RU2665697C1 - Способ совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги - Google Patents
Способ совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги Download PDFInfo
- Publication number
- RU2665697C1 RU2665697C1 RU2017139054A RU2017139054A RU2665697C1 RU 2665697 C1 RU2665697 C1 RU 2665697C1 RU 2017139054 A RU2017139054 A RU 2017139054A RU 2017139054 A RU2017139054 A RU 2017139054A RU 2665697 C1 RU2665697 C1 RU 2665697C1
- Authority
- RU
- Russia
- Prior art keywords
- currents
- wires
- phase
- current
- measured
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000001629 suppression Effects 0.000 title claims abstract description 6
- 238000004804 winding Methods 0.000 claims abstract description 15
- 238000002224 dissection Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 8
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000004870 electrical engineering Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 238000000844 transformation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008407 joint function Effects 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/01—Arrangements for reducing harmonics or ripples
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/26—Arrangements for eliminating or reducing asymmetry in polyphase networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/50—Arrangements for eliminating or reducing asymmetry in polyphase networks
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Использование: в области электротехники. Технический результат - обеспечение совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки. Согласно способу измеряют в проводах мгновенные значения токов, в проводах двух фаз контактной сети, присоединенных к обмоткам трехфазного трансформатора, соединенным в треугольник, подают после точек измерения токов сформированные токи, противоположные токам искажения, в рассечку проводов, включенных параллельно тем обмоткам трехфазного трансформатора, соединенным в треугольник, к которым подключены фазы контактной сети. Далее измеряют токи в проводах фаз контактной сети в точках, после точек подачи токов, подавляющих токи искажения, определяют комплексные значения трех добавочных токов относительно базового напряжения за текущие полпериода первой гармоники, по которым формируют синусоидальные мгновенные значения токов, которые подают в следующий период основной частоты в рассечку проводов, включенных параллельно соответственно трем обмоткам трехфазного трансформатора, соединенным в треугольник. Для схемы электроснабжения несимметричной несинусоидальной тяговой нагрузки железной дороги на переменном токе от трехфазной сети проведены серии расчетов. Получены величины расчетных мгновенных компенсирующих токов, которые во всех режимах обеспечивают синусоидальные, симметричные и чисто активные трехфазные токи тяговой нагрузки относительно питающей сети. 5 ил.
Description
Изобретение относится к области электротехники, а именно к способам подавления высших гармоник, компенсации реактивной мощности и симметрирования токов нагрузки.
Способ может быть реализован в устройстве, установленном на стороне контактной сети переменного тока тяговых трансформаторов железной дороги, где электровозы являются мощной нелинейной несимметричной нагрузкой относительно трехфазной питающей сети.
Тяговая нагрузка железной дороги при потреблении электроэнергии создает существенную несимметрию и несинусоидальность токов, которые создают в питающей сети несимметрию и несинусоидальность напряжений, превышающие величины, нормируемые ГОСТом 32144-2013. Также тяговая нагрузка потребляет реактивную мощность, которая способствует снижению напряжения в узлах сети, к которым подключены тяговые подстанции и соответственно на самой тяге. Для повышения напряжения используют устройства компенсации реактивной мощности, для симметрирования токов нагрузки используют симметрирующие устройства, для подавления токов высших гармоник используют фильтры токов высших гармоник. В настоящее время функции компенсации реактивной мощности, симметрирования токов и подавления токов высших гармоник совмещают в активных фильтрах [ресурс Интернета http://lm-inverter.ru/ru/produkciya-i-razrabotki/katalog/aktivnye-filtry/afsk].
