RU2662497C1 - Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта - Google Patents

Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта Download PDF

Info

Publication number
RU2662497C1
RU2662497C1 RU2017121913A RU2017121913A RU2662497C1 RU 2662497 C1 RU2662497 C1 RU 2662497C1 RU 2017121913 A RU2017121913 A RU 2017121913A RU 2017121913 A RU2017121913 A RU 2017121913A RU 2662497 C1 RU2662497 C1 RU 2662497C1
Authority
RU
Russia
Prior art keywords
oil
gas
pressure
water
reservoir
Prior art date
Application number
RU2017121913A
Other languages
English (en)
Inventor
Кирилл Евгеньевич Кордик
Виктор Владимирович Шкандратов
Александр Егорович Бортников
Владимир Николаевич Мороз
Original Assignee
Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") filed Critical Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг")
Priority to RU2017121913A priority Critical patent/RU2662497C1/ru
Application granted granted Critical
Publication of RU2662497C1 publication Critical patent/RU2662497C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Lubricants (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проектирования разработки месторождений с системой поддержания пластового давления, и может быть использовано для обоснования и прогнозирования изменения компонентного состава и свойств пластового флюида в процессе эксплуатации залежи. Техническим результатом изобретения является повышение точности прогноза изменения компонентного состава и свойств пластового флюида в процессе эксплуатации залежи с учетом стадии разработки месторождения, в частности таких параметров, как газовый фактор, плотность, вязкость нефти, теплотворная способность газа, содержание целевых компонентов, что достигается путем моделирования взаимодействия пластового флюида с нагнетаемой водой в условиях, имитирующих реальный режим эксплуатации скважины, с помощью компоновки лабораторного оборудования, состоящей из установки фазового поведения, объемного насоса высокого давления, пробоотборников высокого давления с плавающим поршнем объемом не менее 700 см3, плотномера, электромагнитного вискозиметра, вакуумированного пикнометра, газометра, хроматографа. 1 табл., 7 ил.

