RU2662460C1 - Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе мэмс - Google Patents

Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе мэмс Download PDF

Info

Publication number
RU2662460C1
RU2662460C1 RU2017125035A RU2017125035A RU2662460C1 RU 2662460 C1 RU2662460 C1 RU 2662460C1 RU 2017125035 A RU2017125035 A RU 2017125035A RU 2017125035 A RU2017125035 A RU 2017125035A RU 2662460 C1 RU2662460 C1 RU 2662460C1
Authority
RU
Russia
Prior art keywords
vehicle
angle
model
gyroscope
angular position
Prior art date
Application number
RU2017125035A
Other languages
English (en)
Inventor
Цян ЖЭНЬ
Цзецзюнь ВАН
Вэньдин ДАЙ
Гуанцзе ЦАО
Гуанъян ДУН
Жуй ТУ
Original Assignee
Шанхай Хуацэ Навигейшн Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шанхай Хуацэ Навигейшн Текнолоджи Лтд filed Critical Шанхай Хуацэ Навигейшн Текнолоджи Лтд
Application granted granted Critical
Publication of RU2662460C1 publication Critical patent/RU2662460C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/005Precision agriculture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/08Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Navigation (AREA)
  • Gyroscopes (AREA)

Abstract

Изобретение относится к области измерительной техники и, в частности, относится к способу обновления углового положения сельскохозяйственной машины, основанному на девятиосевом датчике на основе МЭМС. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС, включает: установку модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF), и задание вектора параметров, соответствующего динамическому положению транспортного средства (S1); получение данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени (S2); вычисление угла, скорости, информации о положении и курсового угла транспортного средства посредством установленной модели ошибок гироскопа, калибровочной модели эллипса электронного компаса (S3); совместную обработку данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF) (S4), и обновление в режиме реального времени динамического углового положения транспортного средства (S5). Технический результат заявленного изобретения - высокая точность и надежность определения положения сельскохозяйственной машины на основе девятиосевого МЭМС датчика. 5 з.п. ф-лы, 2 ил.

