RU2660655C2 - Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах - Google Patents

Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах Download PDF

Info

Publication number
RU2660655C2
RU2660655C2 RU2015148627A RU2015148627A RU2660655C2 RU 2660655 C2 RU2660655 C2 RU 2660655C2 RU 2015148627 A RU2015148627 A RU 2015148627A RU 2015148627 A RU2015148627 A RU 2015148627A RU 2660655 C2 RU2660655 C2 RU 2660655C2
Authority
RU
Russia
Prior art keywords
mass
ion
sensitivity
ratio
time
Prior art date
Application number
RU2015148627A
Other languages
English (en)
Other versions
RU2015148627A (ru
Inventor
Николай Васильевич Краснов
Тимофей Вячеславович Помозов
Original Assignee
Общество с ограниченной ответственностью "Альфа" (ООО "Альфа")
Общество с ограниченной ответственностью "Биотехнологические аналитические приборы" (ООО "БиАП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Альфа" (ООО "Альфа"), Общество с ограниченной ответственностью "Биотехнологические аналитические приборы" (ООО "БиАП") filed Critical Общество с ограниченной ответственностью "Альфа" (ООО "Альфа")
Priority to RU2015148627A priority Critical patent/RU2660655C2/ru
Publication of RU2015148627A publication Critical patent/RU2015148627A/ru
Application granted granted Critical
Publication of RU2660655C2 publication Critical patent/RU2660655C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Изобретение относится к области масс-спектрометрии. Технический результат - обеспечение возможности плавно управлять соотношением разрешающей способности по массе и чувствительности в многоотражательном времяпролётном масс-спектрометре без сужения анализируемого массового диапазона. Особенностью способа является изменение соотношения разрешающей способности по массе и чувствительности соответственно соотношению кинетических энергий ионных пакетов в направлении дрейфа и в направлении их импульсного выталкивания и кратно целому количеству оборотов ионных траекторий. Регулируемым параметром, влияющим на соотношение разрешающей способности по массе и чувствительности, является величина электрического напряжения, определяющего энергию непрерывного пучка ионов, входящих в импульсный ортогональный источник ионов, и энергию дрейфа ионных пакетов в масс-спектрометре в направлении непрерывного пучка ионов. 1 ил.