Description

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проектирования разработки месторождений с системой поддержания пластового давления (с водонапорным режимом), и может быть использовано для обоснования и прогнозирования изменения компонентного состава и свойств пластового флюида в процессе эксплуатации залежи (продуктивного пласта).
Разработка месторождения на водонапорном режиме подразумевает постоянное поддержание пластового давления (ППД) в залежи на уровне выше давления насыщения нефти газом. При данном режиме разработки возможность внутрипластовой дегазации нефти в процессе эксплуатации залежи исключается. В тоже время, даже при условии разработки залежи с системой ППД отмечается влияние некоторых техногенных факторов, способных привести к изменению компонентного состава и свойств пластового флюида:
- Снижение забойного давления в добывающих скважинах до уровня давления насыщения нефти газом и ниже (возникновения локальных зон дегазации нефти в околоскважинном пространстве - в радиусе «воронки» депрессии);
- Дегазация нефти нагнетаемой в пласт водой (суть упомянутого явления заключается в переходе из пластовой нефти в закачиваемую воду преимущественно легких углеводородных (метан) и неуглеводородных (азот и двуокись углерода) компонентов).
После воздействия вышеуказанных техногенных факторов изменяется компонентный состав и свойства пластового флюида:
На начальном этапе эксплуатации по мере снижения забойного давления в скважине в добываемой продукции отмечается увеличение доли легких углеводородных компонентов (С1-4), нефть становится менее вязкой и плотной.
Напротив, в результате длительной промывки закачиваемой водой, а также после снижения забойного давления ниже давления насыщения нефти газом ухудшается качество добываемой нефти (увеличивается плотность и вязкость, снижается содержание легких углеводородных компонентов).
Явления, связанные со снижением забойного давления охватывают только часть залежи, ограниченную призабойной зоной пласта, и, как правило, не учитываются при выполнении прогнозных расчетов на гидродинамических моделях, построенных с применением специализированных программных продуктов - симуляторов. Данное обстоятельство объясняется сложностью реализации задачи, сопряженной с необходимостью детализации строения модели (уменьшения размера отдельных ячеек в десятки и сотни раз по сравнению со стандартными гидродинамическими моделями). В свою очередь, явление газообмена между нефтью и нагнетаемой водой вообще не моделируется ни в одном из существующих гидродинамических симуляторов.
Известен способ оценки изменения свойств пластового флюида в результате взаимодействия с закачиваемой водой, который описан в работе [1 - Амерханов И.М., Хмелевских Е.И. Влияние свойств пластовых нефтей на эксплуатацию скважин в условиях обводнения их продукции. - Нефтяное хозяйство, 1977, №1, с. 37-39. ПРОТОТИП].
Способ заключается в лабораторном моделировании процесса «промывки» пластовой нефти нагнетаемой в пласт водой. Возникновение, как такового эффекта «промывки», связано с продвижением фронта закачиваемой воды в условиях зональной и послойной неоднородности пласта, что является причиной неравномерного вытеснения и приводит к расширению площади контакта нефти с водой. В результате определенный объем пластовой нефти непосредственно контактирует с потоком воды, движущимся с относительно большей скоростью по высокопроницаемому промытому пропластку. Авторами работы [1] разработан экспериментальный способ оценки изменения свойств нефти в результате взаимодействия с закачиваемой водой. В рамках апробации способа проведена серия опытов по смешиванию одинаковых объемов нефти и воды при пластовых условиях. После определения необходимых параметров (давления насыщения нефти газом, изменения газового фактора нефти) воду выводили из установки фазового поведения. Затем эксперимент повторяли со свежей порцией воды, иными словами, моделировалось ступенчатое экстрагирование водой компонентов из пластовой нефти. Для опытов использовалась вода различного состава и плотности. В результате лабораторного моделирования построены зависимости изменения газового фактора и давления насыщения нефти газом от кратности контакта нефти с водой.