Description

Область техники
[0001] Изобретение относится к области измерительной техники и, в частности, относится к способу обновления углового положения сельскохозяйственной машины, основанному на девятиосевом датчике на основе МЭМС.
Уровень техники
[0002] Развитие технологии датчиков на основе МЭМС (микроэлектромеханических систем), а также технологии навигации и управления, вместе с другими технологиями поддерживает сельское хозяйство Китая, что делает точное сельское хозяйство растущей популярной тенденцией. Во время машинного управления сельскохозяйственной техникой информация о различных аспектах транспортного средства, включая угол наклона в продольной плоскости, угол крена и курсовой угол, может обеспечить важные исходные данные для высокоточного интегрированного алгоритма навигации и управления.
[0003] В настоящее время инерциальная навигационная система (ИНС) включает ПИНС (платформенную инерциальную навигационную систему, PINS) и бесплатформенную ИНС (бесплатформенную инерциальную навигационную систему, SINS). По сравнению с ПИНС, бесплатформенная ИНС использует датчики на основе ИБИ (инерциального измерительного блока) для установки "математической платформы" путем вычисления, таким образом заменяя ПИНС. Бесплатформенная ИНС в основном используется в навигационных системах летающих аппаратов. Однако, в области управления сельскохозяйственных машин исследования и применение бесплатформенной ИНС остаются на ранней стадии развития. Более того, навигационные управляющие системы для летательных аппаратов значительно отличаются от систем управления сельскохозяйственных машин по объектам применения и условиям окружающей среды. Способ использования бесплатформенной ИНС, применяемый в навигационных управляющих системах летательных аппаратов, не может быть применен в управлении сельскохозяйственной машины.
Раскрытие сущности изобретения.
[0004] Имея в виду указанные выше недостатки в применении инерциальной навигации в сельскохозяйственной машине, настоящее изобретение обеспечивает способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС, с минимальными ошибками, высокой точностью и надежностью.
[0005] Для решения поставленных задач, варианты реализации настоящего изобретения предусматривают следующие технические решения.
[0006] Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС, включает:
установку модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF), и задание вектора параметров, соответствующего динамическому положению транспортного средства;
получение данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС;
вычисление угла, скорости, положения и курсового угла транспортного средства посредством установленной модели ошибок гироскопа, калибровочной модели эллипса электронного компаса, в соответствии с полученными данными, включая ускорение и угловую скорость движения транспортного средства, и интенсивность геомагнитного поля;
совместная обработка данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), и обновление в режиме реального времени динамического углового положения транспортного средства;
отличающийся тем, что девятиосевой датчик на основе МЭМС составлен из трехосевого гироскопа, трехосевого акселерометра и трехосевого геомагнитного датчика.
[0007] Согласно одному аспекту настоящего изобретения этап, на котором происходит установка модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF), и задание вектора параметров, соответствующего динамическому положению транспортного средства, описан подробно далее:
вычисляют угловую скорость гироскопа в модели ошибок гироскопа через формулу вычисления ошибки; где формула вычисления ошибки гироскопа следующая: ω=ωib+bωr+bωg, где ω - угловая скорость, выдаваемая гироскопом, ωib - реальная угловая скорость гироскопа, bωr - смещение нуля гироскопа, и bωg - белый шум, выдаваемый гироскопом;
устраняют интерференцию магнитного поля посредством калибровочной модели эллипса электронного компаса; причем калибровочная модель эллипса электронного компаса следующая:
Figure 00000001
, где mx, my - интенсивности магнитного поля, Xoffset и Yoffset - жесткие магнитные интерференции Xsf и Ysf - мягкие магнитные интерференции;
обновляют положения транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), где семиразмерная фильтрующая модель использует расширенный фильтр Калмана для семиразмерного вектора состояния, и расширенный фильтр Калмана включает уравнение состояния и уравнение наблюдения:
Figure 00000002
где матрица состояния следующая: x=[q bωr], q - кватернион векторов q0, q1, q2, q3, a bωr - смещение нуля трехосевого XYZ гироскопа, где ω - угловая скорость гироскопа, ω1 - матрица шума процесса, v1 - матрица шума наблюдения, y - это вектор наблюдения, y=[a ψmag]T, где а - это величина трехосевого ускорения, ψmag - курсовой угол, вычисленный электронным компасом,
Figure 00000003
Figure 00000004
[0008] Согласно одному аспекту настоящего изобретения этап, на котором происходит получение данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС, описан подробно далее:
получают угловую скорость транспортного средства посредством гироскопа, и компенсируют смещение нуля гироскопа;
получают данные по ускорению транспортного средства посредством датчика ускорения; и
получают интенсивность геомагнитного поля транспортного средства посредством геомагнитного датчика.
[0009] Согласно одному аспекту настоящего изобретения этап, на котором происходит вычисление угла, скорости, положения и курсового угла транспортного средства посредством установленной модели ошибок гироскопа, калибровочной модели эллипса электронного компаса, в соответствии с полученными данными, включая ускорение и угловую скорость движущегося объекта, и интенсивностью геомагнитного поля, описан подробно далее:
получают данные по угловому положению посредством интегрального вычисления угловой скорости с помощью модели ошибок гироскопа;
вычисляют скорость путем интегрирования данных по ускорению, и информацию по положению вычисляют путем дальнейшего интегрирования скорости; и
вычисляют курсовой угол транспортного средства, исходя из данных по интенсивности геомагнитного поля, которые компенсируются параметром калибровки и корректируются углом наклона, и оба показателя, параметр калибровки и угол наклона, вычисляют посредством эллиптической модели.
[0010] Согласно одному аспекту настоящего изобретения этап, на котором происходит совместная обработка данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), и обновление в режиме реального времени динамического углового положения транспортного средства, описан подробно далее:
вычисляют данные по положению транспортного средства с помощью семиразмерной модели расширенного фильтра Калмана, посредством алгоритма обновления кватерниона положения, где процесс вычисления алгоритма расширенного фильтра Калмана следующий:
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Рk(+)=[I-KkHkk(-)
Figure 00000009
Figure 00000010
где k - точка отсчета времени,
Figure 00000011
- оценка состояния системы, (-) предыдущая точка отсчета времени, (+) последующая точка отсчета времени, Фk - матрица перехода состояния, Рk - матрица минимума среднеквадратической ошибки, Q - ковариационная матрица, соответствующая вектору состояния, Kk - выигрыш ошибки, yk - вектор наблюдения, Hk - переходная матрица для уравнения наблюдения, Rk - ковариационная матрица, соответствующая вектору наблюдения;
Figure 00000012
где Q - вектор кватерниона, q0, q1, q2, q3 - скаляры, формирующие вектор кватерниона, i, j, k - единичные вектора в трехмерной системе координат, обновленная матрица положения представлена ниже:
Figure 00000013
где
Figure 00000014
- матрица ротации для преобразования системы координат носителя в навигационную систему координат,
Figure 00000015
где γ, θ, ψ - угол крена, угол наклона в продольной плоскости и курсовой угол соответственно.
[0011] Согласно одному аспекту настоящего изобретения после этапа, на котором происходит совместная обработка данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), и обновление в режиме реального времени динамического углового положения транспортного средства, выполняют:
извлечение данных по угловому положению транспортного средства из обновленных данных о положении транспортного средства, для определения данных о величине угла положения, причем угловое положение транспортного средства включает в себя угол наклона в продольной плоскости, угол крена и курсовой угол, где
Figure 00000016
курсовой угол:
Figure 00000017
угол наклона в продольной плоскости:
θ=θprinciple
угол крена:
Figure 00000018
[0012] Преимущества, которые предоставляет изобретение, представлены ниже: ускорение и угловая скорость движущегося объекта получают в режиме реального времени посредством датчика на основе МЭМС. Угловое ускорение, выдаваемое гироскопом, интегрируют для получения угла. Ускорение интегрируют для вычисления скорости, которую далее интегрируют для вычисления информации о положении. Геомагнитное поле получают посредством геомагнитного датчика, и курсовой угол вычисляют посредством компенсационного алгоритма и совместной обработки данных гироскопа. Далее, данные о положениях преобразовывают в переходную матрицу, так что система координат носителя преобразована в навигационную систему координат. Эта переходная матрица выступает в роли "математической платформы". Алгоритм бесплатформенной инерциальной навигационной системы (SINS) применяют к сельскохозяйственной машине, и переходная матрица представляет особую важность. Поскольку сельскохозяйственная машина находится в движении, то ее положение также постоянно изменяется. Таким образом, переходная матрица также должна постоянно пересчитываться и обновляться. Общепринятые алгоритмы обновления положения включают алгоритм углов Эйлера, алгоритм косинуса направления и алгоритм кватерниона. По сравнению с алгоритмом углов Эйлера, алгоритм кватерниона не имеет точки сингулярности. По сравнению с алгоритмом косинуса направления, алгоритм кватерниона имеет малую величину вычислений. Таким образом, алгоритм кватерниона является наиболее подходящим для использования во встроенном продукте. Геомагнитное поле Земли и модель ошибок гироскопа установлены в плоскости сельскохозяйственной машины, и семиразмерный расширенный фильтр Калмана применяют для обновления матрицы положения. Выполняют оценку кватерниона и смещения нуля гироскопа, и затем выполняют наблюдение курсового угла, вычисленного исходя из ускорения и интенсивности магнитного поля, так что может быть получено высокоточное трехмерное угловое положение. Алгоритм компенсации ошибок и корректирующий алгоритм существенно снижают влияние ошибок в алгоритме бесплатформенной ИНС (SINS). Датчик на основе МЭМС и алгоритм бесплатформенной ИНС обеспечивают высокую эффективность данного изобретения. Как показало тестирование на тракторе, ошибка выходного курсового угла меньше чем 0,1°, и ошибки угла наклона в продольной плоскости и угла крена меньше чем 0,01°. Так как кватернион используется как вектор положения фильтра Калмана, точность вычисления целевых параметров может быть дополнительно улучшена.
Краткое описание чертежей
[0013] Для более ясной иллюстрации технических решений согласно вариантам реализации изобретения прилагаются чертежи, которые кратко описаны далее. Очевидно, что прилагаемые чертежи в последующем описании являются только некоторыми вариантами реализации настоящего изобретения. Для специалиста в данной области техники не составит большого творческого труда произвести другие чертежи, исходя из представленных здесь рисунков.
[0014] Фиг. 1 показывает блок-схему способа обновления углового положения сельскохозяйственной машины, основанного на девятиосевом датчике на основе МЭМС в соответствии с вариантом реализации 1 настоящего изобретения;
[0015] Фиг. 2 показывает блок-схему способа обновления углового положения сельскохозяйственной машины, основанного на девятиосевом датчике на основе МЭМС в соответствии с вариантом реализации 2 настоящего изобретения.
Осуществление изобретения.
[0016] Настоящее изобретение будет далее четко и подробно описано со ссылкой на прилагаемые графические материалы в вариантах реализации настоящего изобретения. Очевидно, что описанные варианты реализации являются только определенными примерами реализации настоящего изобретения и не исчерпывают всех возможных вариантов. На основании представленных вариантов осуществления настоящего изобретения все другие варианты реализации, предложенные специалистом в данной области без какихлибо творческих усилий, попадают в объем защиты настоящего изобретения.
[0017] Вариант реализации изобретения 1:
[0018] Как показано на Фиг. 1, способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС, включает:
[0019] Этап S1: установки модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF), и определения векторов параметров, соответствующих динамическим положениям транспортного средства.
[0020] Этап S1, в котором происходит установка модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF), и задание векторов параметров, соответствующих динамическим положениям транспортного средства, описан в подробности далее:
[0021] Угловую скорость гироскопа в модели ошибок гироскопа вычисляют через формулу вычисления ошибки гироскопа; где формула вычисления ошибки гироскопа следующая: ω=ωib+bωr+bωg, где ω - угловая скорость, выдаваемая гироскопом, ωib - реальная угловая скорость гироскопа, bωr - смещение нуля гироскопа, и bωg - белый шум, выдаваемый гироскопом.
[0022] Интерференцию магнитного поля устраняют посредством калибровочной модели эллипса электронного компаса, где калибровочная модель эллипса электронного компаса такова:
Figure 00000019
, где mx, my - интенсивности магнитного поля, Xoffset и Yoffset - жесткие магнитные интерференции Xsf и Ysf - мягкие магнитные интерференции.
[0023] Положение транспортного средства обновляется посредством семиразмерной модели расширенного фильтра Калмана EKF, где семиразмерная фильтрующая модель использует Расширенный Фильтр Калмана для семиразмерного вектора состояния, и Расширенный Фильтр Калмана EKF включает уравнение состояния и уравнение наблюдения:
Figure 00000020
[0024] Матрица состояния представлена: x=[q bωr], q - кватернион векторов q0, q1, q2, q3, и bωr - смещение нуля трехосевого гироскопа XYZ, где ω - угловая скорость гироскопа, w1 - матрица шума процесса, v1 - матрица шума наблюдения, y - вектор наблюдения, y=[a ψmag]T, где а - это величина трехосевого ускорения, ψmag - курсовой угол, вычисляемый электронным компасом,
Figure 00000021
Figure 00000022
.
[0025] Поскольку геомагнитное поле имеет слабую интенсивность, оно подвержено влиянию окружающих ферромагнитных материалов и электромагнитного поля. Поэтому необходимо откалибровать гироскоп прежде всего. Калибровочная модель эллипса электронного компаса устанавливается для устранения интерференции геомагнитного поля. Полученная интенсивность магнитного поля вводится с помощью метода наименьших квадратов в сам процесс калибровки, таким образом, чтобы обеспечить получение указанных выше параметров.
[0026] Этап S2: получение данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС.