Известен способ, реализованный в активном фильтре высших гармонических составляющих токов и устройстве коррекции коэффициента мощности [патент US №5977660, дата приоритета: 08.08.1997], в котором выполняют процедуру прогноза тока в следующий промежуток времени с целью уменьшения создаваемой нагрузкой разницы фаз между током и напряжением сети. Управляющая процедура выполняет интегрирование разницы между реальными токами в нагрузке и их требуемыми значениями в эквивалентные промежутки времени на различных циклах переменного тока основной частоты. Интегральные величины комбинируют с пропорционально регулируемыми разностными токами для снижения или полной компенсации гармонических токов. Процедура балансировки токов позволяет активному фильтру выравнивать токи в фазах нагрузки.
Недостатки данного способа заключаются в применении алгоритма широтно-импульсной модуляции (ШИМ) напряжения активного фильтра, усложняющего систему управления и необходимость использования отдельного звена постоянного тока активного фильтра.
Известен способ и устройство для адаптивного подавления гармоник тока в силовой линии [патент США №5726504, дата подачи заявки: 24.05.1996], содержащее датчик тока, шаблонную цепь, цепь сравнения и цепь коррекции тока. Датчиком тока измеряют амплитуду тока силовой линии на каждой половине периода основной гармоники. В шаблонной цепи формируют чистый синусоидальный ток основной частоты в качестве эталона. В цепи сравнения получают сигналы с датчика тока и шаблонной цепи и формируют сигнал разности этих двух сигналов. Полученный сигнал передают в цепь коррекции, которая несколько раз на полупериоде основной гармоники поглощает часть тока силовой линии, если этот ток превышает шаблонный, или формируют добавочный ток, если ток линии меньше шаблонного. Цепь коррекции тока содержит накопитель энергии, который заряжается при поглощении тока линии и разряжается при необходимости генерации тока в линию. Недостатком способа является отсутствие фазовых преобразований измеренного тока и напряжения компенсируемой сети. При этом не осуществляют компенсацию высших гармоник и коррекцию коэффициента мощности в условиях режима работы нелинейной нагрузки с динамическим изменением потребляемого искаженного тока, не выполняют симметрирование токов нагрузки.
Известен способ и устройство для компенсации появляющихся в сети искажений формы сетевого напряжения [патент Германия №19738125, дата подачи заявки: 01.09.1997] на основе активного фильтра, содержащее импульсный преобразователь тока в виде инвертора и индуктивно-емкостную связь колебательного контура. Способ заключается в формировании импульсов управления силовыми ключами инвертора на основе определения пространственных векторов искаженного напряжения сети. Недостатком способа является отсутствие фазовых преобразований и фазовой синхронизации измеренного тока и напряжения компенсируемой сети, что не позволяет осуществить компенсацию высших гармоник и коррекцию коэффициента мощности сети в условиях режима работы нелинейной нагрузки с динамичным изменением потребляемого искаженного тока. Инвертор согласно способу работает в режиме постоянной частоты широтно-импульсной модуляции (ШИМ). Также не выполняют симметрирование токов нагрузки.
Известен способ формирования группы управляющих сигналов для полупроводникового преобразователя активного фильтра для компенсации гармонических и других колебаний и устройство для осуществления способа [патент Германия №10244056, дата подачи заявки: 10.09.2002]. В соответствии со способом измеряются токи или напряжения в сетевых проводах. Из измеренных сигналов удаляется, по меньшей мере, основная составляющая с частотой f0. Для выработки управляющего сигнала или сигналов используется преобразованная функция tr(t) на каждом измеренном сигнале. Недостатком способа является отсутствие фазовых преобразований и фазовой синхронизации измеренных напряжений и токов компенсируемой сети.
Известен способ управления активным фильтром в системе компенсации реактивной мощности [патент Япония №6087631, дата подачи заявки: 19.01.1988], который заключается в формировании импульсов управления силовыми ключами инвертора в составе активного фильтра на основе вычисления разности между полным током сети и суммой активной и реактивной составляющей тока сети. Реактивная мощность контролируется по вычисленной величине полного тока и напряжению сети. По среднему значению реактивной мощности и стандартному синусоидальному сигналу, синхронному с напряжением сети, вычисляется реактивный ток неизменяющейся составляющей тока нагрузки. По величине тока нагрузки и напряжению сети вычисляется активная мощность, которая используется вместе со стандартным синусоидальным сигналом для вычисления активной составляющей тока. Из полного тока вычисляется активная и реактивная составляющие и в соответствии с полученным значением формируются импульсы управления силовыми ключами инвертора активного фильтра. Недостатком способа является отсутствие фазовых преобразований измеренных напряжений и токов искаженной сети. Также не выполняют симметрирование токов нагрузки.