Недостаток данного способа заключается в применении упрощенной схемы проведения лабораторного эксперимента, не учитывающей изменения барического режима эксплуатации скважин. При этом эксплуатация скважин с забойным давлением ниже давления насыщения нефти газом является достаточно распространенным явлением в производственной практике, следовательно, данный техногенный фактор оказывает существенное влияние на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта (в околоскважинном пространстве).
Еще один недостаток вышеописанного способа состоит в том, что стадийностью лабораторного эксперимента не предусмотрено проведение исследований по определению компонентного состава и свойств собственно пластовой нефти, вступившей в непосредственный контакт с нагнетаемой водой, хотя авторы работы [1] заявляют об ухудшении ее качества в результате промывки. Для проведения данных исследований необходимо пересмотреть схему проведения лабораторного эксперимента, что приведет к увеличению сложности и трудоемкости работ.
Задачей изобретения является определение компонентного состава и свойств пластового флюида в призабойной зоне пласта скважины, подвергшегося изменению в результате воздействия техногенных факторов, обусловленных режимом эксплуатации скважины, таких как изменение забойного давления, промывка нефти закачиваемой водой.
Техническим результатом изобретения является повышение точности прогноза изменения компонентного состава и свойств пластового флюида в процессе эксплуатации залежи с учетом стадии разработки месторождения, в частности таких параметров, как газовый фактор, плотность, вязкость нефти, теплотворная способность газа, содержание целевых компонентов.
Технический результат достигается описываемым способом, реализуемым с применением компоновки лабораторного оборудования (Фиг. 1), состоящей из установки фазового поведения 1, объемного насоса высокого давления 7, пробоотборников высокого давления с плавающим поршнем объемом не менее 700 см3 для подачи нефти 5 и воды 6, плотномера 8, электромагнитного вискозиметра 9, вакуумированного пикнометра 10, газометра 11, хроматографа, с использованием пробы пластового флюида не менее 500 мл, а при ее отсутствии допускается подготовка образца флюида методом рекомбинации из проб нефти и попутного нефтяного газа, отобранных на устье добывающей скважины с воссозданием свойств флюида, характерных для начального этапа эксплуатации исследуемой залежи. Далее, перед началом моделирования определяют плотность и динамическую вязкость в пластовых условиях, компонентный состав нефти и растворенного в ней газа с выдерживанием пробы флюида в пробоотборнике высокого давления 5 в течение не менее суток и перемешиванием, причем, для лабораторного моделирования используют воду, подаваемую в систему поддержания пластового давления рассматриваемого месторождения, которую предварительно очищают от механических примесей и нефтепродуктов, дегазируют, фиксируют ее плотность, минерализацию, pH, ионный состав. Далее изменение компонентного состава и свойств пластового флюида моделируют в установке фазового поведения 1 при смешивании нефти с нагнетаемой водой, причем, моделирование проводят в несколько последовательных циклов, при этом в каждом цикле предусматривают изменение давления в установке фазового поведения 1 на заданную величину по аналогии с данными о режиме эксплуатации конкретной скважины или объекта разработки, при этом, в первом цикле моделирования в установку фазового поведения 1 при заданных пластовых условиях вводят порцию пластового флюида заданного объема и такой же объем дегазированной воды. Затем после завершения цикла смесь отстаивают до максимального уменьшения слоя эмульсии, причем, в случае выделения свободного газа из нефти в ходе цикла моделирования в установке фазового поведения фиксируют давление насыщения и измеряют объем образовавшейся «газовой шапки», которую отводят из установки фазового поведения на хроматограф для определения компонентного состава газа. Затем воду после отстоя удаляют из установки фазового поведения в вакуумированный пикнометр 10, в котором из отобранной порции воды выделяют экстрагированный газ. Давление приводят к атмосферному, замеряют объем выделившегося газа с помощью газометра 11, а газ анализируют на хроматографе. Далее нефть из установки фазового поведения 1 переводят на плотномер 8 для определения плотности и вискозиметр 9 - для определения динамической вязкости. Затем нефть переводят в пикнометр 10, в котором происходит сепарация растворенного газа, объем которого измеряется в газометре 11, после чего на хроматографе проводят исследования