Description

Предлагаемое изобретение относится к области масс-спектрометрии, а именно к многоотражательным времяпролётным масс-спектрометрам. Времяпролётные масс-спектрометры в настоящее время являются одним из наиболее востребованных типов приборов для анализа состава и структуры веществ в биохимии, медицине и многих других отраслях науки и промышленности. Преимуществами времяпролётных приборов являются возможность анализа ионов в практически неограниченном диапазоне масс, высокие чувствительность и информативность получаемых масс-спектров, скорость анализа и точность определения массы при типичном высоком уровне разрешающей способности по массам от 5000 до 20000. Разрешающая способность – одна из важнейших аналитических характеристик времяпролётных масс-спектрометров, стремление к увеличению которой представляет собой общую тенденцию в истории развития времяпролётных приборов и диктуется перспективами расширения применений времяпролётного метода анализа вещества на области задач, характеризующихся сложными молекулярными масс-спектрами (нефтехимия, протеомика и т.д.) или наличием в атомных спектрах близких по массе изобар (анализ редких изотопов в ядерной физике). За последние несколько лет ряду зарубежных фирм (Bruker Daltonics, Agilent Technologies, Waters) удалось за счёт совершенствования технологии изготовления элементов традиционных времяпролётных масс-спектрометров рефлектронного типа и увеличения их физических размеров достичь в таких приборах величин разрешающей способности по массе порядка 40000-50000. Наиболее перспективным направлением развития времяпролётных масс-спектрометров является разработка многоотражательных приборов, в которых увеличение длины пролёта ионов - ключевой фактор повышения разрешающей способности по массе - достигается с помощью многократного отражения ионов в бессеточных ионных зеркалах либо многократными поворотами ионов в секторных электростатических дефлекторах. В многоотражательных времяпролётных масс-спектрометрах возможно увеличение разрешающей способности по массе до 100000 и более. Для расширения аналитических и методических возможностей масс-спектрометрического метода анализа вещества часто на практике часто возникает необходимость управления соотношением разрешающей способности и чувствительности масс-спектрометра. При высокой разрешающей способности и, соответственно, больших временах и длинах пролёта ионных пакетов чувствительность времяпролётного масс-спектрометра существенно снижается прежде всего вследствие невысокого процента использования анализируемого вещества, рассеяния ионов на остаточном газе и апертурах ионно-оптической системы, поэтому при малых концентрациях анализируемого вещества получение представительного масс-спектра становится невозможным. В то же время наличие достаточно высокой концентрации анализируемого вещества позволяет при увеличении разрешающей способности без потери информативности выявить характерные особенности масс-спектра, что особенно актуально при анализе веществ со сложной структурой, например белков и пептидов, и при этом не сузить анализируемого диапазона масс при достижения оптимального соотношения разрешающей способности по массе и чувствительности времяпролётного масс-спектрометра.
Многоотражательный времяпролётный масс-спектрометр челночного типа, в котором ионные пакеты совершают периодические обороты в пространстве между двумя бессточными ионными зеркалами, состоящими из набора цилиндрических электродов, описан в работе [1]. Стандартным способом ввода и вывода ионных пакетов в масс-спектрометр является их инжекция и выброс через отверстия в отражательных электродах зеркал при отключении или снижении потенциалов, прикладываемых к этим электродам. Соотношение разрешающей способности и чувствительности времяпролётного прибора может регулироваться путём изменения количества оборотов ионных пакетов в пространстве между ионными зеркалами, однако существенным недостатком масс-спектрометра челночного типа является существенное сужение анализируемого массового диапазона, особенно при достижении высоких величин разрешающей способности вследствие необходимости импульсного переключения электродов.
Аналогичным недостатком обладают многооборотные времяпролётные масс-спектрометры на основе секторных электростатических дефлекторов с углом поворота 157° с организацией движения ионных пакетов по замкнутым траекториям [2-3], в которых инжекция ионных пакетов и их вывод осуществляются через отверстия во внешних секторных электродах при импульсном выключении потенциалов соответствующих дефлекторов.