Известен способ компенсации высших гармоник и коррекции коэффициента мощности сети [патент РФ №2354025, дата подачи заявки: 4.05.2008], заключающийся в формировании импульсов управления силовыми ключами инвертора с использованием фазовой синхронизации напряжения и тока сети. Недостатком прототипа является отсутствие возможности компенсации реактивной мощности основной составляющей (первой гармоники). Способ эффективен при компенсации реактивной мощности, которую создают высшие гармоники.
Известен способ симметрирования и повышения коэффициента мощности электротяговой нагрузки [патент РФ №2396663 опубл. 10.08.2010], в котором с помощью дополнительного трансформатора понижают напряжение тяговой отстающей фазы а и формируют опорное напряжение, совпадающее с ней по фазе. С помощью фазосмещающего трансформатора понижают напряжение тяговой опережающей фазы с и формируют первое фазосдвигающее напряжение. С помощью второго фазосмещающего трансформатора понижают напряжение тяговой свободной фазы b и формируют второе фазосдвигающее напряжение.
За счет геометрического сложения опорного напряжения вторичной обмотки дополнительного трансформатора и первого фазосдвигающего напряжения вторичной обмотки первого трансформатора формируют вектор первого результирующего напряжения U1, подаваемого на выводы переменного напряжения первого автономного инвертора напряжения имеющий угол сдвига по фазе относительно напряжения тяговой отстающей фазы а, равный ψ1.
За счет геометрического сложения опорного напряжения вторичной обмотки дополнительного трансформатора и второго фазосдвигающего напряжения вторичной обмотки второго трансформатора формируют вектор второго результирующего напряжения U2, подаваемого на выводы переменного напряжения второго автономного инвертора напряжения, имеющий угол сдвига по фазе относительно напряжения тяговой отстающей фазы a, равный ψ2.
Коэффициент трансформации дополнительного трансформатора определяют необходимым уровнем опорного напряжения, совпадающего по фазе с тяговой отстающей фазы а, который, в свою очередь, выбирается исходя из минимальных затрат на преобразовательное, конденсаторное и трансформаторное оборудование.
Угол сдвига фаз между токами прямой и обратной последовательности каждого из трансформаторно-конденсаторных блоков определяется коэффициентом трансформации первого и второго фазосдвигающих трансформаторов.
Напряжение Е1, формируемое первым автономным инвертором, синхронизируют по фазе с первым результирующим напряжением U1, а напряжение Е2, формируемое вторым автономным инвертором, синхронизируют по фазе со вторым результирующим напряжением U2.
Изменяя моменты отпирания и запирания тиристоров автономных инверторов напряжения, независимо друг от друга изменяют напряжения на конденсаторных блоках и соответственно независимо изменяют напряжения Е1 и Е2, формируемые инверторами.
В зависимости от соотношения Е1 и U1, Е2 и U2 генерируют или потребляют реактивную мощность.
Достоинством является то, что изменения напряжений, токов и реактивных мощностей выполняются мгновенно, безынерционно и непрерывно.
Для обеспечения симметрирования и повышения коэффициента мощности электротяговой нагрузки обеспечивают формирование специальной системы токов прямой последовательности, компенсирующей в необходимой степени реактивную систему токов тяговой нагрузки, а также обеспечивает одновременное формирование специальной системы токов обратной последовательности, которая уравновешивает систему токов обратной последовательности тяговой нагрузки. Причем выполнение этих двух функций обеспечивается независимым регулированием только величины генерируемых токов и I1 и I2.
