RU2664489C1 - Двухканальная акустическая форсунка - Google Patents

Двухканальная акустическая форсунка Download PDF

Info

Publication number
RU2664489C1
RU2664489C1 RU2017133796A RU2017133796A RU2664489C1 RU 2664489 C1 RU2664489 C1 RU 2664489C1 RU 2017133796 A RU2017133796 A RU 2017133796A RU 2017133796 A RU2017133796 A RU 2017133796A RU 2664489 C1 RU2664489 C1 RU 2664489C1
Authority
RU
Russia
Prior art keywords
cylindrical insert
nozzle
acoustic
channel
fuel
Prior art date
Application number
RU2017133796A
Other languages
English (en)
Inventor
Вадим Юрьевич Александров
Константин Юрьевич Арефьев
Михаил Александрович Ильченко
Original Assignee
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority to RU2017133796A priority Critical patent/RU2664489C1/ru
Application granted granted Critical
Publication of RU2664489C1 publication Critical patent/RU2664489C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/52Injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Изобретение относится к области энергетики и предназначено для подачи газообразного топлива и газовых компонентов в камеру сгорания воздушно-реактивных двигателей. Двухканальная акустическая форсунка для распиливания газообразного топлива содержит полый цилиндрический корпус с патрубками подвода газообразного топлива и газа и торцевой стенкой с выпускным отверстием в ней, заднюю крышку и полую цилиндрическую вставку с торцевой стенкой, концентрично установленную в полости корпуса с образованием между наружной поверхностью вставки и внутренней поверхностью корпуса топливного канала, сообщенного с одной стороны с патрубком подвода газообразного топлива, а другой стороны - через конфузорное сопло со смесительной камерой, образованной между торцевыми стенками корпуса и цилиндрической вставки и сообщенной с выпускным отверстием, причем полость цилиндрической вставки сообщена с одной стороны с патрубком подвода газа, а с другой стороны - со смесительной камерой через регулируемое коническое сопло, а в топливном канале и в полости цилиндрической вставки установлены акустические резонаторы, выполненные регулируемыми. Каждый из акустических резонаторов состоит по меньшей мере из двух пар диаметрально расположенных профилированных пластин, причем одна из пластин каждой пары установлена неподвижно относительно корпуса и цилиндрической вставки, а другая пластина каждой пары установлена перед неподвижной пластиной по потоку с возможностью осевого перемещения вдоль корпуса и цилиндрической вставки, причем цилиндрическая вставка снабжена головкой с приводным штоком, на которой выполнена внутренняя коническая поверхность регулируемого конического сопла, а его наружная коническая поверхность выполнена в торцевой стенке цилиндрической вставки, при этом подвижно установленные пластины акустического резонатора, расположенного в топливном канале, снабжены приводом, а задняя крышка снабжена центральным отверстием, в котором размещен приводной шток головки. Технический результат - увеличение амплитуды и изменение частоты колебаний давления, ускоряющих распад сверхзвуковые газовых струй, что улучшает показатели смешения газообразного топлива и газовых компонентов. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области энергетики и предназначено для подачи газообразного топлива и газовых компонентов в камеру сгорания воздушно-реактивных двигателей.
В камерах сгорания таких двигателей наиболее актуальной является проблема подачи и смешения сверхзвуковых струй газообразного топлива и газовых компонентов для обеспечения эффективных процессов воспламенения и устойчивого горения газовой топливной смеси. В качестве газообразных компонентов могут использоваться окислители (воздух, кислород, закись азота) или вспомогательные нейтральные газы (азот, аргон и другие).
Для уменьшения зоны смешения газовой топливной смеси используют направленное воздействие акустическими колебаниями на истекающие струи в зоне выходного отверстия форсунки в камеру сгорания. Одним из способов акустического воздействия на газовую струю является процесс самовозбуждения резонансных автоколебаний различных звуковых и ультразвуковых частот в каналах системы подачи газообразных рабочих сред (М.А. Ильченко, В.В. Крютченко, Ю.С. Мнацаканян, И.М. Пинке, А.С. Рудаков, А.Н. Руденко, Е.А. Фоломеев, В.А. Эпштейн. «Устойчивость рабочего процесса в двигателях летательных аппаратов» Москва, Машиностроение, 1995).
Известна акустическая форсунка для распыливания газообразного топлива, содержащая полый цилиндрический корпус с патрубками подвода газообразного топлива и газа и торцевой стенкой с выпускным отверстием в ней, заднюю крышку и топливный канал, сообщенный с одной стороны с патрубком подвода газообразного топлива, а другой стороны - через сопловое отверстие со смесительной камерой, причем в топливном канале установлены акустические резонаторы, выполненные в виде диаметрально расположенных профилированных пластин, последовательно установленных вдоль потока (RU 87781, 2009).
В известной акустической форсунке все профилированные пластины установлены неподвижно и рассчитаны на возбуждение акустико-вихревых автоколебаний в определенном диапазоне скоростей потока, причем частотные и амплитудные характеристики автоколебаний будут меняться с изменением скорости потока, поэтому при настройке работы акустических резонаторов в оптимальном режиме при максимальной подаче газообразного топлива эффективность их работы на частичных подачах будет достаточно низкой.
