RU2659726C1 - Микромодуль - Google Patents

Микромодуль Download PDF

Info

Publication number
RU2659726C1
RU2659726C1 RU2017135615A RU2017135615A RU2659726C1 RU 2659726 C1 RU2659726 C1 RU 2659726C1 RU 2017135615 A RU2017135615 A RU 2017135615A RU 2017135615 A RU2017135615 A RU 2017135615A RU 2659726 C1 RU2659726 C1 RU 2659726C1
Authority
RU
Russia
Prior art keywords
flexible board
metallized
micromodules
interlayer
contact pad
Prior art date
Application number
RU2017135615A
Other languages
English (en)
Inventor
Геннадий Андреевич Блинов
Юрий Геннадьевич Долговых
Анатолий Иванович Погалов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority to RU2017135615A priority Critical patent/RU2659726C1/ru
Application granted granted Critical
Publication of RU2659726C1 publication Critical patent/RU2659726C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structure Of Printed Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Изобретение относится к области создания малогабаритных микромодулей на гибкой плате, содержащих несколько БИС. Сущность изобретения: микромодуль содержит гибкую плату, снабженную металлизированными межслойными переходными отверстиями и смонтированными на ней кристаллами бескорпусных БИС с выступами. Металлизированные межслойные переходные отверстия имеют форму выпуклой криволинейной поверхности переменного поперечного сечения по длине, с криволинейными контактными площадками на верхней и нижней поверхности гибкой платы, выполнены с уменьшением сечения от контактной площадки на верхней и нижней поверхности к срединной плоскости платы. Техническим результатом изобретения является увеличение плотности монтажа и повышение надежности межслойных соединений малогабаритных микромодулей. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области создания малогабаритных микромодулей на гибкой плате, содержащих несколько больших интегральных схем (БИС), например, полупроводниковой памяти большой емкости и аналогичных устройств.
Известно техническое решение, позволяющее создавать подобные модули - конструкция и способ изготовления микроэлектронных приборов с высокой плотностью размещения компонентов [1]. Прибор содержит гибкую подложку с низким модулем упругости, к которой прикреплены полупроводниковые приборы. На одной стороне подложки сформированы проводники нужной конфигурации, которые через металлизированные отверстия соединяются с проводниками на другой стороне подложки и с контактными площадками для монтажа БИС. Недостатком предложенного способа является высокая трудоемкость изготовления приборов с большим количеством БИС.
Известны изделия на полиимидной пленке с использованием двухслойной коммутационной разводки с последующей металлизацией переходных отверстий и монтажом кристаллов с жесткими выводами [2]. Основным недостатком этих устройств является недостаточно высокая разрешающая способность рисунка коммутации.
Известно техническое решение - устройство, содержащее гибкую монтажную плату, бескорпусную интегральную схему и другие элементы [3], которое является наиболее близким к данному изобретению и принято за прототип.
Гибкая плата изготовлена из полиимидной пленки и имеет электропроводные коммутационные дорожки. Конструкция обеспечивает снижение габаритов, но не обеспечивает высокую плотность монтажа.
Задача изобретения - увеличение плотности монтажа, повышение надежности межслойных соединений малогабаритных микромодулей и минимизация уровня термомеханических напряжений при тепловых воздействиях.
Это достигается тем, что микромодуль содержит гибкую плату, снабженную металлизированными межслойными переходными отверстиями и смонтированными на ней кристаллами бескорпусных БИС с выступами. Металлизированные межслойные переходные отверстия имеют форму выпуклой криволинейной поверхности переменного поперечного сечения по длине с криволинейными контактными площадками на верхней и нижней поверхности гибкой платы, выполнены с уменьшением сечения от контактной площадки на верхней и нижней поверхности к срединной плоскости платы. Контактная площадка плавно переходит в межслойное переходное отверстие. Причем размер контактной площадки в плане можно изменять в широких пределах, исходя из технологической целесообразности, обеспечить монтаж выступов кристалла.
Конструкция и размещение контактных площадок с металлизированными межслойными переходными отверстиями на гибкой плате способствуют увеличению плотности монтажа кристаллов бескорпусных БИС за счет уменьшения размера межслойных переходных отверстий и контактных площадок, ширины проводников и зазора между ними, а также минимальному шагу между контактными площадками.
