RU2659560C1 - Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали - Google Patents

Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали Download PDF

Info

Publication number
RU2659560C1
RU2659560C1 RU2017124841A RU2017124841A RU2659560C1 RU 2659560 C1 RU2659560 C1 RU 2659560C1 RU 2017124841 A RU2017124841 A RU 2017124841A RU 2017124841 A RU2017124841 A RU 2017124841A RU 2659560 C1 RU2659560 C1 RU 2659560C1
Authority
RU
Russia
Prior art keywords
coating
formation
nickel
composite
mass
Prior art date
Application number
RU2017124841A
Other languages
English (en)
Inventor
Денис Анатольевич Романов
Елена Владимировна Мартусевич
Виктор Евгеньевич Громов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет"
Priority to RU2017124841A priority Critical patent/RU2659560C1/ru
Application granted granted Critical
Publication of RU2659560C1 publication Critical patent/RU2659560C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана и никеля, которые могут быть использованы в штамповочном производстве и других отраслях промышленности. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской никелевой оболочки массой 60-530 мг и сердечника в виде порошка карбида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности штамповой стали при поглощаемой плотности мощности 4,6-4,8 ГВт/м2, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы TiC-Ni и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30. Изобретение направлено на создание на поверхности штамповой стали износостойкого покрытия с высокой адгезией с подложкой на уровне когезии. 2 пр., 2 ил.