Кроме того, в известной форсунке газообразное топливо подается в спутный воздушный поток камеры сгорания, который не подвергается акустическому воздействию, что существенно снижает эффективность смесеобразования.
Известна двухканальная акустическая форсунка для распыливания топлива, содержащая полый цилиндрический корпус с патрубками подвода топлива и газа и торцевой стенкой с выпускным отверстием в ней, заднюю крышку и полую вставку с торцевой стенкой, концентрично установленную в полости корпуса с образованием между наружной поверхностью вставки и внутренней поверхностью корпуса топливного канала, сообщенного с одной стороны с патрубком подвода топлива, а другой стороны - через конфузорное сопло со смесительной камерой, образованной между торцевыми стенками корпуса и вставки и сообщенной с выпускным отверстием, причем полость вставки сообщена с одной стороны с патрубком подвода газа, а с другой стороны - со смесительной камерой через коническое сопло, а в топливном канале установлены акустические резонаторы (US 4014961, 1977).
Известная двухканальная форсунка выполнена с нерегулируемыми акустическими резонаторами, конические сопла, установленные в топливном и газовом каналах также выполнены нерегулируемыми, поэтому работа этой смесительной форсунки будет эффективной только в достаточно узком диапазоне режимных параметров. Следовательно, использовать эту форсунку для подачи топлива в камеру сгорания воздушно-реактивного двигателя, рабочие параметры которого существенно меняются в зависимости от режима работы, практически невозможно.
Наиболее близкой к изобретению по технической сущности и достигаемому результату является двухканальная акустическая форсунка для распыливания газообразного топлива, содержащая полый цилиндрический корпус с патрубками подвода газообразного топлива и газа и торцевой стенкой с выпускным отверстием в ней, заднюю крышку и полую цилиндрическую вставку с торцевой стенкой, концентрично установленную в полости корпуса с образованием между наружной поверхностью вставки и внутренней поверхностью корпуса топливного канала, сообщенного с одной стороны с патрубком подвода газообразного топлива, а другой стороны - через конфузорное сопло со смесительной камерой, образованной между торцевыми стенками корпуса и цилиндрической вставки и сообщенной с выпускным отверстием, причем полость цилиндрической вставки сообщена с одной стороны с патрубком подвода газа, а с другой стороны - со смесительной камерой через регулируемое коническое сопло, а в топливном канале и в полости цилиндрической вставки установлены акустические резонаторы (US 3667679, 1972).
Недостатком известной акустической форсунки является то, что в процессе ее работы колебания воздействуют только на одну воздушную струю, а струя газообразного топлива не подвержена воздействию колебаний до начала процесса смешения, что снижает эффективность этого процесса. Шток с акустическим резонатором закреплен в корпусе неподвижно, поэтому регулирование его положения возможно только предварительное, а положение акустического резонатора относительно сверхзвукового сопла не может быть изменено. Поэтому при изменении параметров подаваемых газообразных сред, например, при работе двигателя на форсированных и частичных режимах, амплитуда колебаний давления в полости акустического резонатора будет уменьшаться, и как следствие, будет снижаться интенсивность смешения газообразных струй.
Техническая проблема, решение которой обеспечивается изобретением, заключается в интенсификации смешения газообразного топлива с газом на всех режимах работы двухканальной акустической форсунки.
Техническим результатом изобретения является увеличение амплитуды и изменение частоты колебаний давления, генерируемых акустическими резонаторами на форсированных и частичных режимах работы акустической форсунки.
Технический результат достигается за счет того, что двухканальная акустическая форсунка для распыливания газообразного топлива содержит полый цилиндрический корпус с патрубками подвода газообразного топлива и газа и торцевой стенкой с выпускным отверстием в ней, заднюю крышку и полую цилиндрическую вставку с торцевой стенкой, концентрично установленную в полости корпуса с образованием между наружной поверхностью вставки и внутренней поверхностью корпуса топливного канала, сообщенного с одной стороны с патрубком подвода газообразного топлива, а другой стороны - через конфузорное сопло со смесительной камерой, образованной между торцевыми стенками корпуса и цилиндрической вставки и сообщенной с выпускным отверстием, причем полость цилиндрической вставки сообщена с одной стороны с патрубком подвода газа, а с другой стороны - со смесительной камерой через регулируемое коническое сопло, а в топливном канале и в полости цилиндрической вставки установлены акустические резонаторы, выполненные регулируемыми, каждый из них состоит, по меньшей мере, из двух пар диаметрально расположенных профилированных пластин, причем одна из пластин каждой пары установлена неподвижно относительно корпуса и цилиндрической вставки, а другая пластина каждой пары установлена перед неподвижной пластиной по потоку с возможностью осевого перемещения вдоль корпуса и цилиндрической вставки, причем цилиндрическая вставка снабжена головкой с приводным штоком, на которой выполнена внутренняя коническая поверхность регулируемого конического сопла, а его наружная коническая поверхность выполнена в торцевой стенке цилиндрической вставки, при этом подвижно установленные пластины акустического резонатора, расположенного в топливном канале, снабжены приводом, а задняя крышка снабжена центральным отверстием, в котором размещен приводной шток головки.