Современные конструкции микромодулей должны иметь как можно меньшие массогабаритные характеристики, устойчивость к циклическим тепловым воздействиям и усталостным отказам материалов межслойных соединений. Два конкурирующих подхода: «снизить массу - обеспечить прочность, долговечность и ресурс» составляют суть проблемы проектирования и конструирования микромодулей. Для повышения прочности и выносливости материалов микромодулей необходимо снижать эксплуатационные термомеханические напряжения в них.
С помощью компьютерного моделирования и метода конечного элемента определена рациональная форма металлизированного межслойного переходного отверстия с контактной площадкой по критериям увеличения плотности монтажа и прочностной надежности (фиг. 1, вид А). Наиболее рациональной формой является торовая поверхность (образованная вращением сегмента медной металлизации вокруг оси отверстия). Найдены рациональные соотношения размеров межслойного соединения - между диаметром отверстия d, диаметром выступа dв и размером контактной площадки D: dв=(2,3-3,0)d, dв=(0,58…0,75)D.
При компьютерном моделировании использовали базовую модель со следующими параметрами: толщина полиимидной пленки - 50 мкм, толщина медной металлизации - 15 мкм. Варьируемые параметры: размер контактной площадки D=50…150 мкм, диаметр отверстия d=0…80 мкм, диаметр выступа dв=30…120 мкм. Компьютерное моделирование позволило установить величину напряжения в материалах базовой модели - σАu=200, δSi=150, σCu=140 МПа.
Изменение соотношения размеров d, dв, D в большую или в меньшую сторону изменяет напряженно-деформированное состояние материалов сборки, приводит к увеличению деформаций и напряжений вплоть до величины предела выносливости материалов сборки, снижению долговечности (числа циклов при тепловых воздействиях в режиме включение-выключение).
Расчет показал, что при dв=100 мкм или dв=60 мкм напряжения увеличиваются до σAu=375, σSi=240, σCu=250 МПа, что превышает предел выносливости этих материалов и существенно снижает их циклическую долговечность. Рациональным значением по результатам расчета было выбрано dв=80±10 мкм (dв~2,67d и dв~0,67D).
Это позволило увеличить статическую прочность и выносливость материалов при действии переменных циклических термомеханических напряжений.
На фиг. 1 представлен микромодуль в бескорпусном исполнении, где:
1 - кристалл БИС;
2 - контактная площадка на кристалле;
3 - контактная площадка на плате с переходным отверстием;
4 - выступ кристалла БИС;
5 - гибкая плата;
6 - припойный выступ.
Изготавливают гибкую плату 5 с системой проводников и контактными площадками 3 на плате для соединения с выступами кристалла БИС 4, сформированными на контактных площадках 2 кристалла БИС 1. Припойные выступы 6 на обратной стороне платы служат выводами микромодуля, которые затем могут быть распаяны на следующий уровень.
Пример.
Гибкую плату с двухсторонней системой проводников изготавливают на полиимидной пленке толщиной 50 мкм. Проводники изготовлены тонкопленочной металлизацией в вакууме слоями хром - медь с последующим гальваническим наращиванием меди и облуживанием до толщины 15 мкм. Размер контактной площадки составляет 120…150 мкм, размер переходного отверстия d составляет 20…60 мкм. Межслойные переходные отверстия в плате выполняют путем двустороннего химического травления с последующим гальваническим наращиванием меди. Контактные площадки на гибкой плате для монтажа кристаллов БИС имеют минимальную монтажную площадь. Выступы кристалла имеют цилиндрическую форму с шарообразным куполом с размером dв=70…90 мкм.
Такое решение позволило существенно снизить термомеханические напряжения в материалах изделия. Так, например, напряжения уменьшились в Аu в 1,73 раза, Si в 1,58 раза, Сu в 1,8 раз. Это позволило повысить прочность и долговечность изделия при действии переменных циклических термонапряжений.
Созданные образцы микромодулей испытывались на воздействие повышенной температуры в диапазоне температур от +20 до +70°С (ГОСТ 30630.2.1, ГОСТ 28209, ст. МЭК 68-2-14-84, VI степень жесткости) и на вибропрочность в частотном диапазоне 10…5000 Гц и ускорении 40 g (ГОСТ 16962-71, XIV степень жесткости). Испытания подтвердили результаты компьютерных расчетов.
Достоинства такой конструкции - отсутствие концентраторов напряжений в материалах межслойного соединения Cu-Au, высокая плотность монтажа, минимальный уровень термомеханических напряжений при тепловых воздействиях, высокая прочностная надежность межслойных соединений малогабаритных микромодулей.
Источники информации
1. Патент США №6376769.
2. Гуськов Г.Я., Блинов Г.А., Газаров А.А. Монтаж микроэлектронной аппаратуры. - М.: Радио и связь, 1986, с. 109, рис. 4.13.
3. Патент РФ №2242798, - прототип.