Description

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности к технологии получения на поверхности штамповых сталей, работающих в тяжелых условиях штамповки, покрытий на основе карбида титана и никеля, которые могут быть использованы в штамповом производстве для штамповки в холодном состоянии с целью формирования поверхностей с высокой твердостью и износостойкостью.
Известен способ [1] электровзрывного напыления композиционных износостойких покрытий системы TiC-Mo на поверхности трения, характеризующийся тем, что размещают порошковую навеску из карбида титана между двумя слоями молибденовой фольги, осуществляют электрический взрыв фольги с формированием импульсной многофазной плазменной струи, проводят оплавление ею поверхности трения при значении удельного потока энергии 3,5…4,5 ГВт/м2 и напыление на оплавленный слой компонентов плазменной струи с последующей самозакалкой и формированием композиционного покрытия, содержащего карбид титана и молибден.
Недостатком способа является высокая шероховатость напыленных покрытий, а также низкая степень гомогенизации структуры, выраженная в неоднородности фазового и элементного состава покрытий. Это ограничивает возможность практического применения изделий с такими покрытиями. После электровзрывного напыления (ЭВН) на поверхности покрытий неравномерно распределены многочисленные деформированные закристаллизовавшиеся микрокапли меди. Это может стать причиной быстрого износа покрытия [2, 3].
Наиболее близким к заявляемому является способ [4] нанесения износостойких покрытий на основе диборида титана и молибдена на стальные поверхности, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской молибденовой оболочки массой 60-530 мг и сердечника в виде порошка диборида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею стальной поверхности при поглощаемой плотности мощности 3,5-4,5 ГВт/м2, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы TiB2-Mo и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30.
Недостатком способа является низкая адгезия покрытия системы TiB2-Мо со стальной подложкой. В случае применения этого покрытия для штамповки неизбежно произойдет отслаивание покрытия уже на первых циклах штамповки. Это может стать причиной быстрого выхода из строя штампов [2, 3].
Задачей заявляемого изобретения является получение композиционных покрытий карбид титана - никель с наполненной микрокристаллической структурой, обладающих высокой адгезией покрытия с подложкой из штамповой стали, а также высокой степенью гомогенизации структуры их поверхностного слоя, зеркальным блеском поверхности, высокой микротвердостью и износостойкостью.
Поставленная задача реализуется способом нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали.
Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской никелевой оболочки массой 60-530 мг и сердечника в виде порошка карбида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности штамповой стали при поглощаемой плотности мощности 4,6-4,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы TiC-Ni и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.
Продукты разрушения композиционного электрически взрываемого проводника образуют плазменную струю, служащую инструментом формирования на поверхности штамповой стали композиционного покрытия с наполненной структурой [5], образованного включениями карбида титана в никелевой матрице. Последующая импульсно-периодическая электронно-пучковая обработка (ЭПО) покрытия сопровождается переплавлением его поверхностного слоя толщиной 20-40 мкм. Дефекты в виде микропор и микротрещин, выявляемые после ЭВН [2, 3], в нем не наблюдаются. Импульсно-периодическая ЭПО приводит к формированию в покрытии высокодисперсной и однородной структуры. Размеры включений карбида титана в никелевой матрице уменьшаются в 2-4 раза по сравнению с их размерами сразу после ЭВН. Поверхность покрытия приобретает зеркальный блеск. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с высокой адгезией покрытия с подложкой из штамповой стали, низкой шероховатостью и гомогенизированной структурой, что увеличивает срок службы деталей, работающих в условиях штамповки, и расширяет область практического применения.
Способ поясняется чертежами, где на фиг. 1 представлена структура поперечного сечения поверхностного слоя электровзрывного композиционного покрытия системы TiC-Ni без воздействия ЭПО, на фиг. 2 - структура поперечного сечения поверхностного слоя электровзрывного композиционного покрытия системы TiC-Ni после воздействия ЭПО.
Исследования методом сканирующей электронной микроскопии показали, что при ЭВН на стальных поверхностях, работающих в условиях штамповки, путем электрического взрыва композиционного электрически взрываемого проводника при поглощаемой плотности мощности 4,6-4,8 ГВт/м2 происходит формирование покрытия с композиционной наполненной структурой, когда в никелевой матрице располагаются включения карбида титана с размерами от 1,0 до 5,0 мкм (фиг. 2). Если же использовать режим напыления, указанный в прототипе 3,5-4,5 ГВт/м2, то на границе покрытия со штамповой сталью образуется дефекты в виде пор. В покрытии наблюдаются дефекты в виде микропор и микротрещин. Указанный режим, при котором поглощаемая плотность мощности составляет 4,6-4,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 4,6 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из штамповой стали, вследствие чего возможно отслаивание покрытия, а выше 4,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы никелевой фольги менее 60 мг становится невозможным изготовление из нее композиционного электрически взрываемого проводника. При значении массы никелевой фольги более 530 мг покрытие с композиционной наполненной структурой на поверхностях из штамповых сталей, работающих в условиях холодной штамповки, обладает большим количеством дефектов. При значении массы сердечника композиционного электрически взрываемого материала менее 0,5 или более 2,0 массы фольги покрытие с композиционной наполненной структурой на поверхностях штамповых сталей, работающих в условиях холодной штамповки, также обладает дефектной структурой. Граница электровзрывного покрытия с подложкой не является ровной что позволяет увеличить адгезию покрытия с подложкой.