Многооборотный времяпролётный масс-спектрометр на основе цилиндрических электростатических дефлекторов, функционирующий в режиме полного массового диапазона, описан в работе [4]. В приборе реализовано спиральное движение ионных пакетов, при котором они движутся по 8-образной траектории в плоскости пространственной дисперсии и медленно дрейфуют в перпендикулярном этой плоскости направлении вдоль вытянутых электродов секторных дефлекторов. Для осуществления периодической пространственной фокусировки ионных пакетов в направлении их дрейфа в межэлектродных зазорах цилиндрических секторов используется периодический набор пластин Мацуды, определяющий шаг смещения ионных траекторий в указанном направлении после одного полного оборота. Таким образом, поскольку общее количество оборотов пакетов заряженных частиц оказывается фиксированным геометрией времяпролётного прибора, возможность управления соотношением разрешающей способности и чувствительности отсутствует.
Возможность управления соотношением разрешающей способности по массе и чувствительности в режиме полного массового диапазона реализована в планарном многоотражательном времяпролётном масс-спектрометре, описанном в работе [5], который выбран в качестве прототипа предлагаемого изобретения. В рассматриваемом приборе многократное отражение ионных пакетов осуществляется между двумя одинаковыми планарными бессточными электростатическими зеркалами, каждый электрод которых выполнен в виде пары пластин, симметрично расположенных относительно общей для обоих зеркал средней плоскости и вытянутых в направлении дрейфа ионных пакетов. Ионные пакеты инжектируются в масс-спектрометр под маленьким углом дрейфа и, отражаясь от планарных зеркал, движутся вдоль зигзагообразной оптической оси. Пространственное ограничение ионных пакетов в направлении их дрейфа осуществляется при помощи блока помещённых в центре дрейфового пространства периодических двумерных одиночных линз, осуществляющих периодическую фокусировку заряженных частиц. Крайние одиночные линзы блока выполняют функции дефлекторов: нижняя линза задаёт угол дрейфа ионных пакетов, определяющий шаг ионных траекторий в направлении дрейфа, а верхняя отклоняет ионные пакеты на детектор либо осуществляет разворот ионных пакетов в направлении дрейфа, двукратно увеличивая их время пролёта. Таким образом, управление соотношением разрешающей способности по массе и чувствительности в масс-спектрометре осуществляется настройкой электрического потенциала концевого дефлектора линзовой колонки. Однако реализованный в приборе способ управления соотношением разрешающей способности по массе и чувствительности имеет ряд недостатков. Во-первых, управление рассматриваемым соотношением требует наличия двух детекторов, что усложняет конструкцию времяпролётного прибора и увеличивает его стоимость. Во-вторых, в масс-спектрометре возможно реализовать только два режима работы, соответствующих различным значениям соотношения разрешающей способности и чувствительности, и нельзя обеспечить плавного управления этим соотношением: при реализации разворота ионных пакетов концевым дефлектором разрешающая способность и чувствительность прибора меняются скачкообразно. Наконец, пространственная высота ионных пакетов в направлении их дрейфа в масс-спектрометре не превышает нескольких миллиметров из-за быстрого роста аберрационного уширения временного сигнала и, соответственно, ухудшения разрешающей способности, обусловленного прохождением ионными пакетами периодических линз и их разворотом в концевом дефлекторе, что является фундаментальным ограничением чувствительности времяпролётного прибора.
Задачей изобретения является организация плавного управления соотношением разрешающей способности по массе и чувствительности времяпролётного масс-спектрометра без сужения анализируемого диапазона масс. Поставленная задача решается за счёт формирования периодически поворачиваемых траекторий ионных пакетов с помощью планарных бессеточных ионных зеркал, к электродам которых прикладываются постоянные электрические напряжения. В отличие от прототипа, число оборотов ионных траекторий и, соответственно, разрешающая способность времяпролётного масс-спектрометра определяются управляемой энергией ионных пакетов в направлении дрейфа, ортогональном направлению их импульсного выталкивания. При этом соотношение кинетических энергий ионных пакетов в направлении дрейфа и в направлении их импульсного выталкивания соответствует целому количеству оборотов ионных траекторий с сохранением анализируемого массового диапазона.