Двухканальная акустическая форсунка может быть выполнена так, что привод подвижно установленных пластин акустического резонатора, размещенного в топливном канале, выполнен в виде уплотнительной втулки, установленной на наружной поверхности цилиндрического корпуса с возможностью возвратно-поступательного перемещения вдоль оси корпуса и связанной с профилированными пластинами через щелевидные прорези, дополнительно выполненные в цилиндрическом корпусе.
Приводной шток может быть снабжен ограничителем его хода, выполненным в виде двух стопорных колец, закрепленных на штоке с возможностью взаимодействия с задней крышкой.
Существенность отличительных признаков двухканальной акустической форсунки подтверждается тем, что только совокупность всех конструктивных признаков, описывающая изобретение, позволяет обеспечить достижение технического результата изобретения - увеличение амплитуды и изменение частоты колебаний давления, генерируемых акустическими резонаторами на форсированных и частичных режимах работы акустической форсунки путем регулирования положения подвижно установленной профилированной пластины относительно неподвижной профилированной пластины в топливном канале и регулирования площади критического сечения конического сопла на выходе газового канала.
Пример реализации изобретения поясняется чертежами, где:
на фиг. 1 изображен продольный разрез двухканальной акустической форсунки для распыливания газообразного топлива;
на фиг. 2 представлено поперечное сечение А-А фиг. 1;
на фиг. 3 - поперечное сечение Б-Б фиг. 1.
Двухканальная акустическая форсунка для распыливания газообразного топлива, как показано на фиг. 1, содержит полый цилиндрический корпус 1 с патрубком 2 подвода газообразного топлива, патрубком 3 подвода газа и торцевой стенкой 4 с выпускным отверстием 5. Полая цилиндрическая вставка 6 с торцевой стенкой 7 концентрично установлена в полости корпуса 1 с образованием между наружной поверхностью 8 вставки 6 и внутренней поверхностью 9 корпуса 1 топливного канала 10, сообщенного с одной стороны с патрубком 2 подвода газообразного топлива, а другой стороны - через конфузорное сопло 11 со смесительной камерой 12.
Смесительная камера 12 расположена между торцевой стенкой 4 корпуса 1 и торцевой стенкой 7 цилиндрической вставки 6 и сообщена выпускным отверстием 5 с камерой сгорания 13. В полости 14 цилиндрической вставки 6 образован газовый канал, сообщенный с одной стороны с патрубком 3 подвода газа, а с другой стороны - со смесительной камерой 12 через регулируемое коническое сопло 15.
В топливном канале 10 установлен регулируемый акустический резонатор, которых состоит из четырех пар (как показано на фиг. 2 и 3) диаметрально расположенных профилированных пластин 16 и 17, причем пластины 16 каждой пары установлены неподвижно относительно корпуса 1 и цилиндрической вставки 6, а пластина 17 каждой пары установлена по потоку перед неподвижной пластиной 16 с возможностью осевого перемещения вдоль корпуса 1 и цилиндрической вставки 6.
Привод подвижно установленных пластин 17 акустического резонатора, размещенного в топливном канале 10, выполнен в виде уплотнительной втулки 18, установленной на наружной поверхности цилиндрического корпуса 1 с возможностью возвратно-поступательного перемещения вдоль оси корпуса 1 и связанной с профилированными пластинами 17 через продольные щелевидные прорези 19, выполненные в цилиндрическом корпусе 1.
В газовом канале полости 14 цилиндрической вставки 6 также установлен регулируемый акустический резонатор (фиг. 2), которых состоит из четырех пар диаметрально расположенных профилированных пластин 20 и 21, причем пластины 20 жестко связаны с цилиндрической вставкой 6, а пластина 21 установлена в цилиндрической вставке 6 с помощью шлицевой втулки 22 и резьбового стопорного кольца 23, обеспечивающих возможность ограниченного перемещения пластин 21 вдоль оси цилиндрической вставки 6 при предварительной регулировке их месторасположения.
Цилиндрическая вставка 6 снабжена подвижной головкой 24 с приводным штоком 25, на которой выполнена внутренняя коническая поверхность 26 регулируемого конического сопла 15, а его наружная коническая поверхность 27 выполнена в торцевой стенке 7 цилиндрической вставки 6. Свободный конец цилиндрического корпуса 1 снабжен задней крышкой 28 с центральным отверстием 29, в котором размещен приводной шток 25 головки 24. Приводной шток 25 снабжен ограничителем хода, выполненным в виде двух стопорных колец 30, закрепленных на штоке с возможностью взаимодействия с задней крышкой 28.