по определению компонентного состава нефти. Следующий цикл эксперимента начинают с ввода исходной пробы нефти заданного объема в установку фазового поведения, причем новый цикл включает в себя повторение всех воздействий предшествующего цикла эксперимента, а затем осуществляют воздействие нового этапа моделирования с изменением давления в установке фазового поведения 1, причем с каждым последующим циклом нефть подвергают дополнительному заводнению с фиксированным объемом воды, при этом, после каждого цикла заводнения воду из установки фазового поведения 1 выводят. Далее по завершению каждого цикла эксперимента проводят комплекс лабораторных исследований нефти, растворенного газа и воды аналогичный описанному для первого этапа моделирования. Далее по завершению моделирования на основании данных вышеописанных лабораторных исследований фиксируют изменения компонентного состава и свойств нефти и растворенного в ней газа, произошедшие в результате изменения давления в установке фазового поведения 1 и промывки нефти закачиваемой водой.
Сопоставительный анализ с прототипом показывает, что в заявленном способе при оценке воздействия техногенных факторов на изменение компонентного состава и свойств флюида дополнительно учитывается динамика забойного давления в процессе эксплуатации скважины, залежи. Кроме того, впервые, в практике подобных экспериментальных исследований изучаются изменения компонентного состава и свойств собственно самой нефти, вступившей во взаимодействие с нагнетаемой водой, что позволяет получить полную и исчерпывающую информацию об изменении компонентного состава пластового флюида. Данные сведения в дальнейшем могут быть использованы при математическом моделировании технологических процессов, связанных со сбором и подготовкой углеводородного сырья на промысловых объектах.
Таким образом, предлагаемое изобретение соответствует критерию «Новизна».
Сравнение заявленного решения с аналогом ([1 - Амерханов И.М., Хмелевских Е.И. Влияние свойств пластовых нефтей на эксплуатацию скважин в условиях обводнения их продукции. - Нефтяное хозяйство, 1977, №1, с. 37-39.) показывает, что данный способ не учитывает влияния фактора изменения забойного давления в процессе эксплуатации скважины, так как исследования проводят при постоянном барическом режиме. Кроме того, известный способ не ориентирован на определение компонентного состава и свойств исследуемой нефти; опыты проводятся без извлечения пробы пластового флюида из установки фазового поведения (определяется только давление насыщения нефти газом и газосодержание путем контактного разгазирования).
Изобретательский уровень заявляемого изобретения, по мнению заявителей, не вызывает сомнения, так как существенные отличительные признаки изобретения в совокупности с известными, позволяют решить задачу, поставленную изобретением, и являются неочевидными для специалистов в данной области знаний.
Таким образом, предлагаемое изобретение соответствует критерию «Изобретательский уровень».
Заявленное техническое решение апробировано при исследовании пластовой нефти скв. 5450/7 Кочевского месторождения (объект разработки БС10) скв. 8210 Нивагальского месторождения (объект разработки ЮВ1/1), скв. 98Р Пайтыхского месторождения (объект разработки ЮК2), что позволяет считать, что заявленный способ соответствует критерию «Промышленная применимость».
Способ осуществляют следующей последовательностью операций:
1. Моделирование промывки флюида и изменения давления в установке фазового поведения 1 (Фиг. 1) проводятся одновременно с целью имитации реального режима эксплуатации залежи, как в условиях наращивания темпов отбора жидкости из скважины, так и, напротив, в случае ограничения депрессии на пласт при действующей системе поддержания пластового давления (закачке воды).
2. Моделирование проводится в несколько последовательных циклов (серий лабораторных опытов), причем, в каждом цикле предусматривается изменение давления в установке фазового поведения 1 (Фиг. 1) на заданную величину (по аналогии с данными о режиме эксплуатации конкретной скважины или объекта разработки).
3. По завершению очередного цикла эксперимента подвергшаяся воздействию техногенных факторов нефть выводится из установки фазового поведения 1 (Фиг. 1) в соответствующее оборудование для определения плотности (на плотномере 8 (Фиг. 1) и динамической вязкости (на вискозиметре 9 (Фиг. 1), затем разгазируется в пикнометре 10 (Фиг. 1) с измерением объема выделившегося газа в газометре 11 (Фиг. 1), после чего проводятся исследования на хроматографе по определению компонентного состава нефти.