Claims (2)

1. Микромодуль, содержащий гибкую плату, снабженную металлизированными межслойными переходными отверстиями, и смонтированные на ней кристаллы бескорпусных БИС с выступами, отличающийся тем, что межслойные переходные отверстия имеют форму выпуклой криволинейной поверхности переменного поперечного сечения по длине, с криволинейными контактными площадками на верхней и нижней поверхности гибкой платы, выполнены с уменьшением сечения от контактной площадки на верхней и нижней поверхности к срединной плоскости платы, размеры поперечного сечения выступов связаны с внешним размером контактной площадки D и минимальным размером переходного отверстия d соотношением d<dв<D, где выбирают dв=(2,3-3,0)d, dв=(0,58…0,75)D.
2. Микромодуль по п. 1, отличающийся тем, что металлизированные межслойные переходные отверстия с контактной площадкой имеют форму тора.
RU2017135615A 2017-10-05 2017-10-05 Микромодуль RU2659726C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017135615A RU2659726C1 (ru) 2017-10-05 2017-10-05 Микромодуль

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017135615A RU2659726C1 (ru) 2017-10-05 2017-10-05 Микромодуль

Publications (1)

Publication Number Publication Date
RU2659726C1 true RU2659726C1 (ru) 2018-07-03

Family

ID=62815439

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017135615A RU2659726C1 (ru) 2017-10-05 2017-10-05 Микромодуль

Country Status (1)

Country Link
RU (1) RU2659726C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376769B1 (en) * 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
RU2242798C2 (ru) * 2001-07-03 2004-12-20 Блинов Геннадий Андреевич Идентификационное устройство
US20050239237A1 (en) * 2004-04-27 2005-10-27 Infineon Technologies Ag Method for producing a BGA chip module and BGA chip module
US7021941B1 (en) * 2004-10-19 2006-04-04 Speed Tech Corp. Flexible land grid array connector
RU2299497C2 (ru) * 2005-05-06 2007-05-20 Геннадий Андреевич Блинов Способ изготовления трехмерного многокристального микромодуля
US8928105B2 (en) * 2010-05-28 2015-01-06 Flisom Ag Method and apparatus for thin film module with dotted interconnects and vias
US20160262271A1 (en) * 2013-10-03 2016-09-08 Obschchestvo S Ogranichennoy Otvetstvennostyu "Kompaniya Rmt" Method for manufacturing a double-sided printed circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376769B1 (en) * 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
RU2242798C2 (ru) * 2001-07-03 2004-12-20 Блинов Геннадий Андреевич Идентификационное устройство
US20050239237A1 (en) * 2004-04-27 2005-10-27 Infineon Technologies Ag Method for producing a BGA chip module and BGA chip module
US7021941B1 (en) * 2004-10-19 2006-04-04 Speed Tech Corp. Flexible land grid array connector
RU2299497C2 (ru) * 2005-05-06 2007-05-20 Геннадий Андреевич Блинов Способ изготовления трехмерного многокристального микромодуля
US8928105B2 (en) * 2010-05-28 2015-01-06 Flisom Ag Method and apparatus for thin film module with dotted interconnects and vias
US20160262271A1 (en) * 2013-10-03 2016-09-08 Obschchestvo S Ogranichennoy Otvetstvennostyu "Kompaniya Rmt" Method for manufacturing a double-sided printed circuit board

Similar Documents

Publication Publication Date Title
US6512298B2 (en) Semiconductor device and method for producing the same
US6953999B2 (en) High density chip level package for the packaging of integrated circuits and method to manufacture same
US7550317B2 (en) Method for manufacture of wafer level package with air pads
EP1981321A2 (en) Circuitized substrate assembly with internal stacked semiconductor chips, method of making same, electrical assembly utilizing same and information handling system utilizing same
KR101140469B1 (ko) 집적회로 부품의 패드 구조물 및 집적회로 부품의 실장방법
US20030197285A1 (en) High density substrate for the packaging of integrated circuits
KR101045671B1 (ko) 공간 변환기를 포함하는 프로브 카드
JP2010171377A (ja) 貫通電極基板及びその製造方法
US20120162928A1 (en) Electronic package and method of making same
US10905007B1 (en) Contact pads for electronic substrates and related methods
US10129980B2 (en) Circuit board and electronic component device
JP5017872B2 (ja) 半導体装置及びその製造方法
US6256207B1 (en) Chip-sized semiconductor device and process for making same
KR20160072822A (ko) 전자 모듈 및 전자 모듈의 제조 방법
RU2659726C1 (ru) Микромодуль
JP2011082531A (ja) 貫通電極基板及びその製造方法
JP2004289156A (ja) リセスボンド半導体パッケージ基板
Kacker et al. Electrical/Mechanical modeling, reliability assessment, and fabrication of FlexConnects: A MEMS-based compliant chip-to-substrate interconnect
US11239143B2 (en) Semiconductor structure and manufacturing method thereof
JPH11191572A (ja) 半導体装置とその製造方法
US7190056B2 (en) Thermally enhanced component interposer: finger and net structures
RU2713908C2 (ru) Микроконтакт для поверхностного монтажа и массив микроконтактов
JP2006228953A (ja) 表面実装パッケージ
Kim et al. Electrical design of wafer level package on board for gigabit data transmission
CN107017230B (zh) 多层级芯片互连