Расчет геометрических параметров акустических резонаторов с профилированными пластинами, а также расчет параметров возникающих колебаний может быть осуществлен в соответствии с методикой, использующей функцию Грина волнового уравнения (М.А. Ильченко, В.В. Крютченко, Ю.С. Мнацаканян, И.М. Пинке, А.С. Рудаков, А.Н. Руденко, Е.А. Фоломеев, В.А. Эпштейн. «Устойчивость рабочего процесса в двигателях летательных аппаратов» Москва, Машиностроение, стр. 168-180, 1995).
Двухканальная акустическая форсунка для распыливания газообразного топлива работает следующим образом. Перед началом работы производится предварительная настройка акустических резонаторов в зависимости от вида газообразного топлива, подаваемого через патрубок 2 и состава газовых компонентов, подаваемых через патрубок 3. Предварительная настройка акустического резонатора, установленного в топливном канале 10, осуществляется путем перемещения с помощью уплотнительной втулки 18 подвижно установленной профилированной пластины 17 в положение, соответствующее используемому виду топлива. В этом положении пластина 17 находится на таком расстоянии tн от неподвижно установленной профилированной пластины 16, при котором обеспечиваются максимальные параметры колебаний акустического резонатора при работе двигателя на оптимальном режиме.
Предварительная настройка акустического резонатора, установленного в газовом канале полости 14 цилиндрической вставки 6, осуществляется путем перемещения с помощью шлицевой втулки 22 и резьбового стопорного кольца 23 подвижно установленной профилированной пластины 21 в положение, соответствующее используемому составу газового компонента. В этом положении пластина 21 находится на таком расстоянии tв от неподвижно установленной профилированной пластины 20, при котором обеспечиваются максимальные параметры колебаний акустического резонатора при работе двигателя на оптимальном режиме.
В процессе работы подача газообразного топлива осуществляется через патрубок 2 в топливный канал 10, а подача газообразных компонентов осуществляется через патрубок 3 в газовый канал полости 14 цилиндрической вставки 6, при этом газовый поток в каждом из каналов обтекает, размещенные в них профильные пластины 16, 17, 20 и 21.
При обтекании дозвуковыми газовыми потоками профилированных пластин 16, 17, 20 и 21 в каждом канале происходит самовозбуждение акустико-вихревых автоколебаний, которые вызваны периодическим образованием и отрывом крупномасштабных вихревых структур в турбулентном следе за профилями. Возникающие колебания распространяются далее в виде акустических волн в газовых потоках, истекающих в виде недорасширенных сверхзвуковых струй через конфузорное сопло 11 и регулируемое коническое сопло 15 в смесительную камеру 12.
В смесительной камере 12 начинается процесс смешения двух недорасширенных сверхзвуковых струй газообразного топлива и газа, истекающих во внешнее пространство через отверстие в торце кожуха 7, который продолжается и при истечении сверхзвукового газового потока через выпускное отверстие 5 в камеру сгорания 13. При работе двигателя на оптимальном режиме воздействие акустических волн с определенными значениями амплитуды и частоты колебаний на ударно-волновую структуру каждой из сверхзвуковых струй ускоряет их распад, уменьшая их протяженность и, тем самым, улучшает показатели смешения.
При переходе двигателя на форсированный или частичные режимы работы, амплитуда колебаний давления в полости акустического резонатора будет уменьшаться, и как следствие, может снижаться интенсивность смешения газообразных струй. Поэтому на этих режимах работы необходимо регулировать работу акустических резонаторов и в топливном канале 10 и в газовом канале полости 14 цилиндрической вставки 6.
Параметры колебаний акустического резонатора, установленного в топливном канале 10, регулируются перемещением подвижно установленных профилированных пластин 17 относительно неподвижно установленных профилированных пластин 16, уменьшая или увеличивая при этом расстояние tн между ними.
Параметры колебаний акустического резонатора, установленного в газовом канале полости 14 цилиндрической вставки 6, регулируются изменением площади проходного сечения регулируемого конического сопла 15 путем перемещения подвижной головки 24 с приводным штоком 25, тем самым увеличивая или уменьшая скорость газового потока до оптимальных значений.
В представленной конструкции двухканальной акустической форсунки возможность автоматического регулирования площади проходного сечения регулируемого конического сопла 15 с одновременным автоматическим регулированием расстояния между профильными пластинами 16 и 17, расположенными в топливном канале, позволяет обеспечить на форсированном и частичных режимах работы двигателя увеличение амплитуды и изменение частоты колебаний давления, ускоряющих распад сверхзвуковых газовых струй, что улучшает показатели смешения.
Экспериментальные исследования струйной форсунки, в канале которой установлены профили, обеспечивающие возбуждение акустико-вихревых автоколебаний показали эффективность применения такого конструктивного выполнения форсунки для интенсификации смешения газовой струи (В.Ю. Александров, К.Ю. Арефьев, М.А. Ильченко, «Экспериментальное исследование влияния акустико-вихревых автоколебаний на процесс разрушения недорасширенной сверхзвуковой струи в затопленном пространстве». Теплофизика и аэромеханика, 2016, том 23, №4, стр. 533-542).