Импульсно-периодическая ЭПО поверхности электровзрывного покрытия с поверхностной плотностью поглощаемой энергии 40-60 Дж/см2, длительностью импульсов 150-200 мкс, количеством импульсов 10-30 приводит к выглаживанию рельефа поверхности до образования зеркального блеска. Толщина модифицированных слоев после ЭПО изменяется в пределах от 20 до 40 мкм и незначительно увеличивается с ростом плотности энергии пучка электронов. Электронно-пучковая обработка, сопровождающаяся переплавлением слоя покрытия и приводит к формированию композиционной наполненной [5] структуры (фиг. 2). Дефекты в виде микропор и микротрещин в нем не наблюдаются. Размеры включений карбида титана в никелевой матрице изменяются в пределах от 0,5 до 1,0 мкм. Импульсно-периодическая ЭПО поверхностного слоя приводит к формированию в нем более дисперсной и однородной структуры. Указанный режим является оптимальным, поскольку при поверхностной плотности энергии меньше 40 Дж/см2, длительности импульсов короче 150 мкс, количестве импульсов менее 10 имп. не происходит образования однородной структуры на основе карбида титана и никеля и диспергирования никеля и карбида титана в покрытии. При поверхностной плотности энергии больше 60 Дж/см2, длительности импульсов длиннее 200 мкс, количестве импульсов более 30 имп. происходит формирование рельефа поверхности.
Трибологические свойства (износостойкость и коэффициент трения) покрытий изучали в геометрии диск-штифт с помощью трибометра (CSEM) при комнатной температуре и влажности. В качестве контртела использовали алмазную пирамидку, диаметр трека 3,9 мм, скорость вращения - 1,5 см/с, нагрузка - 8 Н, дистанция до остановки - 123 м. Критерием износостойкости являлся удельный объем трека износа материала, который определялся с помощью лазерного оптического профилометра MicroMeasure 3D Station и рассчитывался по формуле
Figure 00000001
где R - радиус трека, A - площадь поперечного сечения канавки износа, F - величина приложенной нагрузки, L - пройденная шариком дистанция.
В результате проведенных испытаний установлено, что износостойкость покрытий на основе карбида титана и никеля повышается в 2 раза по сравнению с штамповыми сталями 5ХНМ и Х12МФ после изотермического отжига по режиму: нагрев 850-870°C, охлаждение со скоростью 40 град/ч до 700-720°C, выдержка 3-4 ч, охлаждение со скоростью 50 град/ч до 550°C, воздух. Значения коэффициента трения для покрытий на основе карбида титана и никеля составляют 0,5…0,6.
Микротвердость измеряли на микротвердомере HVS-1000A. Значения микротвердости сформированных покрытий находятся в интервале 24000-25000 МПа. Нанотвердость измеряли с использованием системы Agilent U9820A Nano Indenter G200. Значения нанотвердости сформированных покрытий составляет 24500 МПа.
Примеры конкретного осуществления способа
Пример 1
Обработке подвергали лист из штамповой стали 5ХНМ толщиной 25 мм площадью 4 см2. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде порошка карбида титана, при этом оболочка состояла из двух слоев электрически взрываемой плоской никелевой фольги массой 60 мг, а масса сердечника составляла 30 мг. Сформированной плазменной струей оплавляли поверхность листа штамповой стали 5ХНМ при поглощаемой плотности мощности 4,6 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы TiC-Ni. После самозакалки покрытия при теплоотводе в объем стального листа осуществляли импульсно-периодическую ЭПО поверхности электровзрывного покрытия при поверхностной плотности энергии 40 Дж/см2, длительности импульсов - 150 мкс, количестве импульсов - 10 имп.
Получили износостойкое покрытие на основе карбида титана и никеля с высокой адгезией покрытия с подложкой на уровне когезии. На ОАО «Вест-2002» штампы из стали 5ХНМ, упрочненные заявляемым способом, показали увеличенный ресурс работы в 1,2 раза по сравнению со штампами без покрытия на основе карбида титана и никеля.
Пример 2
Обработке подвергали лист из штамповой стали Х12МФ толщиной 25 мм площадью 15 см2. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде порошка карбида титана, при этом оболочка состояла из двух слоев электрически взрываемой плоской никелевой фольги массой 530 мг, а масса сердечника составляла 1060 мг. Сформированной плазменной струей оплавляли поверхность листа из штамповой стали Х12МФ при поглощаемой плотности мощности 4,8 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы TiC-Ni. После самозакалки покрытия при теплоотводе в объем основы стального листа осуществляли импульсно-периодическую ЭПО поверхности электровзрывного покрытия при поверхностной плотности энергии 60 Дж/см2, длительности импульсов - 200 мкс, количестве импульсов - 30 имп.
Получили износостойкое покрытие на основе карбида титана и никеля с высокой адгезией покрытия с подложкой на уровне когезии. На ОАО «Вест-2002» штампы из стали Х12МФ, упрочненные заявляемым способом, показали увеличенный ресурс работы в 1,2 раза по сравнению со штампами без покрытия на основе карбида титана и никеля.
Источники информации
1. Патент РФ №2518037 на изобретение «Способ электровзрывного напыления композиционных износостойких покрытий системы TiC-Mo на поверхности трения». / Романов Д.А., Олесюк О.В., Будовских Е.А., Громов В.Е.; заявл. 25.03.2013; опубл. 10.06.2014, Бюл. №16. 8 с.
2. Романов Д.А., Будовских Е.А., Громов В.Е. Электровзрывное напыление электроэрозионностойких покрытий: формирование структуры, фазового состава и свойств электроэрозионностойких покрытий методом электровзрывного напыления. - Saarbrucken: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2012. - 170 c.
3. Электровзрывное напыление износо- и электроэрозионностойких покрытий. / Д.А. Романов, Е.А. Будовских, В.Е. Громов, Ю.Ф. Иванов. - Новокузнецк: Изд-во ООО «Полиграфист», 2014. - 203 с.
4. Патент РФ №2583227 изобретение «Способ нанесения износостойких покрытий на основе диборида титана и молибдена на стальные поверхности». / Романов Д.А., Будовских Е.А., Гончарова Е.Н., Громов В.Е.; заявл. 15.12.2014; опубл. 10.05.2016, Бюл. №13. 7 с.
5. Мэттьюз М., Ролингс Р. Композиционные материалы. Механика и технология. - М.: Техносфера, 2004. - 408 с.