4. По завершению моделирования на основании данных, полученных в результате выполнения комплекса лабораторных исследований фиксируются изменения компонентного состава и свойств флюида (нефти и растворенного в ней газа), произошедшие в результате воздействия факторов техногенного характера (изменения давления в установке фазового поведения 1 (Фиг. 1) и промывки нефти закачиваемой водой).
На фиг. 1 изображена блок-схема компоновки лабораторной установки для моделирования взаимодействия пластового флюида с нагнетаемой водой. На фиг. 1 показано: 1 - установка фазового поведения, 2 - термостатируемая камера, 3 - движущийся поршень, 4 - перемешивающее устройство, 5 - пробоотборник высокого давления для подачи нефти, 6 - пробоотборник высокого давления для подачи воды, 7 - объемный насос высокого давления, 8 - плотномер, 9 - электромагнитный вискозиметр; 10 - пикнометр; 11 - газометр; I - газ на хроматограф; II - нефть на хроматограф.
На фиг. 2 представлены изменения динамической вязкости нефти в пластовых условиях по циклам моделирования, мПа•с.
На фиг. 3 приведены изменения плотности нефти в пластовых условиях по циклам моделирования, г/см3 (или т/м3).
На фиг. 4 отражены изменения содержания компонентов C2-4 в разгазированной нефти (методом стандартной сепарации) по циклам моделирования, % мол.
На фиг. 5 представлены изменения содержания метана в растворенном в нефти газе по циклам моделирования, % об.
На фиг. 6 приведена динамика содержания компонентов C1-4 в растворенном в нефти газе по циклам моделирования, % об.
На фиг. 7 отражено изменение газосодержания воды по циклам моделирования, м33.
Пример осуществления способа.
В качестве образца флюида использовалась рекомбинированная проба пластовой нефти скв. 5450/7 Кочевского месторождения, объект разработки БС10. Также в процессе реализации способа использовалась подтоварная вода, отобранная с блочной кустовой насосной станции системы поддержания пластового давления Кочевского месторождения.
Моделирование проводилось с помощью лабораторной установки (Фиг. 1) в 6 последовательных циклов.
Первая операция
Первый цикл моделирования осуществлялся следующим образом.
В установку фазового поведения 1, при пластовых условиях (давление 25,1 МПа, температура 90°C), вводилась порция пластовой нефти объемом 50 см3 и такой же объем дегазированной воды. После интенсивного перемешивания (продолжительность перемешивания составляла не менее 30 минут) при пластовых условиях смесь отстаивалась до исчезновения (или максимального уменьшения) слоя эмульсии. Время отстоя для исследуемой нефти составляло в среднем 60 минут. В процессе смешивания нефти и воды осуществлялось снижение давления в установке фазового поведения 1 до 21,8 МПа (первый цикл изменения давления), темп снижения давления не превышал 0,1 МПа в минуту. Вода после отстоя удалялась из установки фазового поведения 1.
Нефть из установки фазового поведения 1 переводилась в соответствующее оборудование для определения плотности (на плотномере 8 и динамической вязкости (на вискозиметре 9, затем разгазировалась в пикнометре 10 с измерением объема выделившегося газа в газометре 11 (газ отводился на хроматограф для определения компонентного состава), после чего проводились исследования по определению компонентного состава нефти (на хроматографе). На этом первый цикл моделирования был завершен.
Вторая операция
Второй цикл моделирования вновь был начат с подачи в установку фазового поведения 1 порции исходной нефти и воды объемом по 50 см3. Затем на пробу флюида оказывалось воздействие, полностью повторяющее первый цикл опыта. По завершению первого цикла моделирования был произведен сброс воды.
После этого производились операции второго цикла моделирования. В установку фазового поведения 1 (давление 21,8 МПа, температура 90°С) подавалась порция воды объемом 50 см3. Осуществлялось интенсивное перемешивание нефти и воды с одновременным снижением давления газа до 17,6 МПа (второй цикл изменения давления), темп снижения давления не превышал 0,1 МПа в минуту. Вода после отстоя была удалена из установки фазового поведения 1.
Далее последовал комплекс лабораторных исследований нефти и растворенного газа аналогичный тем, что проводились при первом цикле моделирования. На этом второй цикл моделирования был завершен.
