура газовой фазы рабочего продукта. Площадь поперечного сечения подогревательного газового участка 6 по его длине от входа к выходу увеличивается обратно пропорционально изменению средней плотности газовой фазы рабочего продукта: F43 F3 / ρ4. Увеличение площади поперечного сечения на газовом подогревательном участке 6 позволяет не увеличивать гидравлическое сопротивление по его длине, что положительно сказывается на устойчивости течения рабочего продукта. Кроме этого, из-за уменьшения плотности газовой фазы рабочего продукта по длине подогревательного участка 6 снижается коэффициент теплопередачи от внешней греющей среды к рабочему продукту, но из-за увеличения площади внешней теплопередающей поверхности по длине подогревательного участка 6 увеличивается количество подводимой теплоты Q от горячего теплоносителя к газовой фазе рабочего продукта.
Устройство по п. 4 формулы (фиг. 4 и фиг. 5) работает следующим образом. Часть парогенерирующего канала, а именно переходный участок 5 выполнен в виде сильфона. В переходной области 5 происходит фазовый переход жидкого рабочего продукта в пар, что значительно изменяет его объем. Это изменение приводит к местным пульсациям полного (статическое плюс динамическое составляющие) давления рабочего продукта во всем парогенерирующем канале. Подвижные гофры сильфона 5 части парогенерирующего канала демпфируют эти пульсации давления, что повышает устойчивость процесса парообразования и течения рабочего тела в канале. При поперечном движении горячего теплоносителя Q (фиг. 4) сильфон имеет поперечные гофры, а при продольном обтекании продольные гофры (фиг. 5), что снижает внешнее гидравлическое сопротивление канала, а также повышает эффективность внешнего его обтекания, а значит и увеличивает коэффициент теплоотдачи от горячего теплоносителя к наружной стенке парогенерирующего канала. Кроме этого, увеличена площадь теплопередающей поверхности парогенерирующего канала, что также увеличивает количество передаваемой теплоты Q от горячего теплоносителя к рабочему продукту и уменьшает длину переходного участка 5.
За счет увеличения проходного сечения парогенерирующего канала на экономайзерном, переходном и подогревательном газовом участках снижается скорость течения рабочего продукта, что, в свою очередь, увеличивает статическое давление и снижает динамическую составляющую полного давления, а это повышает устойчивость течения в парогенерирующем канале, кроме этого снижается вероятность образования стержневого течения в каналах. За счет увеличения площади теплопередачи на экономайзерном, переходном и подогревательном газовом участках уменьшается их длина, а значит и линейные габариты парогенерирующего канала. За счет применения сильфонов в конструкции парогенерирующего канала, во первых, увеличивается площадь теплопередающей поверхности, а значит и эффективность теплообменника и уменьшаются его линейные габариты, во вторых, на этих участках снижаются пульсационные составляющие статического, динамического и полного давления, что в свою очередь повышает устойчивость течения рабочего продукта.
Таким образом, изобретением усовершенствовано устройство для повышения устойчивости течения в парогенерирующем канале, в котором изменены и оптимизированы характеристики парогенерирующего канала на экономайзерном, переходном и подогревательном газовом участках.

Claims (4)

1. Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала, содержащего дроссельные шайбы, установленные на входе и выходе, с тремя характерными участками - экономайзерным, переходным и подогревательным газовым, отличающееся тем, что экономайзерный участок имеет площадь поперечного сечения, увеличивающуюся по длине от входа к выходу обратно пропорционально изменению средней плотности жидкой фазы рабочего продукта.
2. Устройство по п. 1, отличающееся тем, что переходный участок выполнен с переменной площадью поперечного сечения, увеличивающейся по длине от входа к выходу как минимум в два раза от площади поперечного сечения на выходе экономайзерного участка.
3. Устройство по п. 1, или 2, отличающееся тем, что подогревательный газовый участок имеет площадь поперечного сечения, увеличивающуюся по длине от входа к выходу обратно пропорционально изменению средней плотности газовой фазы рабочего продукта.
4. Устройство по п. 1, или 2, или 3, отличающееся тем, что парогенерирующий канал или его часть выполнены в виде сильфона, причем при продольном внешнем обтекании канала горячим теплоносителем сильфон имеет форму продольных гофр, а при поперечном обтекании в виде поперечных гофр.
RU2017121493A 2017-06-19 2017-06-19 Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала RU2666834C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121493A RU2666834C1 (ru) 2017-06-19 2017-06-19 Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121493A RU2666834C1 (ru) 2017-06-19 2017-06-19 Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала

Publications (1)

Publication Number Publication Date
RU2666834C1 true RU2666834C1 (ru) 2018-09-12

Family

ID=63580485

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121493A RU2666834C1 (ru) 2017-06-19 2017-06-19 Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала

Country Status (1)

Country Link
RU (1) RU2666834C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707347C1 (ru) * 2019-02-18 2019-11-26 Владимир Александрович Шишков Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967699A (en) * 1987-05-22 1990-11-06 Ab Asea-Atom Steam generator
SU1740956A1 (ru) * 1989-01-09 1992-06-15 Одесский Политехнический Институт Способ теплогидравлической стабилизации парогенерирующего канала
RU94033553A (ru) * 1994-09-13 1997-03-10 Опытное Конструкторское Бюро "Гидропресс" Вертикальный парогенератор

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967699A (en) * 1987-05-22 1990-11-06 Ab Asea-Atom Steam generator
SU1740956A1 (ru) * 1989-01-09 1992-06-15 Одесский Политехнический Институт Способ теплогидравлической стабилизации парогенерирующего канала
RU94033553A (ru) * 1994-09-13 1997-03-10 Опытное Конструкторское Бюро "Гидропресс" Вертикальный парогенератор

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Морозов И.И. Герлига В.А. Устойчивость кипящих аппаратов. М.:Атомиздат, 1969, с.39, рис.1.1. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707347C1 (ru) * 2019-02-18 2019-11-26 Владимир Александрович Шишков Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала

Similar Documents

Publication Publication Date Title
Meng et al. Experimental study on convective heat transfer in alternating elliptical axis tubes
Şahin The effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux
Zohir et al. Heat transfer characteristics and pressure drop of the concentric tube equipped with coiled wires for pulsating turbulent flow
Huang et al. Pressure drop modeling and performance optimization of a humidification–dehumidification desalination system
RU2666834C1 (ru) Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала
Betancur et al. Experimental study of thermal performance in a closed loop pulsating heat pipe with alternating superhydrophobic channels
Zhou et al. Entransy analyses of thermal processes with variable thermophysical properties
Li et al. Thermo-economic performance improvement of butane/isopentane mixtures in organic Rankine cycles by liquid-separated condensation method
RU2707347C1 (ru) Устройство повышения устойчивости течения и эффективности работы парогенерирующего канала
RU2663967C1 (ru) Способ повышения эффективности работы парогенератора и устройство для его осуществления
Nalinakshi et al. Effects of variable fluid properties and MHD on mixed convection heat transfer from a vertical heated plate embedded in a sparsely packed porous medium
Terekhov et al. Evaporative cooling of air in an adiabatic channel with partially wetted zones
RU2664038C1 (ru) Парогенератор
Musmar et al. Performance analysis of a new waste heat recovery system
Haibullina et al. Energy efficiency of pulsating flows at heat-transfer enhancement in a shell-and-tube water oil cooler
Paudel et al. Thermal effects on micro-sized tesla valves
Goodarzi et al. Investigation of the effect of using tube inserts for the intensification of heat transfer
Mathurkar et al. Review on steam condensation heat transfer coefficient in vertical mini diameter tube
Nicol et al. The effect of surface roughness on condensing steam
Bagalagel et al. Design optimization of heat exchangers with high‐viscosity fluids
Sonawane et al. Experimental Analysis of a Crossflow Heat Exchanger Using Elliptical Shape Tube for Air Side Heat Recovery
Reddy et al. Experimental investigation on heat transfer enhancement and pressure drop of double pipe heat exchanger in solar water heating system
Aly et al. Investigation of a Double Tube Heat Exchanger with Dimples
Cho et al. Performance Characteristics of Pulsating Heat Pipe with Various Non-Uniform Heating Conditions
Joke PENGARUH SERRATED FINNED TUBE TERHADAP PERPINDAHAN PANAS ECONOMIZER MENGGUNAKAN ANSYS CFD