[0027] Этап S2 получения данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС, описан подробно далее:
[0028] Угловую скорость транспортного средства получают посредством гироскопа, и компенсации смещения нуля гироскопа.
[0029] Датчик ускорения используется для получения данных об ускорении транспортного средства.
[0030] Информацию по интенсивности геомагнитного поля транспортного средства получают геомагнитным датчиком.
[0031] Этап S3: согласно полученным данным, включая ускорение и угловую скорость транспортного средства, и интенсивность геомагнитного поля, вычисляют угол, скорость, положение и курсовой угол транспортного средства посредством установленных модели ошибок гироскопа и калибровочной модели эллипса электронного компаса.
[0032] Этап S3 вычисления угла, скорости, положения и курсового угла транспортного средства посредством установленной модели ошибок гироскопа, калибровочной модели эллипса электронного компаса, в соответствии с полученными данными, включая ускорение и угловую скорость движения транспортного средства, и интенсивность геомагнитного поля подробно описан далее.
[0033] Данные по угловому положению получают посредством интегрального вычисления угловой скорости с помощью модели ошибок гироскопа.
[0034] Скорость вычисляют путем интегрирования данных по ускорению, и информация по положению вычисляют путем дальнейшего интегрирования скорости.
[0035] Курсовой угол транспортного средства затем вычисляют исходя из данных по интенсивности геомагнитного поля, которая компенсируется параметром калибровки и корректируется углом наклона, и оба показателя, параметр калибровки и угол наклона, вычисляют посредством эллиптической модели.
[0036] Информацию о движении транспортного средства получают посредством датчика на основе МЭМС в режиме реального времени. Угловая скорость транспортного объекта, полученная посредством гироскопа, корректируется оценкой состояния и смещением нуля гироскопа. Угловая скорость транспортного средства интегрируется для вычисления приращения угла. Показания геомагнитного датчика корректируются и компенсируются данными по мягкому и жесткому магнетизму, а также углом наклона для вычисления курсового угла.
[0037] Этап S4: выполняют совместную обработку данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), и обновляют в режиме реального времени динамическое угловое положение транспортного средства.
[0038] Этап S4 совместной обработки данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), и обновления в режиме реального времени динамическое угловое положение транспортного средства, подробно описан далее.
[0039] Данные о положении транспортного средства вычисляют с помощью семиразмерной модели расширенного фильтра Калмана (EKF), посредством алгоритма обновления кватерниона положения, причем процесс вычисления алгоритма расширенного фильтра Калмана (EKF) описан ниже:
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Рk(+)=[I-KkHk]Pk(-)
Figure 00000027
Figure 00000028
[0040] В приведенной выше формуле: к - точка отсчета времени,
Figure 00000029
- оценка состояния системы, (-) - предыдущая точка отсчета времени, (+) - последующая точка отсчета времени, Фk - матрица перехода состояния, Pk - матрица минимума среднеквадратической ошибки, Q - ковариационная матрица, соответствующая вектору состояния, Kk - выигрыш ошибки, yk - вектор наблюдения, Hk - переходная матрица для уравнения наблюдения, Rk - ковариационная матрица, соответствующая вектору наблюдения.
Figure 00000030
[0041] В приведенной выше формуле Q - вектор кватерниона, q0, q1, q2, q3 - скаляры, формирующие вектор кватерниона, i, j, k - единичные вектора в трехмерной системе координат. Обновленная матрица положения представлена ниже:
Figure 00000031
[0042] В приведенной выше формуле
Figure 00000032
- матрица ротации для преобразования системы координат носителя в навигационную систему координат.
Figure 00000033
[0043] В приведенной выше формуле γ, θ, ψ - угол крена, угол наклона в продольной плоскости и курсовой угол соответственно.
[0044] В приведенной выше формуле, девятиосевой датчик на основе МЭМС составлен из трехосевого гироскопа, трехосевого акселерометра и трехосевого геомагнитного датчика.
[0045] Вариант реализации изобретения 2:
[0046] Как показано на Фиг. 2, способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС, включает следующие этапы:
[0047] Этап S1: установки модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF), и определения векторов параметров, соответствующих динамическим положениям транспортного средства.
[0048] Этап S1, на котором происходит установка модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF), и задание векторов параметров, соответствующих динамическим положениям транспортного средства, подробно описан далее:
[0049] Угловую скорость гироскопа в модели ошибок гироскопа вычисляют через формулу вычисления ошибки гироскопа; где формула вычисления ошибки гироскопа следующая: ω=ωib+bωr+bωg, где ω - угловая скорость, выдаваемая гироскопом, ωib - реальная угловая скорость гироскопа, bωr - смещение нуля гироскопа, и bωg - белый шум, выдаваемый гироскопом.
[0050] Интерференцию магнитного поля устраняют посредством калибровочной модели эллипса электронного компаса, где калибровочная модель эллипса электронного компаса такова:
Figure 00000034
где mx, my - интенсивности магнитного поля, Xoffset и Yoffset - жесткие магнитные интерференции, Xsf и Ysf - мягкие магнитные интерференции.
[0051] Положение транспортного средства обновляют посредством семиразмерной модели Расширенного Фильтра Калмана EKF, где семиразмерная фильтрующая модель использует Расширенный Фильтр Калмана для семиразмерного вектора состояния, и Расширенный Фильтр Калмана EKF включает уравнение состояния и уравнение наблюдения:
Figure 00000035
[0052] Матрица состояния представлена: x=[q bωr], где q - кватернион векторов q0, q1, q2, q3, bωr - смещение нуля трехосевого XYZ гироскопа. В формуле ω - угловая скорость гироскопа, w1 - матрица шума процесса, v1 - матрица шума наблюдения, y - вектор наблюдения, y=[a ψmag]T, где а - это величина трехосевого ускорения, ψmag - курсовой угол, вычисляемый электронным компасом,
Figure 00000036
Figure 00000037
.
[0053] Поскольку геомагнитное поле имеет слабую интенсивность, оно подвержено влиянию окружающих ферромагнитных материалов и электромагнитных полей. Поэтому необходимо откалибровать гироскоп прежде всего. Калибровочная модель эллипса электронного компаса устанавливается для устранения интерференции геомагнитного поля. Полученная интенсивность магнитного поля вводится с помощью метода наименьших квадратов в сам процесс калибровки, таким образом, чтобы обеспечить получение указанных выше параметров.
[0054] Этап S2: получение данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС.
[0055] Этап S2 получения данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС, описан подробно далее:
[0056] Угловую скорость транспортного средства получают посредством гироскопа, и компенсируют смещение нуля гироскопа.
[0057] Датчик ускорения используют для получения данных об ускорении транспортного средства.
[0058] Информацию по интенсивности геомагнитного поля транспортного средства получают посредством геомагнитного датчика.
[0059] Этап S3: согласно полученным данным, включая ускорение и угловую скорость движения транспортного средства, интенсивность геомагнитного поля, вычисляют угол, скорость, положение и курсовой угол транспортного средства посредством установленных модели ошибок гироскопа и калибровочной модели эллипса электронного компаса.