Аналогичным образом проводились все последующие циклы моделирования (повторение всех воздействий по предшествующим циклам эксперимента, а затем осуществлялось воздействие нового этапа моделирования). Каждый новый цикл начинался с ввода исходной пробы нефти объемом 50 см3 в установку фазового поведения 1. С каждым последующим циклом нефть подвергалась дополнительному заводнению (фиксированным объемом воды 50 см3, после каждого повторного заводнения вода из установки фазового поведения сбрасывалась), давление в установке фазового поведения 1 по циклам изменялось следующим образом:
- 1-й - исходное давление 25,1 МПа, затем снижение до 21,8 МПа;
- 2-й - повтор 1-го цикла, затем снижение с 21,8 до 17,6 МПа;
- 3-й - повтор 1-го и 2-го цикла, затем снижение с 17,6 до 13,1 МПа;
- 4-й - повтор циклов с 1-го по 3-ий, затем снижение с 13,1 до 6,0 МПа;
- 5-й - повтор циклов с 1-го по 4-ый, затем повышение с 6,0 до 10,7 МПа;
- 6-й - повтор циклов с 1-го по 5-ый, затем повышение с 10,7 до 12,9 МПа.
Лабораторные исследования свойств нефти и растворенного газа проводились по завершению каждого цикла моделирования.
Определение свойств воды (газосодержание, компонентный состав растворенного газа) осуществлялось, как в рамках каждого отдельно взятого цикла, так и при проведении 6-го цикла моделирования, включающего в себя все предыдущие операции лабораторного эксперимента. После каждого заводнения нефти, вода отстаивалась и сбрасывалась из установки фазового поведения 1 в вакуумированный пикнометр 10. В пикнометре 10 из отобранной порции воды выделялся экстрагированный газ, давление приводилось к атмосферному, объем газа замерялся с помощью газометра 11. Выделившийся газ анализировался на хроматографе.
Объем выделившегося свободного газа и его компонентный состав определялись по завершению 4-го цикла моделирования, а также после окончания 4-го промежуточного этапа 6-го цикла моделирования, когда давление в установке фазового поведения 1 снижалось ниже давления насыщения.
Консолидировано выполненные операции и виды исследований по циклам моделирования представлены в программе лабораторных работ (таблица)
Результаты лабораторного моделирования по оценке воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта, выполненного в филиале ООО «ЛУКОЙЛ - Инжиниринг» «КогалымНИПИнефть» в г. Тюмени:
1. Установлено ухудшение качества нефти в призабойной зоне пласта: увеличение вязкости (фиг. 2) и плотности (фиг. 3) в пластовых условиях, в результате ее взаимодействия с нагнетаемой водой и перехода легких компонентов в свободную фазу.
2. По циклам эксперимента определены изменения компонентного состава нефти (динамика компонентов С2-4 в нефти, фиг. 4) и растворенного газа (изменение содержания метана и компонентов С1-4 в растворенном газе, фиг. 5 и фиг. 6 соответственно). Сведения в последующем использованы при моделировании процесса сепарации скважинной продукции на промысле, что позволило увязать изменение компонентного состава флюида с динамикой величины газового фактора по объекту подготовки нефти. Иными словами, способ позволяет спрогнозировать динамику компонентного состава и свойств флюида в зависимости от заданного режима эксплуатации скважин (залежи).
3. С целью оценки масштабов процесса газообмена между пластовой нефтью и закачиваемой водой, по циклам эксперимента установлена динамика газосодержания воды, вступившей в контакт с пластовым флюидом (фиг. 7). Способ позволяет оценить потери легких углеводородных компонентов в результате их перехода в нагнетаемую воду.
Источники информации
1. Амерханов И.М., Хмелевских Е.И. Влияние свойств пластовых нефтей на эксплуатацию скважин в условиях обводнения их продукции. - Нефтяное хозяйство, 1977, №1, с. 37-39.
Таблица - Программа лабораторных работ по моделированию процессов взаимодействия флюида (нефти, содержащей растворенный газ) с закачиваемой водой в условиях изменения давления в призабойной зоне пласта
Исходные условия моделирования: начальное пластовое давление Р - 25,1 МПа; пластовая температура* - 90°C; давление насыщения нефти газом = 8,47 МПа; объем нефти в бомбе PVT - 50 мл
Figure 00000001
* Температура в процессе моделирования не изменяется;
** В 5-ом цикле реализуется два варианта повышения давления (и, как следствие, растворения «газовой шапки» в нефти) с перемешиванием пробы в бомбе PVT и без перемешивания пробы.
+ параметр определяется;
- параметр не определяется.

