RU2658175C1 - Усовершенствованный способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок с частичным секвестированием диоксида углерода - Google Patents

Усовершенствованный способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок с частичным секвестированием диоксида углерода Download PDF

Info

Publication number
RU2658175C1
RU2658175C1 RU2016125598A RU2016125598A RU2658175C1 RU 2658175 C1 RU2658175 C1 RU 2658175C1 RU 2016125598 A RU2016125598 A RU 2016125598A RU 2016125598 A RU2016125598 A RU 2016125598A RU 2658175 C1 RU2658175 C1 RU 2658175C1
Authority
RU
Russia
Prior art keywords
gas turbine
gas
synthesis
electricity
carbon dioxide
Prior art date
Application number
RU2016125598A
Other languages
English (en)
Other versions
RU2016125598A (ru
Inventor
Виктор Михайлович Масленников
Вячеслав Михайлович Батенин
Виктор Яковлевич Штеренберг
Александр Иванович Антошин
Original Assignee
Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН)
Priority to RU2016125598A priority Critical patent/RU2658175C1/ru
Publication of RU2016125598A publication Critical patent/RU2016125598A/ru
Application granted granted Critical
Publication of RU2658175C1 publication Critical patent/RU2658175C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Изобретение относится к энергетике, в частности к комбинированным способам получения электроэнергии и синтетического жидкого топлива в газотурбинных и парогазовых установках.
Способ включает получение забалластированного азотом синтез-газа за счет частичного окисления природного газа в потоке сжатого воздуха за компрессором высокого давления ПГУ, подаче этого синтез-газа в однопроходной каталитический реактор синтеза метанола с последующим дожиганием обедненного газа после каталитического реактора в камере сгорания ГТУ. Изобретение позволяет повысить эффективность способа получения электроэнергии и синтетического жидкого топлива в газотурбинных и парогазовых установках путем снижения электрической нагрузки в часы ночных провалов, использования избыточной энергии для секвестирования диоксида углерода, извлекаемого из уходящих дымовых газов, с превращением его в синтез-газ с высоким содержанием водорода и монооксида углерода, и подачей его в каталитический реактор для форсирования производства метанола в часы ночных провалов потребления электроэнергии. 4 з.п. ф-лы, 1 ил.