Для уменьшения гармонических составляющих в напряжениях Е1 и Е2 и в токах I1 и I2 инверторы напряжения с соответствующими блоками конденсаторов выполнены по трехточечной схеме исполнения.
Рассмотренные аналоги выполняют лишь частичные совместные функции - фильтрацию высших гармоник и компенсацию реактивной мощности, симметрирование и компенсацию реактивной мощности, поэтому рассмотрим в качестве прототипа сборный способ.
Признаки прототипа, совпадающие с существенными признаками заявляемого способа, следующие: измеряют в проводах мгновенные значения токов, выявляют в измеренных токах токи искажения от синусоидальной формы, по значениям которых формируют мгновенные токи, противоположные по значению токам искажения, подают их в провода, выявляют в измеренных токах несимметрию и реактивную составляющую токов нагрузки, по значениям которых формируют токи противоположные по значению и подают их в провода.
Предлагаемый по прототипу способ позволяет подавить токи гармоник в проводах нагрузки, уменьшить несимметрию токов и реактивную мощность нагрузки.
Однако, для случая тяговой нагрузки не определены места измерения токов, условия формирования компенсирующих токов и места их подачи в сеть.
Изобретение направлено на решение задачи вначале подавления токов высших гармоник, затем одновременных компенсации реактивной мощности и симметрирования токов тяговой нагрузки
Технический результат изобретения заключается в совместной компенсации реактивной мощности, симметрировании токов и подавлении токов высших гармоник тяговой нагрузки.
Технический результат достигается тем, что в способе совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги, в котором измеряют в проводах мгновенные значения токов, выявляют в измеренных токах токи искажения от синусоидальной формы, по значениям которых формируют мгновенные токи, противоположные по значению токам искажения, подают их в провода, выявляют в измеренных токах несимметрию и реактивную составляющую токов нагрузки, по значениям которых формируют токи противоположные по значению и подают их в провода. При этом мгновенные значения токов i a , ib измеряют в проводах двух фаз контактной сети, присоединенных к обмоткам трехфазного трансформатора, соединенным в треугольник, подают после точек измерения токов сформированные токи, противоположные токам искажения, в рассечку проводов, включенных параллельно тем обмоткам трехфазного трансформатора, соединенным в треугольник, к которым подключены фазы контактной сети, измеряют токи в проводах фаз контактной сети в точках, после точек подачи токов подавляющих токи искажения, определяют комплексные значения двух токов I a , Ib, определяют комплексные значения трех добавочных токов ΔI a b, ΔIbc, ΔIc a относительно измеренного базового напряжения U a b за текущее полпериода первой гармоники:
где: а=eji20;
Im - мнимая часть комплексного числа;
I a Ib - комплексные значения фазных токов,
по которым формируют синусоидальные мгновенные значения токов Δi a b, Δibc, Δic a , которые подают в следующий период основной частоты в рассечку проводов, включенных параллельно соответственно трем обмоткам трехфазного трансформатора, соединенным в треугольник. При этом величину мнимой части комплексного числа задают в зависимости от степени компенсации реактивной мощности нагрузки.
Отличия от прототипа доказывают новизну технического решения, охарактеризованного в формуле изобретения.
Новый подход позволяет определить места измерения токов, условия формирования компенсирующих токов и места их подачи в сеть. После подачи компенсирующих токов параллельно тяговой нагрузке трехфазные токи тяговой нагрузки относительно питающей сети будут синусоидальными, симметричными и чисто активными, что подтверждает соответствие заявляемых технических решений условию патентоспособности «промышленная применимость».
Из уровня техники неизвестны отличительные существенные признаки заявляемого способа, охарактеризованного в формуле изобретения, что подтверждает их соответствие условию патентоспособности «изобретательский уровень».