Claims (3)

  1. Двухканальная акустическая форсунка для распыливания газообразного топлива, содержащая полый цилиндрический корпус с патрубками подвода газообразного топлива и газа и торцевой стенкой с выпускным отверстием в ней, заднюю крышку и полую цилиндрическую вставку с торцевой стенкой, концентрично установленную в полости корпуса с образованием между наружной поверхностью вставки и внутренней поверхностью корпуса топливного канала, сообщенного с одной стороны с патрубком подвода газообразного топлива, а с другой стороны - через конфузорное сопло со смесительной камерой, образованной между торцевыми стенками корпуса и цилиндрической вставки и сообщенной с выпускным отверстием, причем полость цилиндрической вставки сообщена с одной стороны с патрубком подвода газа, а с другой стороны - со смесительной камерой через регулируемое коническое сопло, а в топливном канале и в полости цилиндрической вставки установлены акустические резонаторы, отличающаяся тем, что акустические резонаторы выполнены регулируемыми, каждый из них состоит по меньшей мере из двух пар диаметрально расположенных профилированных пластин, причем одна из пластин каждой пары установлена неподвижно относительно корпуса и цилиндрической вставки, а другая пластина каждой пары установлена перед неподвижной пластиной по потоку с возможностью осевого перемещения вдоль корпуса и цилиндрической вставки, причем цилиндрическая вставка снабжена головкой с приводным штоком, на которой выполнена внутренняя коническая поверхность регулируемого конического сопла, а его наружная коническая поверхность выполнена в торцевой стенке цилиндрической вставки, при этом подвижно установленные пластины акустического резонатора, расположенного в топливном канале, снабжены приводом, а задняя крышка снабжена центральным отверстием, в котором размещен приводной шток головки.
  2. 2. Двухканальная акустическая форсунка по п. 1, отличающаяся тем, что привод подвижно установленных пластин акустического резонатора, размещенного в топливном канале, выполнен в виде уплотнительной втулки, установленной на наружной поверхности цилиндрического корпуса с возможностью возвратно-поступательного перемещения вдоль оси корпуса и связанной с профилированными пластинами через щелевидные прорези, дополнительно выполненные в цилиндрическом корпусе.
  3. 3. Двухканальная акустическая форсунка по п. 1, отличающаяся тем, что приводной шток снабжен ограничителем его хода, выполненным в виде двух стопорных колец, закрепленных на штоке с возможностью взаимодействия с задней крышкой.
RU2017133796A 2017-09-28 2017-09-28 Двухканальная акустическая форсунка RU2664489C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017133796A RU2664489C1 (ru) 2017-09-28 2017-09-28 Двухканальная акустическая форсунка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017133796A RU2664489C1 (ru) 2017-09-28 2017-09-28 Двухканальная акустическая форсунка