Claims (1)

  1. Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской никелевой оболочки массой 60-530 мг и сердечника в виде порошка карбида титана массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности штамповой стали при поглощаемой плотности мощности 4,6-4,8 ГВт/м2, осаждение на поверхность продуктов взрыва c формированиеv на ней композиционного покрытия системы TiC-Ni и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30.
RU2017124841A 2017-07-11 2017-07-11 Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали RU2659560C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017124841A RU2659560C1 (ru) 2017-07-11 2017-07-11 Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017124841A RU2659560C1 (ru) 2017-07-11 2017-07-11 Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали

Publications (1)

Publication Number Publication Date
RU2659560C1 true RU2659560C1 (ru) 2018-07-02

Family

ID=62815766

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017124841A RU2659560C1 (ru) 2017-07-11 2017-07-11 Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали

Country Status (1)

Country Link
RU (1) RU2659560C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797988C1 (ru) * 2022-03-28 2023-06-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Порошкообразный материал для плазменного напыления композитных покрытий

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1063859A1 (ru) * 1982-04-07 1983-12-30 Белорусское республиканское научно-производственное объединение порошковой металлургии Способ нанесени покрытий на стальные издели
RU2392351C2 (ru) * 2008-08-13 2010-06-20 Государственное образовательное учреждение Высшего профессионального образования "Томский государственный университет" Способ нанесения антифрикционного износостойкого покрытия на изделие из металла или сплава
RU2518037C1 (ru) * 2013-03-25 2014-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ КОМПОЗИЦИОННЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ TiC-Mo НА ПОВЕРХНОСТИ ТРЕНИЯ
RU2582227C1 (ru) * 2015-04-09 2016-04-20 Государственное бюджетное образовательное учреждение дополнительного профессионального образования "Новокузнецкий государственный институт усовершенствования врачей" Министерства здравоохранения Российской Федерации Способ лечения синдрома запора у детей
US20170030204A1 (en) * 2010-05-28 2017-02-02 Vladimir Gorokhovsky Erosion And Corrosion Resistant Protective Coatings For Turbomachinery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1063859A1 (ru) * 1982-04-07 1983-12-30 Белорусское республиканское научно-производственное объединение порошковой металлургии Способ нанесени покрытий на стальные издели
RU2392351C2 (ru) * 2008-08-13 2010-06-20 Государственное образовательное учреждение Высшего профессионального образования "Томский государственный университет" Способ нанесения антифрикционного износостойкого покрытия на изделие из металла или сплава
US20170030204A1 (en) * 2010-05-28 2017-02-02 Vladimir Gorokhovsky Erosion And Corrosion Resistant Protective Coatings For Turbomachinery
RU2518037C1 (ru) * 2013-03-25 2014-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ КОМПОЗИЦИОННЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ TiC-Mo НА ПОВЕРХНОСТИ ТРЕНИЯ
RU2582227C1 (ru) * 2015-04-09 2016-04-20 Государственное бюджетное образовательное учреждение дополнительного профессионального образования "Новокузнецкий государственный институт усовершенствования врачей" Министерства здравоохранения Российской Федерации Способ лечения синдрома запора у детей