Изобретение поясняется чертежом, где:
на фиг. 1 представлена схема электроснабжения тяговой нагрузки железной дороги на переменном токе от трехфазной сети с измерением токов, их обработкой и формированием регулируемых источников тока;
на фиг. 2 представлена схема регулируемого источника тока;
на фиг. 3 представлена осциллограмма, поясняющая принцип работы способа.
на фиг. 4 представлена осциллограмма искажающих токов, удаляемых из фазных токов нагрузки.
на фиг. 5 представлена осциллограмма токов, компенсирующих несимметрию и реактивные токи в фазных токах нагрузки.
На фиг. 1 показаны обмотки трехфазного трансформатора 1, соединенные по схеме звезда-треугольник. К обмоткам, соединенным треугольником подключены фазные провода 2, 3, 4, между которыми включены тяговые нагрузки 5 и 6. Токи в фазных проводах измеряют трансформаторами тока 7, 8, 9 и 10. Напряжения измеряют трансформатором напряжения 11. От трансформаторов тока 7, 8 и напряжения 11 измерения подают в измерительный модуль 12, далее в расчетный модуль 13, далее в формирователи импульсов 14 и 15 и источники токов 16 и 17. От трансформаторов ток 9, 10 и напряжения 11 измерения подают в измеритель 18, далее в расчетный модуль 19, далее в формирователи импульсов 20, 21, 22, и источники токов 23, 24, 25.
На фиг.2 показана схема регулируемого источника тока 16, компенсирующего токи искажения в фазе а. Сигнал от расчетного модуля 13 подают в формирователь импульсов 14. В формирователе импульсов 14 создаются управляющие сигналы, которые подают на биполярные транзисторы 26 источника тока 16. Транзисторы 26 мгновенно реагируют на управляющие сигналы и, используя энергию конденсаторной батареи 27, создают компенсирующий ток в проводе. Другие источники тока 17, 23, 24, 25 выполняют аналогично.
На фиг. 3 показаны осциллограммы токов в фазных проводах, полученные на математической модели, где: на первом участке показаны токи в проводах 2, 4 фаз а, b, измеренные трансформаторами тока 7, 8 и ток в проводе 3 фазы с, полученный расчетным путем; на втором участке показаны токи в проводах 2, 4 фаз а, b, измеренные трансформаторами тока 9, 10 и ток в проводе 3 фазы с, полученный расчетным путем, на третьем участке показаны токи в проводах 2, 3, 4, после компенсации токов искажения, токов несимметрии и реактивных составляющих токов, полученные расчетным путем.
На фиг.4 показаны осциллограммы токов, компенсирующих токи искажения в токах нагрузки, полученные на математической модели.
На фиг. 5 показаны осциллограммы токов, компенсирующих несимметрию и реактивные составляющие токов в фазных токах нагрузки.
Для реализации способа измеряют токи в проводах 2 и 4, потребляемые тяговой нагрузкой 5 и 6, с помощью ТТ 7 и 8, и напряжение с помощью ТН 11. Измерение напряжения необходимо для определения углов сдвига токов относительно базовой величины. Подают измеренные значения токов и напряжений в измерительный модуль 12, где формируют цифровые значения измеренных величин, которые передают в расчетный модуль 13, где выделяют за текущий полпериода первую гармонику в токе каждой фазы и мгновенные величины токов, являющихся разностью измеренного тока и синусоидального тока первой гармоники, которые подают в формирователи импульсов 14 и 15. В формирователях импульсов 14, 15 создаются управляющие сигналы, которые подают на биполярные транзисторы 26 источников тока 16, 17. Транзисторы 26 мгновенно реагируют на управляющие сигналы и, используя энергию конденсаторных батарей 27, создают компенсирующие токи в проводах. Аналогично на формирователях импульсов 20, 21, 22 и источниках тока 23, 24, 25. При этом биполярные транзисторы источников тока 16 и 17 выполняют с более высокими частотными характеристиками, чем 23, 24, 25, что позволяет подавлять высшие гармоники до 40.