Publications (1)

Publication Number Publication Date
RU2664489C1 true RU2664489C1 (ru) 2018-08-17

Family

ID=63177323

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017133796A RU2664489C1 (ru) 2017-09-28 2017-09-28 Двухканальная акустическая форсунка

Country Status (1)

Country Link
RU (1) RU2664489C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255403A (zh) * 2022-08-05 2022-11-01 江苏百航超声科技有限公司 一种混合改性材料即时制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667679A (en) * 1969-04-08 1972-06-06 Dumag Ohg Dr Ludwig Kaluza & C Apparatus for mixing a plurality of gaseous streams
US4014961A (en) * 1973-04-24 1977-03-29 Vitaly Fedorovich Popov Ejector mixer for gases and/or liquids
SU619755A2 (ru) * 1976-10-19 1978-08-15 Проектный Институт "Мосгазпроект" Акустическа горелка
SU1560911A1 (ru) * 1988-07-01 1990-04-30 Московский нефтеперерабатывающий завод Сопло газовой горелки

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667679A (en) * 1969-04-08 1972-06-06 Dumag Ohg Dr Ludwig Kaluza & C Apparatus for mixing a plurality of gaseous streams
US4014961A (en) * 1973-04-24 1977-03-29 Vitaly Fedorovich Popov Ejector mixer for gases and/or liquids
SU619755A2 (ru) * 1976-10-19 1978-08-15 Проектный Институт "Мосгазпроект" Акустическа горелка
SU1560911A1 (ru) * 1988-07-01 1990-04-30 Московский нефтеперерабатывающий завод Сопло газовой горелки

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255403A (zh) * 2022-08-05 2022-11-01 江苏百航超声科技有限公司 一种混合改性材料即时制备装置
CN115255403B (zh) * 2022-08-05 2024-05-17 江苏百航超声科技有限公司 一种混合改性材料即时制备装置

Similar Documents

Publication Publication Date Title
US4595144A (en) Injection device, more particularly for direct-injection diesel engines
RU2664489C1 (ru) Двухканальная акустическая форсунка
US11236908B2 (en) Fuel staging for rotating detonation combustor
RU2698562C1 (ru) Камера сгорания и ракетный двигатель
US20120186224A1 (en) Aircraft jet engine comprising a system for reducing the noise generated by the ejection of the gases
JP4172270B2 (ja) 同軸ジェット噴射装置
WO2014178746A1 (ru) Способ и устройство для детонации в камере сгорания газотурбинного двигателя
RU94031235A (ru) Камера пульсирующего двигателя детонационного горения
RU2679073C1 (ru) Форсуночная головка камеры жрд
RU2481495C1 (ru) Соосно-струйная форсунка
RU2679046C1 (ru) Форсуночная головка камеры жрд
WO2017052402A1 (ru) Способ повышения эффективности сгорания топлива и устройство для его осуществления
CN117128107A (zh) 一种双模爆震推力室
RU52940U1 (ru) Камера пульсирующего двигателя детонационного горения
RU2679049C1 (ru) Струйно-центробежная форсунка
RU16298U1 (ru) Камера пульсирующего двигателя детонационного горения
RU2480609C1 (ru) Соосно-струйная форсунка
SU998753A1 (ru) Способ термического разрушени минеральных сред сверхзвуковой струей нагретого газа и устройство дл его осуществлени
RU192799U1 (ru) Устройство для создания тяги
RU2679047C1 (ru) Струйно-центробежная форсунка
CN113864824B (zh) 一种适用于旋转爆震燃烧室长度可变的预爆管
RU2485402C1 (ru) Газодинамический воспламенитель
RU2480606C1 (ru) Жидкостный ракетный двигатель
RU6840U1 (ru) Камера пульсирующего двигателя детонационного горения
RU2056519C1 (ru) Ракетный двигатель твердого топлива

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190929