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797988C1 (ru) * 2022-03-28 2023-06-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Порошкообразный материал для плазменного напыления композитных покрытий

Similar Documents

Publication Publication Date Title
Tan et al. Effects of traverse scanning speed of spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings
Ernst et al. Effect of substrate temperature on cold-gas-sprayed coatings on ceramic substrates
RU2583227C1 (ru) Способ нанесения износостойких покрытий на основе диборида титана и молибдена на стальные поверхности
Yandouzi et al. Aircraft skin restoration and evaluation
Blochet et al. Effect of the cold-sprayed aluminum coating-substrate interface morphology on bond strength for aircraft repair application
CN104593712B (zh) 复合金属合金材料
RU2583228C1 (ru) Способ нанесения износостойких покрытий на основе диборида титана и никеля на стальные поверхности
Monette et al. Supersonic particle deposition as an additive technology: methods, challenges, and applications
Thirumalaikumarasamy et al. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment
Koithara et al. High deposition efficiency and delamination issues during high-pressure cold spraying metallization of PEEK using spherical copper powders
RU2655408C1 (ru) Способ нанесения износостойких покрытий на основе карбида титана, никеля и молибдена на штамповые стали
RU2653395C1 (ru) Способ нанесения износостойких покрытий на основе карбида титана, Cr3 C2 и алюминия на штамповые стали
RU2518037C1 (ru) СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ КОМПОЗИЦИОННЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ TiC-Mo НА ПОВЕРХНОСТИ ТРЕНИЯ
Hu et al. Tailoring metallic surface properties induced by laser surface processing for industrial applications
RU2659560C1 (ru) Способ нанесения износостойких покрытий на основе карбида титана и никеля на штамповые стали
RU2659561C1 (ru) Способ нанесения износостойких покрытий на основе диборида титана, титана и алюминия на штамповые стали
RU2661296C1 (ru) Способ нанесения износостойких покрытий на основе карбида титана, титана и алюминия на штамповые стали
Kumar et al. Microstructural and tribological properties of laser-treated cold-sprayed titanium/baghdadite deposits
RU2547974C2 (ru) СПОСОБ ЭЛЕКТРОВЗРЫВНОГО НАПЫЛЕНИЯ КОМПОЗИЦИОННЫХ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ TiB2-MO НА ПОВЕРХНОСТИ ТРЕНИЯ
RU2659554C1 (ru) Способ нанесения износостойких покрытий на основе карбида титана, никеля и алюминия на штамповые стали
Rubino et al. Advances in titanium on aluminium alloys cold spray coatings
RU2676122C1 (ru) Способ нанесения износостойких покрытий на основе алюминия и оксида иттрия на силумин
Cui et al. Comparative analysis of tribological behavior of plasma-and high-velocity oxygen fuel-sprayed WC-10Co-4Cr coatings
Burkov et al. Deposition of Ti–Ni–Zr–Mo–Al–C composite coatings on the Ti6Al4V alloy by electrospark alloying in a granule medium
Gu et al. Microstructures and properties of high Cr content coatings on inner surfaces of carbon steel tubular components prepared by a novel mechanical alloying method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200712