На фиг. 1 представлена схема предлагаемого изобретения. Для пояснения сущности изобретения можно рассмотреть следующую последовательность событий. Непрерывный ионный пучок с управляемой энергией дрейфа (1) из источника поступает в устройство ортогонального ввода (2), в котором он ускоряется периодически создаваемым импульсным электрическим полем в направлении, перпендикулярном направлению движения непрерывного пучка, формируя на выходе импульсного конвертера ионные пакеты с короткой длительностью временного сигнала. Ионные пакеты, совершая отражения в пространстве между бессеточными ионными зеркалами (3), к электродам которых прикладываются постоянные электрические напряжения, движутся по зигзагообразным траекториям и в итоге попадают в окно детектора (4). Импульсный конвертер, ионные зеркала и детектор расположены в высоковакуумной камере (5). Приведённые на фиг. 1 траектории ионных пакетов (6А) и (6Б) соответствуют различным значениям их энергии дрейфа. При этом соотношение кинетических энергий ионных пакетов в направлении дрейфа и в направлении их импульсного выталкивания соответствует целому количеству оборотов траекторий ионных пакетов. Время разворота заряженных частиц в устройстве ортогонального ввода определяется выражением
Figure 00000001
, где m и Q - масса и заряд иона соответственно, E - напряжённость однородного импульсного выталкивающего поля, v0z - скорость иона в направлении, перпендикулярном направлению движения непрерывного пучка заряженных частиц в момент импульсного выталкивания.
Выполненные расчёты показывают, что при умеренных габаритах времяпролётного прибора 500 мм на 1000 мм (настольный вариант) удаётся реализовать 4 полных оборота ионных пакетов, что соответствует энергии непрерывного ионного пучка в импульсном конвертере в 16 эВ. При диаметре непрерывного ионного пучка d = 1.5 мм и угловом разбросе Δa = ±1° величина времени разворота ионов в импульсном конвертере с напряжённостью однородного выталкивающего поля E = 300 В/мм на полувысоте, оцениваемая как ΔT0/2, для ионов массы m = 1000 а.е.м. составляет 1 нс, а полный относительный энергетический разброс ионов при их ускорении до 7 кВ - приблизительно 6.4%. С учётом вносимого системой регистрации временного уширения сигнала, которое имеет гауссово распределение с полной шириной на полувысоте 1.5 нс, длительность временного сигнала на полувысоте для ионов массы m = 1000 а.е.м. составляет около 1.8 нс, что при полном времени пролёта в 214 мкс соответствует разрешающей способности 60000 (временное уширение сигнала на полувысоте, вносимое высокоразрешающими бессеточными ионными зеркалами, пренебрежимо мало по сравнению с временем разворота ионов в импульсном конвертере). Таким образом, трём полным оборотам ионных пакетов будет соответствовать разрешающая способность 45000, двум оборотам - 30000 и одному обороту - 15000 при условии неизменности времени разворота ионов в устройстве ортогонального ввода. Поскольку траектории ионных пакетов не являются замкнутыми, управление соотношением разрешающей способности по массе и чувствительности осуществляется без сужения анализируемого массового диапазона. Поскольку общая длина траекторий ионных пакетов невелика и составляет около 8 м для четырёх полных оборотов, необходимость в использовании набора периодических линз отсутствует. Отказ от периодических линз позволяет увеличить протяжённость ионных пакетов в направлении дрейфа до нескольких десятков миллиметров, что в разы повышает чувствительность времяпролётного прибора по сравнению с прототипом.
Таким образом, формирование периодически поворачиваемых траекторий ионных пакетов с помощью бессеточных ионных зеркал и управление энергией этих пакетов в направлении дрейфа способствует выполнению поставленной задачи плавного управления соотношением разрешающей способности по массе и чувствительности времяпролётного масс-спектрометра в полном массовом диапазоне.
Источники информации
1. Wollnik, H., Casares A. An energy-isochronous multi-pass time-of-flight spectrometer consisting of two coaxial electrostatic mirrors // Int. J. Mass Spectrom. 2003. V. 227. N. 2. P. 217-222.
2. Toyoda M., Okumura D., Ishihara M., Katakuse I. Multi-turn time-of-flight mass spectrometers with electrostatic sectors // J. Mass Spectrom. 2003. V. 38. N. 11. P. 1125-1142.
3. Okumura D., Toyoda M., Ishihara M., Katakuse I. A compact sector-type multi-turn time-of-flight mass spectrometer «MULTUM II» // Nucl. Instrum. Meth. Phys. Res. A. 2004. V. 519. N. 1-2. P. 331-337.
4. Satoh T., Tsuno H., Iwanaga M., Kammei Y. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory // J. Am. Soc. Mass Spectrom. 2005. V. 16. P. 1969–1975.
5. Verentchikov A. Multi-reflecting time-of-flight mass spectrometer with orthogonal acceleration // US Patent 7772547 B2. 2005.