Claims (1)

  1. Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта, включающий применение компоновки лабораторного оборудования, состоящей из установки фазового поведения, объемного насоса высокого давления, пробоотборников высокого давления с плавающим поршнем объемом не менее 700 см3, плотномера, электромагнитного вискозиметра, вакуумированного пикнометра, газометра, хроматографа, с использованием пробы пластового флюида не менее 500 мл, а при ее отсутствии допускается подготовка образца флюида методом рекомбинации из проб нефти и попутного нефтяного газа, отобранных на устье добывающей скважины с воссозданием свойств флюида, характерных для начального этапа эксплуатации исследуемой залежи, далее перед началом моделирования определяют плотность и динамическую вязкость в пластовых условиях, компонентный состав нефти и растворенного в ней газа с выдерживанием пробы флюида в пробоотборнике высокого давления в течение не менее суток и перемешиванием, причем для лабораторного моделирования используют воду, подаваемую в систему поддержания пластового давления рассматриваемого месторождения, которую предварительно очищают от механических примесей и нефтепродуктов, дегазируют, фиксируют ее плотность, минерализацию, рН, ионный состав, далее изменение компонентного состава и свойств пластового флюида моделируют в установке фазового поведения при смешивании нефти с нагнетаемой водой, причем моделирование проводят в несколько последовательных циклов, при этом в каждом цикле предусматривают изменение давления в установке фазового поведения на заданную величину по аналогии с данными о режиме эксплуатации конкретной скважины или объекта разработки, при этом в первом цикле моделирования в установку фазового поведения при заданных пластовых условиях вводят порцию пластового флюида заданного объема и такой же объем дегазированной воды, затем после завершения цикла смесь отстаивают до максимального уменьшения слоя эмульсии, причем в случае выделения свободного газа из нефти в ходе цикла моделирования в установке фазового поведения фиксируют давление насыщения и измеряют объем образовавшейся «газовой шапки», которую отводят из установки фазового поведения на хроматограф для определения компонентного состава газа, затем воду после отстоя удаляют из установки фазового поведения в вакуумированный пикнометр, в котором из отобранной порции воды выделяют экстрагированный газ, давление приводят к атмосферному, замеряют объем газа в газометре, газ анализируют на хроматографе, далее нефть из установки фазового поведения переводят на плотномер для определения плотности и вискозиметр для определения динамической вязкости, затем нефть переводят в пикнометр, в котором происходит сепарация растворенного газа, объем которого измеряется в газометре, после чего на хроматографе проводят исследования по определению компонентного состава нефти, далее следующий цикл эксперимента начинают с ввода исходной пробы нефти заданного объема в установку фазового поведения, причем новый цикл включает в себя повторение всех воздействий предшествующего цикла эксперимента, а затем осуществляют воздействие нового этапа моделирования с изменением давления в установке фазового поведения, причем с каждым последующим циклом нефть подвергают дополнительному заводнению с фиксированным объемом воды, причем после каждого цикла заводнения воду из установки фазового поведения выводят, далее по завершению каждого цикла эксперимента проводят комплекс лабораторных исследований нефти, растворенного газа и воды, аналогичный описанному для первого этапа моделирования, далее по завершению моделирования на основании данных вышеописанных лабораторных исследований фиксируют изменения компонентного состава и свойств нефти и растворенного в ней газа, произошедшие в результате изменения давления в установке фазового поведения и промывки нефти закачиваемой водой.
RU2017121913A 2017-06-21 2017-06-21 Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта RU2662497C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121913A RU2662497C1 (ru) 2017-06-21 2017-06-21 Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121913A RU2662497C1 (ru) 2017-06-21 2017-06-21 Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта

Publications (1)

Publication Number Publication Date
RU2662497C1 true RU2662497C1 (ru) 2018-07-26

Family

ID=62981746

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121913A RU2662497C1 (ru) 2017-06-21 2017-06-21 Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта

Country Status (1)

Country Link
RU (1) RU2662497C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089483A1 (en) * 2005-10-06 2007-04-26 Kriel Wayne A Analysis systems and methods
US20080141767A1 (en) * 2006-12-19 2008-06-19 Schlumberger Technology Corporation Enhanced downhole fluid analysis
US20090158820A1 (en) * 2007-12-20 2009-06-25 Schlumberger Technology Corporation Method and system for downhole analysis
RU2503012C2 (ru) * 2009-07-30 2013-12-27 ЭсДжиЭс НОРТ АМЕРИКА ИНК. Pvt-анализ сжатых флюидов
RU2589768C2 (ru) * 2011-04-28 2016-07-10 ЭсДжиЭс НОРТ АМЕРИКА ИНК. Анализ сжатых пластовых флюидов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089483A1 (en) * 2005-10-06 2007-04-26 Kriel Wayne A Analysis systems and methods
US20080141767A1 (en) * 2006-12-19 2008-06-19 Schlumberger Technology Corporation Enhanced downhole fluid analysis
US20090158820A1 (en) * 2007-12-20 2009-06-25 Schlumberger Technology Corporation Method and system for downhole analysis
RU2503012C2 (ru) * 2009-07-30 2013-12-27 ЭсДжиЭс НОРТ АМЕРИКА ИНК. Pvt-анализ сжатых флюидов
RU2589768C2 (ru) * 2011-04-28 2016-07-10 ЭсДжиЭс НОРТ АМЕРИКА ИНК. Анализ сжатых пластовых флюидов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АМЕРХАНОВ И.М. и др., Влияние свойств пластовых нефтей на эксплуатацию скважин в условиях обводнения их продукции, Нефтяное хозяйство, 1977, N1, с. 37-39. *

Similar Documents

Publication Publication Date Title
CN106021778B (zh) 一种模拟co2驱替动态混相压力的确定方法
RU2395685C1 (ru) Способы и устройство для анализа скважинных асфальтеновых градиентов и их применение
CN102353750B (zh) 轻质油藏注空气采油原油低温氧化实验装置
CN107727832B (zh) 一种确定烃源岩排烃效率的方法及装置
Darvish et al. Reservoir-conditions laboratory experiments of CO2 injection into fractured cores
US20230220755A1 (en) Method and apparatus for predicting oil and gas yields in in-situ oil shale exploitation
CN112814669B (zh) 一种页岩油藏全生命周期采收率预测方法和系统
Alian et al. Study of asphaltene precipitation induced formation damage during CO 2 injection for a Malaysian light oil
US20200333316A1 (en) Method for evaluating mixing effect of co2 oil-displacing and mixing agent and method for screening co2 oil-displacing and mixing agent
Kumar et al. Effect of depletion rate on gas mobility and solution gas drive in heavy oil
Badrouchi et al. Evaluation of CO2 enhanced oil recovery in unconventional reservoirs: Experimental parametric study in the Bakken
Tang et al. Experimental study on spontaneous imbibition of CO2-rich brine in tight oil reservoirs
CN113704989A9 (zh) 一种泥页岩排出烃以及外来充注烃量的评价方法及装置
Stockhausen et al. The Expulsinator versus conventional pyrolysis: The differences of oil/gas generation and expulsion simulation under near-natural conditions
Fan et al. Estimation of three-phase relative permeabilities for a water-alternating-gas process by use of an improved ensemble randomized maximum-likelihood algorithm
RU2662497C1 (ru) Способ оценки воздействия техногенных факторов на изменение компонентного состава и свойств пластового флюида в призабойной зоне пласта
Rezk et al. Uncertainty effect of CO2 molecular diffusion on oil recovery and gas storage in underground formations
Qian et al. Experimental Study on the Oil Recovery Performance of CO2 Huff‐and‐Puff Process in Fractured Tight Oil Reservoirs
Hatiboglu et al. Diffusion mass transfer in miscible oil recovery: visual experiments and simulation
Song et al. Dynamic reconstruction of the hydrocarbon generation, accumulation, and evolution history in ultra-deeply-buried strata
Samani et al. How does capillary pressure affect the relative permeability curves of heterogeneous carbonate rocks?
CN113027399A (zh) 一种基于微观流动模拟获取高含水区块水驱曲线方法
CN116341299A (zh) 一种低渗油藏co2驱气窜识别的方法
Cao Oil recovery mechanisms and asphaltene precipitation phenomenon in CO2 flooding processes
Xian et al. Laboratory Experiments of Hydrocarbon Gas Flooding and Its Influencing Factors on Oil Recovery in a Low Permeability Reservoir with Medium Viscous Oil