[0060] Этап S3 вычисления угла, скорости, положения и курсового угла транспортного средства посредством установленной модели ошибок гироскопа, калибровочной модели эллипса электронного компаса, в соответствии с полученными данными, включая ускорение и угловую скорость движения транспортного средства, и интенсивность геомагнитного поля, подробно описан далее.
[0061] Данные по угловому положению получают посредством интегрального вычисления угловой скорости с помощью модели ошибок гироскопа.
[0062] Скорость вычисляют путем интегрирования данных по ускорению, и информация по положению вычисляют путем дальнейшего интегрирования скорости.
[0063] Курсовой угол транспортного средства затем вычисляют исходя из данных по интенсивности геомагнитного поля, которая компенсируется параметром калибровки и корректируется углом наклона, и оба показателя, параметр калибровки и угол наклона, вычисляют посредством эллиптической модели.
[0064] Информацию по движению транспортного средства получают датчиком на основе МЭМС в режиме реального времени. Угловая скорость транспортного средства, полученная посредством гироскопа, корректируется оценкой состояния и смещением нуля гироскопа. Угловая скорость транспортного средства интегрируется для вычисления приращения угла. Показания геомагнитного датчика корректируются и компенсируются данными по мягкому и жесткому магнетизму, а также углом наклона для вычисления курсового угла.
[0065] Этап S4: выполняют совместную обработку данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), и обновляют в режиме реального времени динамическое угловое положение транспортного средства.
[0066] Этап S4 совместной обработки данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF), и обновления в режиме реального времени динамического углового положения транспортного средства, подробно описан далее.
[0067] Данные о положении транспортного средства вычисляют с помощью семиразмерной модели расширенного фильтра Калмана (EKF), посредством алгоритма обновления кватерниона положения, где процесс вычисления алгоритма расширенного фильтра Калмана (EKF) описан ниже:
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Рk(+)=[I-KkНkk(-)
Figure 00000042
Figure 00000043
[0068] В приведенной выше формуле, k - точка отсчета времени,
Figure 00000044
- оценка состояния системы, (-) - предыдущая точка отсчета времени, (+) - последующая точка отсчета времени, Фk - матрица перехода состояния, Рk - матрица минимума среднеквадратической ошибки, Q - ковариационная матрица, соответствующая вектору состояния, Kk - выигрыш ошибки, yk - вектор наблюдения, Hk - переходная матрица для уравнения наблюдения, Rk - ковариационная матрица, соответствующая вектору наблюдения.
Figure 00000045
[0069] В приведенной выше формуле Q - вектор кватерниона, q0, q1, q2, q3 - скаляры, формирующие вектор кватерниона, i, j, k - единичные вектора в трехмерной системе координат.
Figure 00000046
[0070] В приведенной выше формуле
Figure 00000047
- матрица ротации для преобразования системы координат носителя в навигационную систему координат.
Figure 00000048
[0071] В приведенной выше формуле γ, θ, ψ - угол крена, угол наклона в продольной плоскости и курсовой угол соответственно.
[0072] В приведенной выше формуле, девятиосевой датчик на основе МЭМС составлен из трехосевого гироскопа, трехосевого акселерометра и трехосевого геомагнитного датчика.
[0073] Этап S5: извлечение данных об угловом положении транспортного средства из обновленных данных о положении транспортного средства, для определения данных о величине угла положения. Угловое положение транспортного средства включает в себя угол наклона в продольной плоскости, угол крена и курсовой угол,
Figure 00000049
Курсовой угол:
Figure 00000050
Угол наклона в продольной плоскости:
θ=θprinciple
Угол крена:
Figure 00000051
[0074] Угловое положение транспортного средства может быть извлечено из обновленной и рассчитанной матрицы положения
Figure 00000052
, включая угол наклона в продольной плоскости, угол крена и курсовой угол. Поскольку угол наклона в продольной плоскости θ определен в интервале [-90°, +90°], что согласуется с основным значением обратной функции синуса, то не возникает проблемы многозначности. Угол крена γ определен в интервале [180°, 180°]. Курсовой угол ψ определен в интервале [0°, 360°]. Следовательно, есть проблемы с многозначностью для обоих γ и ψ. После того как основное значение рассчитано, специальный квадрант может быть определен элементами из
Figure 00000053
.
[0075] Преимущества, которые предоставляет изобретение, представлены ниже: ускорение и угловая скорость движущегося объекта получаются в режиме реального времени посредством датчика на основе МЭМС. Угловое ускорение, выдаваемое гироскопом, интегрируется для получения в конечном итоге значения угла. Ускорение интегрируется для вычисления скорости, которая далее интегрируется для вычисления информации о положении. Геомагнитное поле оценивается посредством геомагнитного датчика, и курсовой угол вычисляется посредством компенсационного алгоритма и совместной обработки данных гироскопа. Далее, данные о положениях преобразовывают в переходную матрицу для преобразования системы координат носителя в навигационную систему координат. Эта переходная матрица выступает в роли "математической платформы". Алгоритм бесплатформенной инерциальной навигационной системы SINS применяется к сельскохозяйственной машине, и переходная матрица представляет особую важность. Поскольку сельскохозяйственная машина находится в движении, то ее положение также постоянно изменяется. Таким образом, переходная матрица также должна постоянно пересчитываться и обновляться. Общепринятые алгоритмы обновления положения включают алгоритм углов Эйлера, алгоритм косинуса направления и алгоритм кватерниона. По сравнению с алгоритмом углов Эйлера, алгоритм кватерниона не имеет точки сингулярности. По сравнению с алгоритмом косинуса направления, алгоритм кватерниона имеет меньшую величину вычислений. Таким образом, алгоритм кватерниона является наиболее подходящим для использования во встроенном продукте. Геомагнитное поле Земли и модель ошибок гироскопа определяются в несущей поверхности сельскохозяйственной машины, и семиразмерный расширенный фильтр Калмана EKF применяется для обновления матрицы положения. Производится оценка кватерниона и нулевого смещения гироскопа. Затем производится наблюдение курсового угла, вычисляемого исходя из ускорения и интенсивности магнитного поля, таким образом давая возможность получить высокоточное трехмерное угловое положение. Алгоритм компенсации ошибок и корректирующий алгоритм существенно снижают влияние ошибок в алгоритме бесплатформенной ИНС (SINS). Датчик на основе МЭМС и алгоритм бесплатформенной ИНС обеспечивают высокую эффективность данного изобретения. Как показало тестирование на тракторе, ошибка курсового угла меньше чем 0,1°, и ошибки угла наклона в продольной плоскости и угла крена меньше чем 0,01°. Так как кватернион используется как вектор положения фильтра Калмана, точность вычисления целевых параметров может быть далее улучшена.
[0076] Приведенное выше описание является лишь иллюстрацией конкретных воплощений настоящего изобретения, но объем защиты настоящего изобретения этим не ограничивается. Модификации или замены, легко понимаемые специалистом в данной области с обычной квалификацией, в пределах объема раскрытия настоящего изобретения, все должны попадать в объем защиты настоящего изобретения. Таким образом, объем защиты настоящего изобретения должен определяться прилагаемой формулой изобретения.