Для схемы электроснабжения тяговой нагрузки железной дороги на переменном токе от трехфазной сети были проведены серии расчетов. Полученные результаты позволили определить расчетные компенсирующие токи и показали, что во всех режимах обеспечиваются синусоидальные, симметричные и чисто активные трехфазные токи тяговой нагрузки относительно питающей сети.
Предлагаемый способ симметрирования тяговой нагрузки позволяет отказаться от фазировки тяговых трансформаторов, т.е. подключать однотипно все тяговые трансформаторы к питающей сети.
Claims (7)
- Способ совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги, в котором измеряют в проводах мгновенные значения токов, выявляют в измеренных токах токи искажения от синусоидальной формы, по значениям которых формируют мгновенные токи, противоположные по значению токам искажения, подают их в провода, выявляют в измеренных токах несимметрию и реактивную составляющую токов нагрузки, по значениям которых формируют токи, противоположные по значению, и подают их в провода, отличающийся тем, что мгновенные значения токов i a , ib измеряют в проводах двух фаз контактной сети, присоединенных к обмоткам трехфазного трансформатора, соединенным в треугольник, подают после точек измерения токов сформированные токи, противоположные токам искажения, в рассечку проводов, включенных параллельно тем обмоткам трехфазного трансформатора, соединенным в треугольник, к которым подключены фазы контактной сети, измеряют токи в проводах фаз контактной сети в точках, после точек подачи токов подавляющих токи искажения, определяют комплексные значения двух фазных токов I a , Ib, определяют комплексные значения трех добавочных токов ΔI a b, ΔIbc, ΔIc a относительно измеренного базового напряжения U a b за текущие полпериода первой гармоники:
-
- где а=ej120;
- Im - мнимая часть комплексного числа;
- I a , Ib - комплексные значения фазных токов,
- по которым формируют синусоидальные мгновенные значения токов Δi a b, Δibc, Δic a , которые подают в следующий период основной частоты в рассечку проводов, включенных параллельно соответственно трем обмоткам трехфазного трансформатора, соединенным в треугольник.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017139054A RU2665697C1 (ru) | 2017-11-09 | 2017-11-09 | Способ совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017139054A RU2665697C1 (ru) | 2017-11-09 | 2017-11-09 | Способ совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2665697C1 true RU2665697C1 (ru) | 2018-09-04 |
Family
ID=63460207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017139054A RU2665697C1 (ru) | 2017-11-09 | 2017-11-09 | Способ совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2665697C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109088415A (zh) * | 2018-09-12 | 2018-12-25 | 西南交通大学 | 一种同相供电变电所的负序补偿装置及其方法 |
CN110445140A (zh) * | 2019-08-15 | 2019-11-12 | 上海电气集团股份有限公司 | 一种基于三维自由度的电能质量设备自适应控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5726504A (en) * | 1996-05-24 | 1998-03-10 | Pecukonis; Joseph P. | Apparatus and method for adaptively canceling harmonic currents in a power line |
RU2191458C1 (ru) * | 2001-10-02 | 2002-10-20 | Московский государственный университет путей сообщения | Устройство фильтрации гармоник тока и компенсации реактивной мощности в тяговой сети 27,5 кв, 50 гц |
RU2396663C1 (ru) * | 2009-06-08 | 2010-08-10 | Открытое Акционерное Общество "Российские Железные Дороги" | Устройство для симметрирования и повышения коэффициента мощности электротяговой нагрузки |
RU128031U1 (ru) * | 2012-08-07 | 2013-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Липецкий государственный технический университет (ФГБОУ ВПО ЛГТУ) | Устройство компенсации гармонических токов и реактивной мощности |