Claims (1)

  1. Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах, основанный на формировании периодически поворачиваемых ионных траекторий с помощью ионно-оптических элементов с постоянными электрическими напряжениями, отличающийся тем, что управление соотношением разрешающей способности по массе и чувствительности в полном массовом диапазоне, определяемым количеством целых оборотов ионных траекторий, осуществляется плавным изменением энергии ионных пакетов в направлении дрейфа, ортогональном направлению их импульсного выталкивания, при этом соотношение кинетических энергий ионных пакетов в направлении дрейфа и в направлении их импульсного выталкивания должно соответствовать целому количеству оборотов ионных траекторий с сохранением анализируемого массового диапазона.
RU2015148627A 2015-11-12 2015-11-12 Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах RU2660655C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015148627A RU2660655C2 (ru) 2015-11-12 2015-11-12 Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015148627A RU2660655C2 (ru) 2015-11-12 2015-11-12 Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах

Publications (2)

Publication Number Publication Date
RU2015148627A RU2015148627A (ru) 2017-05-23
RU2660655C2 true RU2660655C2 (ru) 2018-07-09

Family

ID=58877913

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148627A RU2660655C2 (ru) 2015-11-12 2015-11-12 Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах

Country Status (1)

Country Link
RU (1) RU2660655C2 (ru)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215428A1 (en) * 2018-05-10 2019-11-14 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US10593533B2 (en) 2015-11-16 2020-03-17 Micromass Uk Limited Imaging mass spectrometer
US10629425B2 (en) 2015-11-16 2020-04-21 Micromass Uk Limited Imaging mass spectrometer
US10636646B2 (en) 2015-11-23 2020-04-28 Micromass Uk Limited Ion mirror and ion-optical lens for imaging
US10741376B2 (en) 2015-04-30 2020-08-11 Micromass Uk Limited Multi-reflecting TOF mass spectrometer
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567794B (en) 2017-05-05 2023-03-08 Micromass Ltd Multi-reflecting time-of-flight mass spectrometers
GB201806507D0 (en) 2018-04-20 2018-06-06 Verenchikov Anatoly Gridless ion mirrors with smooth fields
GB201807626D0 (en) 2018-05-10 2018-06-27 Micromass Ltd Multi-reflecting time of flight mass analyser
GB201808530D0 (en) 2018-05-24 2018-07-11 Verenchikov Anatoly TOF MS detection system with improved dynamic range
GB201810573D0 (en) 2018-06-28 2018-08-15 Verenchikov Anatoly Multi-pass mass spectrometer with improved duty cycle
GB201901411D0 (en) 2019-02-01 2019-03-20 Micromass Ltd Electrode assembly for mass spectrometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1725289A1 (ru) * 1989-07-20 1992-04-07 Институт Ядерной Физики Ан Казсср Врем пролетный масс-спектрометр с многократным отражением
WO2008047891A2 (en) * 2006-10-13 2008-04-24 Shimadzu Corporation Multi-reflecting time-of-flight mass analyser and a time-of-flight mass spectrometer including the mass analyser
US7772547B2 (en) * 2005-10-11 2010-08-10 Leco Corporation Multi-reflecting time-of-flight mass spectrometer with orthogonal acceleration
WO2012024468A2 (en) * 2010-08-19 2012-02-23 Leco Corporation Time-of-flight mass spectrometer with accumulating electron impact ion source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1725289A1 (ru) * 1989-07-20 1992-04-07 Институт Ядерной Физики Ан Казсср Врем пролетный масс-спектрометр с многократным отражением
US7772547B2 (en) * 2005-10-11 2010-08-10 Leco Corporation Multi-reflecting time-of-flight mass spectrometer with orthogonal acceleration
WO2008047891A2 (en) * 2006-10-13 2008-04-24 Shimadzu Corporation Multi-reflecting time-of-flight mass analyser and a time-of-flight mass spectrometer including the mass analyser
WO2012024468A2 (en) * 2010-08-19 2012-02-23 Leco Corporation Time-of-flight mass spectrometer with accumulating electron impact ion source