Claims (49)

1. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС, отличающийся тем, что он включает:
установку модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF) и задание вектора параметров, соответствующего динамическому положению транспортного средства;
получение данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС;
вычисление угла, скорости, данных о положении и курсового угла транспортного средства посредством установленной модели ошибок гироскопа и калибровочной модели эллипса электронного компаса в соответствии с полученными данными, включая ускорение и угловую скорость движения транспортного средства, и интенсивность геомагнитного поля; и
совместную обработку данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF) и обновление в режиме реального времени динамического углового положения транспортного средства;
причем девятиосевой датчик на основе МЭМС составлен из трехосевого гироскопа, трехосевого датчика ускорения и трехосевого геомагнитного датчика.
2. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС по п. 1, отличающийся тем, что установка модели ошибок гироскопа, калибровочной модели эллипса электронного компаса и семиразмерной фильтрующей модели на основе расширенного фильтра Калмана (EKF) и задание вектора параметров, соответствующего динамическому положению транспортного средства, также включают:
вычисление угловой скорости гироскопа в модели ошибок гироскопа через формулу вычисления ошибки гироскопа, где формула вычисления ошибки гироскопа следующая: ω=ωib+bωr+bωg, где ω - угловая скорость, выдаваемая гироскопом, ωib - реальная угловая скорость гироскопа, bωr - смещение нуля гироскопа и bωg - белый шум, выдаваемый гироскопом;
устранение интерференции магнитного поля посредством калибровочной модели эллипса электронного компаса, где калибровочная модель эллипса электронного компаса следующая:
Figure 00000054
, где mх, mу - интенсивности магнитного поля, Xoffset и Yoffset - жесткие магнитные интерференции, Xsf и Ysf - мягкие магнитные интерференции;
обновление положения транспортного средства посредством семиразмерной фильтрующей модели расширенного фильтра Калмана (EKF), где семиразмерная фильтрующая модель расширенного фильтра Калмана использует расширенный фильтр Калмана для семиразмерного вектора состояния, и расширенный фильтр Калмана включает уравнение состояния и уравнение наблюдения:
Figure 00000055
Figure 00000056
где матрица состояния следующая:
Figure 00000057
, q - кватернион векторов q0, q1, q2, q3, и bωr - смещение нуля XYZ трехосевого гироскопа, где ω - угловая скорость, выдаваемая гироскопом, w1 - матрица шума процесса, v1 - матрица шума наблюдения, у - вектор наблюдения,
Figure 00000058
, где а - это величина трехосевого ускорения, ψmag - курсовой угол, вычисляемый электронным компасом,
Figure 00000059
Figure 00000060
3. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС по п. 2, отличающийся тем, что получение данных, включая ускорение и угловую скорость движения транспортного средства, и интенсивности геомагнитного поля в режиме реального времени посредством девятиосевого датчика на основе МЭМС также включает:
получение угловой скорости транспортного средства посредством гироскопа и компенсацию смещения нуля гироскопа;
получение ускорения транспортного средства посредством датчика ускорения и
получение интенсивности геомагнитного поля транспортного средства посредством геомагнитного датчика.
4. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС по п. 3, отличающийся тем, что вычисление угла, скорости, информации о положении и курсового угла транспортного средства посредством установленной модели ошибок гироскопа, калибровочной модели эллипса электронного компаса в соответствии с полученными данными, включая ускорение и угловую скорость движения транспортного средства, и интенсивностью геомагнитного поля также включает:
получение данных по углу посредством интегрального вычисления угловой скорости с помощью модели ошибок гироскопа;
вычисление скорости путем интегрирования данных ускорения и вычисление информации по положению путем дальнейшего интегрирования скорости и
вычисление курсового угла транспортного средства исходя из интенсивности геомагнитного поля, которую компенсируют посредством параметра калибровки и корректируют посредством угла наклона, причем оба показателя, параметр калибровки и угол наклона, вычисляют посредством эллиптической модели.
5. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС по п. 4, отличающийся тем, что совместная обработка данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной модели расширенного фильтра Калмана (EKF) и обновление в режиме реального времени динамического углового положения транспортного средства также включают:
вычисление динамического углового положения транспортного средства с помощью семиразмерной фильтрующей модели расширенного фильтра Калмана (EKF) посредством алгоритма обновления кватерниона положения, где процесс вычисления алгоритма расширенного фильтра Калмана (EKF) следующий:
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
,
где k - точка отсчета времени,
Figure 00000068
- оценка состояния системы, (-) - предыдущая точка отсчета времени, (+) - последующая точка отсчета времени, Фk - матрица перехода состояния, Рk - матрица минимума среднеквадратической ошибки, Q - ковариационная матрица, соответствующая вектору состояния, Kk - выигрыш ошибки, уk - вектор наблюдения, Нk - переходная матрица для уравнения наблюдения, Rk - ковариационная матрица, соответствующая вектору наблюдения;
Figure 00000069
где Q - вектор кватерниона, q0, q1, q2, q3 - скаляры, формирующие вектор кватерниона, i, j, k - единичные вектора в трехмерной системе координат, обновленная матрица положения следующая:
Figure 00000070
где
Figure 00000071
- матрица ротации для преобразования системы координат носителя в навигационную систему координат,
Figure 00000072
где γ, θ, ψ - угол крена, угол наклона в продольной плоскости и курсовой угол соответственно.
6. Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе МЭМС по п. 5, отличающийся тем, что после совместной обработки данных по углу, скорости, положению и курсовому углу транспортного средства посредством семиразмерной фильтрующей модели расширенного фильтра Калмана (EKF) и обновления в режиме реального времени динамического углового положения транспортного средства выполняют:
извлечение углового положения транспортного средства из обновленного динамического углового положения транспортного средства для определения величины углового положения, причем угловое положение транспортного средства включает в себя угол наклона в продольной плоскости, угол крена и курсовой угол, где
Figure 00000073
курсовой угол:
Figure 00000074
угол наклона в продольной плоскости:
Figure 00000075
угол крена:
Figure 00000076
RU2017125035A 2015-10-13 2016-07-04 Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе мэмс RU2662460C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510664990.3A CN105203098B (zh) 2015-10-13 2015-10-13 基于九轴mems传感器的农业机械全姿态角更新方法
CN201510664990.3 2015-10-13
PCT/CN2016/088316 WO2017063387A1 (zh) 2015-10-13 2016-07-04 基于九轴mems传感器的农业机械全姿态角更新方法