-
2017
- 2017-11-09 RU RU2017139054A patent/RU2665697C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5726504A (en) * | 1996-05-24 | 1998-03-10 | Pecukonis; Joseph P. | Apparatus and method for adaptively canceling harmonic currents in a power line |
RU2191458C1 (ru) * | 2001-10-02 | 2002-10-20 | Московский государственный университет путей сообщения | Устройство фильтрации гармоник тока и компенсации реактивной мощности в тяговой сети 27,5 кв, 50 гц |
RU2396663C1 (ru) * | 2009-06-08 | 2010-08-10 | Открытое Акционерное Общество "Российские Железные Дороги" | Устройство для симметрирования и повышения коэффициента мощности электротяговой нагрузки |
RU128031U1 (ru) * | 2012-08-07 | 2013-05-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Липецкий государственный технический университет (ФГБОУ ВПО ЛГТУ) | Устройство компенсации гармонических токов и реактивной мощности |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109088415A (zh) * | 2018-09-12 | 2018-12-25 | 西南交通大学 | 一种同相供电变电所的负序补偿装置及其方法 |
CN109088415B (zh) * | 2018-09-12 | 2024-06-11 | 西南交通大学 | 一种同相供电变电所的负序补偿装置及其方法 |
CN110445140A (zh) * | 2019-08-15 | 2019-11-12 | 上海电气集团股份有限公司 | 一种基于三维自由度的电能质量设备自适应控制方法 |
CN110445140B (zh) * | 2019-08-15 | 2023-06-13 | 上海电气集团股份有限公司 | 一种基于三维自由度的电能质量设备自适应控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104953606B (zh) | 一种孤岛微网公共耦合点电压不平衡网络化分层补偿方法 | |
Panigrahi et al. | A robust LQG servo control strategy of shunt-active power filter for power quality enhancement | |
Burger et al. | Fast signal conditioning in single phase systems | |
US9484833B2 (en) | System and method for controlling PCS voltage and frequency | |
US20120281442A1 (en) | System and method for offsetting the input voltage unbalance in multilevel inverters or the like | |
KR101699174B1 (ko) | 마이크로그리드용 인버터 장치 및 이를 제어하는 방법 | |
CN104218587B (zh) | 三电平四桥臂有源滤波器补偿配网中性线电流的控制方法 | |
RU2732541C1 (ru) | Способ управления трехфазным виенна-выпрямителем | |
RU155594U1 (ru) | Многофункциональный регулятор качества электроэнергии для трехфазных распределительных систем электроснабжения 0,4 кв | |
RU2665697C1 (ru) | Способ совместной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги | |
Savaghebi et al. | Voltage harmonic compensation of a microgrid operating in islanded and grid-connected modes | |
Rani et al. | Multilevel shunt active filter based on sinusoidal subtraction methods under different load conditions | |
Sreekumar et al. | Nonlinear load sharing in low voltage microgrid using negative virtual harmonic impedance | |
RU2669770C1 (ru) | Способ совместной частичной компенсации реактивной мощности, подавления токов высших гармоник и симметрирования токов тяговой нагрузки железной дороги | |
Talapur et al. | Combined droop and master-slave method for load sharing in stand-alone AC microgrid | |
RU2413350C1 (ru) | Способ компенсации высших гармоник и коррекции коэффициента мощности сети | |
RU131916U1 (ru) | Активный фильтр | |
Jena et al. | Reactive power compensation in inverter-interfaced distributed generation | |
JP2004159416A (ja) | 3相−2相変換装置用不平衡補償装置 | |
JP2023516797A (ja) | 光起電エネルギー源用電力変換器 | |
Agrawal et al. | Performance evaluation of 3-phase 4-wire SAPF based on synchronizing EPLL with fuzzy logic controller | |
Kumar et al. | Harmonics mitigation techniques in grid integrated PV based microgrid: A comparative analysis | |
Sindhu et al. | Comparative study of exponential composition algorithm under dynamic conditions | |
Sreekumar et al. | Modified Droop Control Strategy to minimise losses in an Islanded Microgrid | |
Azevedo et al. | A negative-sequence current injection method to mitigate voltage imbalances in microgrids |