Description

Предлагаемое изобретение относится к энергетике, в частности к способам получения электроэнергии в газотурбинных и парогазовых установках с использованием синтез-газа в качестве топлива для этих установок, а также для получения жидкого синтетического топлива.
Получение двух товарных продуктов позволяет повысить эффективность использования исходного топлива за счет рационального объединения технологий.
Аналогом может служить способ получения синтез-газа из твердого или жидкого углеводородного топлива путем их парокислородной газификации и использования полученного синтез-газа для получения метанола и в качестве топлива для парогазовых установок (Drow D.P. et. al. "Fuel and Power Coproduction - The Liquid Phase Method (LPMEH TM) Process Demonstration at Kingsport" Fifth annual DOE Clean Coal Technology Conference Tampa Fl, January 1997).
Недостатком такого процесса является то, что генерация синтез-газа осуществляется в независимой установке со своей системой получения кислорода и системой компремирования синтез-газа до высокого давления.
Наиболее близким к предлагаемому техническому решению является "Способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок" по патенту №2250872 (прототип).
Сущность способа, предложенного в прототипе, заключается в том, что часть воздуха после компрессора высокого давления парогазовой энергетической установки подается в реактор частичного окисления, куда подается весь используемый в установке природный газ.
В реакторе частичного окисления при температуре порядка 1100-1200°C происходит частичное окисление природного газа с получением синтез-газа, забалластированного азотом воздуха.
Полученный синтез-газ охлаждают, кондиционируют и подают в однопроходной каталитический реактор синтеза метанола, где порядка 50% его теплотворной способности превращается в метанол.
Покидающий каталитический реактор низкокалорийный газ подают в камеру сгорания парогазовой установки, где он дожигается.
Полученные продукты сгорания, практически не содержащие токсичных оксидов азота, расширяются в газовой турбине, охлаждаются в котле-утилизаторе и выбрасываются в атмосферу.
За счет синергетического эффекта включения производства метанола в цикл парогазовой установки существенно снижается стоимость генерируемой энергии при реализации метанола, по цене его стандартного производства.
К числу недостатков способа следует отнести:
- Концентрация реагирующих веществ, поступающих в каталитический реактор синтеза метанола 5, относительно низка (H2 - 20-22%, CO - 13-14%), что сказывается на габаритах и стоимости реактора. Ситуация может быть улучшена за счет дополнительной подачи H2 и CO в синтез-газ или обогащения воздуха кислородом на входе в реактор частичного окисления.
- Экономичность технологии существенно зависит от снижения электрической нагрузки в часы ночных провалов, так как при снижении электрической нагрузки снижается и выработка синтетического жидкого топлива (СЖТ).
- Снижение выбросов диоксида углерода достигается за счет повышения коэффициента использования топлива по сравнению с раздельным производством электроэнергии и СЖТ. В то же время предлагаемый способ позволяет дополнительно снизить выбросы CO2 за счет его частичного секвестирования.
Предлагаемое изобретение преследует цель устранить эти недостатки и усовершенствовать предложенный ими ранее способ по патенту №2250872.
Известно, что любая энергетическая установка, работающая на единую энергетическую систему по требованию диспетчера, должна снизить выработку электроэнергии при сокращении ее потребления в течение 8 часов "ночного провала". При этом цена на электроэнергию в часы ночного провала снижается практически в три раза. Желательно, чтобы атомные электростанции в это время работали в базовом режиме.
Предлагаемая усовершенствованная комплексная технология совместного производства электроэнергии и СЖТ позволяет практически полностью прекратить отпуск электроэнергии в энергосистему, увеличив производство продукта - СЖТ.
Это реализуется следующим образом (рис. 1):
1 - воздушный компрессор низкого давления, 2 - воздушный компрессор высокого давления, 3 - реактор частичного окисления, 4 - газоохладитель, 5 - реактор синтеза СЖТ, 6 - камера сгорания ГТУ, 7 - газовая турбина, 8 - турбина детандера, 9 - котел-утилизатор, 10 - электрогенератор, 11 - паровая турбина, 12 - абсорбер CO2, 13 - десорбер CO2, 14 - плазмотрон, 15 - газоохладитель, 16 - газовый компрессор, 17 - электродвигатель.
В дневные часы работы в данной парогазовой установке часть сжатого компрессором 1 воздуха дожимается до давления 5,0-6,0 МПа и поступает в реактор частичного окисления природного газа 3, где при температуре порядка 1100°C происходит частичное окисление природного газа с получением синтез-газа, забаластированного азотом воздуха.
Полученный синтез-газ охлаждают в газоохладителе 4, при необходимости очищают от образовавшейся сажи и направляют в реактор синтеза жидкого синтетического топлива 5.
Энергетический газ, покидающий реактор синтеза 5, подогревают в газоохладителе 4 до температуры 500-540°C за счет охлаждения горячего синтез-газа и подают в газовую турбину 8 детандера, приводящую дожимной компрессор 2.
Энергетический низкокалорийный газ после расширения в детандере направляют в камеру сгорания 6 газотурбинной установки.
Тепло продуктов сгорания после газовой турбины 7 утилизируется в котле-утилизаторе 9 для генерации пара высокого давления. Для этой же цели частично используется тепло горячего синтез-газа. Полученный пар после барабан-сепаратора перегревают в газоохладителе 4 и направляют в паровую турбину для выработки электрической энергии.
В случае необходимости теплоту конденсации пара Q1 после паровой турбины 11 используют для производства тепла для отопительных и производственных целей.
В ночные часы работы, когда по требованию энергосистемы выработка электроэнергии должна существенно быть снижена при ее покупке по заниженной цене, режим работы установки меняется.
Часть дымовых газов после ПГУ, например, направляют в абсорбер CO2 12, где дымовые газы промывают поглотительным раствором, например моноэтаноламином (или пропускают через молекулярное сито).
Насыщенный раствор подают в десорбер 13, где в результате его нагрева выделяется концентрированный CO2, который смешивают с природным газом и паром, и полученную смесь подают в плазмотрон 14, куда направляют избыточную электроэнергию и где при температуре 1100-1500°C осуществляют конверсию CO2 до H2 и CO по реакции
CH4+0,33 CO2+0,66 HO+Qp->2,66 H2+1,33 CO
Полученный синтез-газ охлаждают в газоохладителе 15 для генерации пара, сжимают компрессором 16 до давления 4-8 МПа и подают на смешение с основным потоком "бедного" синтез-газа, подаваемого в каталитический реактор синтеза метанола. Производительность реактора растет практически линейно с ростом концентрации H2 и CO на входе в реактор.
Таким образом вместо электроэнергии, подаваемой в сеть в часы ночных "провалов", увеличивается производство синтетического жидкого топлива (метанола) за счет частичного секвестирования диоксида углерода.
Технико-экономическое преимущество предлагаемого изобретения достигается путем усовершенствования ранее запатентованного эффективного способа комплексного производства электроэнергии и синтетического жидкого топлива за счет следующих технологических приемов:
- Замены производства невостребованной электроэнергии в часы ночных провалов на рост выработки синтетического жидкого топлива.
- Сокращения выбросов диоксида углерода в часы ночных провалов, а следовательно, снижение штрафных санкций, за счет частичного секвестирования CO2 для производства СЖТ.
Основные показатели работы установки в дневное и ночное время приведены в таблице 1.
Figure 00000001