Publications (1)

Publication Number Publication Date
RU2662460C1 true RU2662460C1 (ru) 2018-07-26

Family

ID=54950909

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017125035A RU2662460C1 (ru) 2015-10-13 2016-07-04 Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе мэмс

Country Status (6)

Country Link
US (1) US20170350721A1 (ru)
EP (1) EP3364153B1 (ru)
KR (1) KR102017404B1 (ru)
CN (1) CN105203098B (ru)
RU (1) RU2662460C1 (ru)
WO (1) WO2017063387A1 (ru)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203098B (zh) * 2015-10-13 2018-10-02 上海华测导航技术股份有限公司 基于九轴mems传感器的农业机械全姿态角更新方法
CN106931965B (zh) * 2015-12-31 2021-04-13 中国移动通信集团吉林有限公司 一种确定终端姿态的方法及装置
CN105588567B (zh) * 2016-01-25 2018-03-27 北京航空航天大学 一种自动电子罗盘校准辅助式的航姿参考系统及方法
JP6511406B2 (ja) * 2016-02-10 2019-05-15 クラリオン株式会社 キャリブレーションシステム、キャリブレーション装置
CN105975989B (zh) * 2016-05-10 2019-03-19 东南大学 一种基于九轴运动传感器的肘部运动状态识别方法
CN106444809B (zh) * 2016-10-12 2024-04-16 湖南绿野航空科技有限公司 一种无人机飞行控制器
CN106706018B (zh) * 2016-12-28 2019-06-14 重庆爱奇艺智能科技有限公司 Vr设备中九轴传感器性能的测试方法、装置及测试转台
CN108426573B (zh) * 2017-02-14 2023-04-07 中兴通讯股份有限公司 一种终端设备的行人步态检测方法及终端设备
CN107085246A (zh) * 2017-05-11 2017-08-22 深圳合优科技有限公司 一种基于mems的人体动作识别方法和装置
CN107560613B (zh) * 2017-08-15 2020-03-31 江苏科技大学 基于九轴惯性传感器的机器人室内轨迹跟踪系统及方法
JP7025215B2 (ja) * 2018-01-05 2022-02-24 ローム株式会社 測位システム及び測位方法
US10882446B2 (en) * 2018-01-22 2021-01-05 Henan Polytechnic University Graded early warning system for rollover of heavy-duty truck based on time-varying interactive kalman filtering and early warning method thereof
FR3079026B1 (fr) * 2018-03-15 2021-01-01 Sysnav Procede de calibration d'un gyrometre equipant un vehicule
CN108693773B (zh) * 2018-04-04 2021-03-23 南京天辰礼达电子科技有限公司 一种农业机械自动驾驶滑坡偏差自适应估计方法
CN108897333A (zh) * 2018-07-06 2018-11-27 深圳臻迪信息技术有限公司 姿态估算方法、装置和无人机
CN108680189B (zh) * 2018-07-09 2024-04-12 无锡凌思科技有限公司 一种基于卡尔曼滤波的mems陀螺仪z轴零偏动态补偿方法
CN109211267B (zh) * 2018-08-14 2022-08-23 广州虚拟动力网络技术有限公司 一种惯性动作捕捉姿态快速校准方法及系统
EP3874926B1 (en) * 2018-10-30 2022-12-21 Tokyo Keiki Inc. Error correction apparatus
CN109238262B (zh) * 2018-11-05 2020-10-30 珠海全志科技股份有限公司 一种航向姿态解算及罗盘校准抗干扰方法
CN109540135B (zh) * 2018-11-09 2020-07-31 华南农业大学 水田拖拉机位姿检测和偏航角提取的方法及装置
CN109579836B (zh) * 2018-11-21 2022-09-06 阳光凯讯(北京)科技有限公司 一种基于mems惯性导航的室内行人方位校准方法
CN109724596A (zh) * 2018-12-07 2019-05-07 江苏大学 一种基于最小二乘法和卡尔曼滤波的智能拖拉机定位方法
CN109764868A (zh) * 2019-02-28 2019-05-17 深圳市伟文无线通讯技术有限公司 一种基于六轴传感器设备安装姿态校准方法
CN109813312A (zh) * 2019-03-05 2019-05-28 南京理工大学 一种卡片式测量物体姿态角的测量装置及方法
CN110057381A (zh) * 2019-03-20 2019-07-26 深圳市元征科技股份有限公司 一种导航系统的零速修正方法及系统
CN110031020A (zh) * 2019-03-28 2019-07-19 广州英卓电子科技有限公司 一种平面磁场校正方法及其装置
CN110007354B (zh) * 2019-04-22 2020-11-06 成都理工大学 无人机半航空瞬变电磁接收线圈飞行参数测量装置及方法
CN110207697B (zh) * 2019-04-29 2023-03-21 南京航空航天大学 基于角加速度计/陀螺/加速度计的惯性导航解算方法
CN110702113B (zh) * 2019-05-09 2022-12-27 中科探海(苏州)海洋科技有限责任公司 基于mems传感器的捷联惯导系统数据预处理和姿态解算的方法
CN110132257B (zh) * 2019-05-15 2023-03-24 吉林大学 基于多传感器数据融合的人体行为预测方法
CN110281724A (zh) * 2019-05-31 2019-09-27 惠州市德赛西威汽车电子股份有限公司 一种主动式底盘自稳系统及其车辆
CN110285830B (zh) * 2019-07-01 2022-12-27 中科探海(苏州)海洋科技有限责任公司 基于mems传感器的sins/gps速度匹配对准方法
CN110319833B (zh) * 2019-07-09 2022-07-15 哈尔滨工程大学 一种无误差的光纤陀螺捷联惯导系统速度更新方法
CN110455312B (zh) * 2019-08-08 2021-05-14 中国科学院长春光学精密机械与物理研究所 一种陀螺安装误差标校系统及其标校方法
CN110595434B (zh) * 2019-09-10 2021-09-03 兰州交通大学 基于mems传感器的四元数融合姿态估计方法
CN110608741A (zh) * 2019-09-25 2019-12-24 北京安达维尔科技股份有限公司 一种提高飞机航姿参考系统姿态解算精度的方法
CN110865580B (zh) * 2019-11-27 2022-07-26 中国船舶重工集团公司第七0七研究所 基于时分复用的半球谐振陀螺全差分控制系统及控制方法
CN111006660A (zh) * 2019-12-11 2020-04-14 陕西瑞特测控技术有限公司 一种组合惯导姿态计算方法
CN110887480B (zh) * 2019-12-11 2020-06-30 中国空气动力研究与发展中心低速空气动力研究所 基于mems传感器的飞行姿态估计方法及系统
CN110928324B (zh) * 2019-12-30 2023-07-14 北京润科通用技术有限公司 无人机飞行参数采集设备及其校准方法
CN111121824B (zh) * 2020-01-03 2022-11-22 西北工业大学 一种mems传感器的标定方法
CN111207734B (zh) * 2020-01-16 2022-01-07 西安因诺航空科技有限公司 一种基于ekf的无人机组合导航方法
CN111426318B (zh) * 2020-04-22 2024-01-26 中北大学 基于四元数-扩展卡尔曼滤波的低成本ahrs航向角补偿方法
CN111623768B (zh) * 2020-04-24 2022-04-12 北京航天控制仪器研究所 一种基于克雷洛夫角奇异条件下的姿态角解算方法
CN111551168A (zh) * 2020-04-30 2020-08-18 江苏帝一集团有限公司 一种水下机器人位姿数据采集系统及其数据融合方法
US11937530B2 (en) * 2020-05-01 2024-03-26 Kinze Manufacturing, Inc. GPS location augmentation and outage playthrough
CN111693019B (zh) * 2020-05-20 2021-04-20 西安交通大学 一种姿态传感装置及数据融合、姿态解算方法
US11332152B2 (en) * 2020-05-29 2022-05-17 GM Global Technology Operations LLC Method and apparatus for determining a velocity of a vehicle
CN111707268B (zh) * 2020-06-19 2022-07-29 中国人民解放军国防科技大学 基于双欧法和四元数混合编排的无人机导航方法和系统
CN111765906B (zh) * 2020-07-29 2022-06-14 三一机器人科技有限公司 误差校准方法及装置
CN111854762A (zh) * 2020-08-05 2020-10-30 翟瑞永 一种基于卡尔曼滤波算法的三维定位方法及其定位系统
CN111896007B (zh) * 2020-08-12 2022-06-21 智能移动机器人(中山)研究院 一种补偿足地冲击的四足机器人姿态解算方法
CN112539743B (zh) * 2020-11-09 2023-02-28 北京电子工程总体研究所 一种基于陀螺寻北仪的连续寻北方位更新方法和系统
CN112611380B (zh) * 2020-12-03 2022-07-01 燕山大学 基于多imu融合的姿态检测方法及其姿态检测装置
CN112304340B (zh) * 2020-12-24 2021-04-06 北京轻威科技有限责任公司 一种基于九轴imu的姿态解算方法、装置及存储介质
CN113063416B (zh) * 2021-02-05 2023-08-08 重庆大学 一种基于自适应参数互补滤波的机器人姿态融合方法
CN113108790B (zh) * 2021-05-14 2024-06-25 深圳中智永浩机器人有限公司 机器人imu角度测量方法、装置、计算机设备及存储介质
CN113551665B (zh) * 2021-06-25 2023-08-11 中国科学院国家空间科学中心 一种用于运动载体的高动态运动状态感知系统及感知方法
CN113569653A (zh) * 2021-06-30 2021-10-29 宁波春建电子科技有限公司 一种基于面部特征信息的三维头部姿态估计算法
CN113587925B (zh) * 2021-07-16 2023-07-07 湖南航天机电设备与特种材料研究所 一种惯性导航系统及其全姿态导航解算方法与装置
CN113679568B (zh) * 2021-09-01 2022-10-04 南京医科大学 机器人辅助脑卒中患者上肢多模态镜像康复训练评分系统
CN113640726B (zh) * 2021-10-19 2021-12-21 青岛杰瑞自动化有限公司 一种双轴磁强计的多方位椭圆拟合标定方法及系统
CN114111749B (zh) * 2021-10-29 2022-12-02 江苏凯卓立液压设备有限公司 一种利用陀螺仪判断和计算液压尾板动作的系统及方法
CN113865616B (zh) * 2021-12-01 2022-04-05 成都九鼎科技(集团)有限公司 车辆悬架姿态测量方法和测量系统
CN114910045B (zh) * 2021-12-10 2024-04-19 浙江利尔达客思智能科技有限公司 一种基于六轴获取偏航角的方法
CN114279426B (zh) * 2021-12-30 2023-12-15 杭州电子科技大学 一种六轴优化的磁力计在线校准方法
CN114485636B (zh) * 2022-01-18 2024-06-21 中国人民解放军军事科学院国防科技创新研究院 一种仿生罗盘
CN114659488B (zh) * 2022-02-08 2023-06-23 东风悦享科技有限公司 一种基于误差卡尔曼滤波的高动态车辆姿态估计方法
CN115147313B (zh) * 2022-09-01 2022-12-30 中国科学院空天信息创新研究院 椭圆轨道遥感图像的几何校正方法、装置、设备及介质
KR102521839B1 (ko) * 2022-10-11 2023-04-14 (주)아이하트 이동체의 동작에 따른 위험발생 감지방법, 장치 및 컴퓨터프로그램