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741376B2 (en) 2015-04-30 2020-08-11 Micromass Uk Limited Multi-reflecting TOF mass spectrometer
US10593533B2 (en) 2015-11-16 2020-03-17 Micromass Uk Limited Imaging mass spectrometer
US10629425B2 (en) 2015-11-16 2020-04-21 Micromass Uk Limited Imaging mass spectrometer
US10636646B2 (en) 2015-11-23 2020-04-28 Micromass Uk Limited Ion mirror and ion-optical lens for imaging
US10950425B2 (en) 2016-08-16 2021-03-16 Micromass Uk Limited Mass analyser having extended flight path
US11328920B2 (en) 2017-05-26 2022-05-10 Micromass Uk Limited Time of flight mass analyser with spatial focussing
US11049712B2 (en) 2017-08-06 2021-06-29 Micromass Uk Limited Fields for multi-reflecting TOF MS
US11081332B2 (en) 2017-08-06 2021-08-03 Micromass Uk Limited Ion guide within pulsed converters
US11205568B2 (en) 2017-08-06 2021-12-21 Micromass Uk Limited Ion injection into multi-pass mass spectrometers
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11295944B2 (en) 2017-08-06 2022-04-05 Micromass Uk Limited Printed circuit ion mirror with compensation
US11756782B2 (en) 2017-08-06 2023-09-12 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
WO2019215428A1 (en) * 2018-05-10 2019-11-14 Micromass Uk Limited Multi-reflecting time of flight mass analyser
US11342175B2 (en) * 2018-05-10 2022-05-24 Micromass Uk Limited Multi-reflecting time of flight mass analyser

Also Published As

Publication number Publication date
RU2015148627A (ru) 2017-05-23

Similar Documents

Publication Publication Date Title
RU2660655C2 (ru) Способ управления соотношением разрешающей способности по массе и чувствительности в многоотражательных времяпролетных масс-спектрометрах
Boesl Time‐of‐flight mass spectrometry: introduction to the basics
EP2688088B1 (en) Mass spectrometer
CN108352292B (zh) 用于成像的改进的离子镜和离子光学透镜
US6469295B1 (en) Multiple reflection time-of-flight mass spectrometer
US8847155B2 (en) Tandem time-of-flight mass spectrometry with simultaneous space and velocity focusing
Satoh et al. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory
WO2005114702A1 (ja) 飛行時間型質量分析方法及び装置
US20100301202A1 (en) Tandem TOF Mass Spectrometer With High Resolution Precursor Selection And Multiplexed MS-MS
JP2011119279A (ja) 質量分析装置およびこれを用いる計測システム
US20200203142A1 (en) Quadrupole devices
Toyoda Development of multi-turn time-of-flight mass spectrometers and their applications
US7439520B2 (en) Ion optics systems
Johnson et al. Mirror switching for high-resolution ion isolation in an electrostatic linear ion trap
Stewart et al. Proof of principle for enhanced resolution multi-pass methods for the Astral analyzer
US9330896B2 (en) Mass analysis device and mass separation device
US10438788B2 (en) System and methodology for expressing ion path in a time-of-flight mass spectrometer
Toyoda et al. High-energy collision induced dissociation fragmentation pathways of peptides, probed using a multiturn tandem time-of-flight mass spectrometer “MULTUM-TOF/TOF”
JP6257609B2 (ja) 小型の飛行時間型質量分析計
WO2013134165A1 (en) Tandem time-of-flight mass spectrometry with simultaneous space and velocity focusing
CN115346855A (zh) 混合质谱装置
Guo et al. High-resolution ion microscope imaging over wide mass ranges using electrodynamic postextraction differential acceleration
WO2004021386A2 (en) Mass spectrometer
US20240136167A1 (en) Mass spectrometer and method
Giannakopulos et al. The OrbiTOF Mass Analyzer: Time-of-Flight Analysis via an Orbitrap Quadro-Logarithmic Field with Periodic Drift Focusing.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180203