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032950A1 (en) * 2005-08-05 2007-02-08 Raven Industries, Inc. Modular high-precision navigation system
RU127452U1 (ru) * 2013-01-09 2013-04-27 Общество с ограниченной ответственностью "Снэйл-Групп" Бортовой самописец для маломерного судна
US8583315B2 (en) * 2004-03-19 2013-11-12 Agjunction Llc Multi-antenna GNSS control system and method
US8594879B2 (en) * 2003-03-20 2013-11-26 Agjunction Llc GNSS guidance and machine control
US8639416B2 (en) * 2003-03-20 2014-01-28 Agjunction Llc GNSS guidance and machine control
RU160949U1 (ru) * 2015-12-14 2016-04-10 Игорь Викторович Рядчиков Устройство для стабилизации положения объемного тела в пространстве с силовой компенсацией отклоняющих воздействий

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934043B1 (fr) * 2008-07-18 2011-04-29 Movea Sa Procede d'estimation ameliore de l'orientation d'un objet et centrale d'attitude mettant en oeuvre un tel procede
CN101782391A (zh) * 2009-06-22 2010-07-21 北京航空航天大学 机动加速度辅助的扩展卡尔曼滤波航姿系统姿态估计方法
JP2012173190A (ja) * 2011-02-23 2012-09-10 Seiko Epson Corp 測位システム、測位方法
CN102589537B (zh) * 2012-03-05 2016-01-20 无锡汉和航空技术有限公司 一种有磁环境下无人机的电子罗盘校正方法
US9116233B2 (en) * 2012-07-10 2015-08-25 Broadcom Corporation Power mode control for sensors
KR101462007B1 (ko) * 2013-08-22 2014-11-18 한국과학기술연구원 자세 추정 장치 및 자세 추정 방법
CN103557866B (zh) * 2013-09-30 2016-06-01 美新半导体(无锡)有限公司 一种基于地磁技术的虚拟陀螺仪及算法的方法
KR101454153B1 (ko) * 2013-09-30 2014-11-03 국민대학교산학협력단 가상차선과 센서 융합을 통한 무인 자율주행 자동차의 항법시스템
US10670402B2 (en) * 2013-11-01 2020-06-02 Invensense, Inc. Systems and methods for optical sensor navigation
CN103822633B (zh) * 2014-02-11 2016-12-07 哈尔滨工程大学 一种基于二阶量测更新的低成本姿态估计方法
CN104502942A (zh) * 2015-01-06 2015-04-08 上海华测导航技术有限公司 基于卫星导航和航位推测实现农业机械定位的系统及方法
CN104677353A (zh) * 2015-03-17 2015-06-03 上海华测导航技术股份有限公司 基于mems传感器实现机械车体航向角检测的方法
CN104697526A (zh) * 2015-03-26 2015-06-10 上海华测导航技术股份有限公司 用于农业机械的捷联惯导系统以及控制方法
CN105203098B (zh) * 2015-10-13 2018-10-02 上海华测导航技术股份有限公司 基于九轴mems传感器的农业机械全姿态角更新方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594879B2 (en) * 2003-03-20 2013-11-26 Agjunction Llc GNSS guidance and machine control
US8639416B2 (en) * 2003-03-20 2014-01-28 Agjunction Llc GNSS guidance and machine control
US8583315B2 (en) * 2004-03-19 2013-11-12 Agjunction Llc Multi-antenna GNSS control system and method
US20070032950A1 (en) * 2005-08-05 2007-02-08 Raven Industries, Inc. Modular high-precision navigation system
RU127452U1 (ru) * 2013-01-09 2013-04-27 Общество с ограниченной ответственностью "Снэйл-Групп" Бортовой самописец для маломерного судна
RU160949U1 (ru) * 2015-12-14 2016-04-10 Игорь Викторович Рядчиков Устройство для стабилизации положения объемного тела в пространстве с силовой компенсацией отклоняющих воздействий

Also Published As

Publication number Publication date
US20170350721A1 (en) 2017-12-07
WO2017063387A1 (zh) 2017-04-20
KR20170104621A (ko) 2017-09-15
KR102017404B1 (ko) 2019-10-21
EP3364153B1 (en) 2020-11-25
CN105203098A (zh) 2015-12-30
EP3364153A1 (en) 2018-08-22
EP3364153A4 (en) 2019-06-05
CN105203098B (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
RU2662460C1 (ru) Способ обновления углового положения сельскохозяйственной машины, основанный на девятиосевом датчике на основе мэмс
KR102018450B1 (ko) 단일 안테나에 기초한 gnss―ins 차량 자세 결정 방법
CN107785663B (zh) 天线波束姿态控制方法和系统
KR101988786B1 (ko) 관성 항법 장치의 초기 정렬 방법
CN103630137B (zh) 一种用于导航系统的姿态及航向角的校正方法
Li et al. Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications
Sun et al. MEMS-based rotary strapdown inertial navigation system
CN109579836B (zh) 一种基于mems惯性导航的室内行人方位校准方法
CN104880189B (zh) 一种动中通天线低成本跟踪抗干扰方法
CN109238262A (zh) 一种航向姿态解算及罗盘校准抗干扰方法
CN109443349A (zh) 一种姿态航向测量系统及其融合方法、存储介质
KR101211703B1 (ko) 시선벡터를 이용한 자장계 오차 보정방법 및 이를 이용한 통합 항법 시스템
CN110487267A (zh) 一种基于vio&uwb松组合的无人机导航系统及方法
CN106403952A (zh) 一种动中通低成本组合姿态测量方法
CN102937450B (zh) 一种基于陀螺测量信息的相对姿态确定方法
CN106153069B (zh) 自主导航系统中的姿态修正装置和方法
US11408735B2 (en) Positioning system and positioning method
CN112562077B (zh) 一种融合pdr和先验地图的行人室内定位方法
CN105910606A (zh) 一种基于角速度差值的方向修正方法
CN103299247A (zh) 用于磁近场的动态追踪及补偿的设备和方法
JP2014240266A (ja) センサドリフト量推定装置及びプログラム
CN111307114B (zh) 基于运动参考单元的水面舰船水平姿态测量方法
CN104613964A (zh) 一种跟踪脚部运动特征的步行者定位方法及系统
CN111189446A (zh) 一种基于无线电的组合导航方法
Hemanth et al. Calibration of 3-axis magnetometers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200705