Claims (4)

1. Комбинированный способ производства электроэнергии и жидкого синтетического топлива (СЖТ) с использованием газотурбинных и парогазовых установок, включающий частичное окисление углеводородного топлива в потоке сжатого воздуха, отбираемого за компрессором высокого давления газотурбинной установки с последующим дожиманием и получением забалластированного азотом синтез-газа, его подачей в однопроходной каталитический реактор синтеза с частичным превращением синтеза-газа в жидкое синтетическое топливо и подачей оставшегося непрореагировшегося газа в камеру сгорания газотурбинной установки для дожигания и получения высокотемпературного рабочего тела для газовой турбины, отличающейся тем, что для увеличения выработки СЖТ в каталитический реактор синтеза подают смесь водорода и монооксида углерода, увеличивая их концентрацию в забалластированном азотом синтез-газе.
2. Способ по п. 1, отличающийся тем, что получение водорода и монооксида углерода осуществляют за счет конверсии смеси природного газа, диоксида углерода и водяного пара при температуре 1100-1500°С путем подвода невостребованной электроэнергии в часы ночных провалов, например, в плазмотроне.
3. Способ по п. 1 или 2, отличающийся тем, что диоксид углерода для подачи в плазмотрон извлекается из дымовых газов после котла-утилизатора за газовой турбиной, например, в абсорбере с помощью раствора моноэтаноламина или с помощью молекулярного сита.
4. Способ по п. 1 или 2, или 3, отличающийся тем, что для получения концентрированного синтез-газа в плазмотрон на 1 моль метана подают 0,33 моля диоксида углерода и 0,66 молей водяного пара.
RU2016125598A 2016-06-28 2016-06-28 Усовершенствованный способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок с частичным секвестированием диоксида углерода RU2658175C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016125598A RU2658175C1 (ru) 2016-06-28 2016-06-28 Усовершенствованный способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок с частичным секвестированием диоксида углерода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016125598A RU2658175C1 (ru) 2016-06-28 2016-06-28 Усовершенствованный способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок с частичным секвестированием диоксида углерода

Publications (2)

Publication Number Publication Date
RU2016125598A RU2016125598A (ru) 2018-01-10
RU2658175C1 true RU2658175C1 (ru) 2018-06-19

Family

ID=60965269

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016125598A RU2658175C1 (ru) 2016-06-28 2016-06-28 Усовершенствованный способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок с частичным секвестированием диоксида углерода

Country Status (1)

Country Link
RU (1) RU2658175C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2442216A1 (fr) * 1978-11-24 1980-06-20 Texaco Development Corp Production d'un courant gazeux contenant h2 et co
GB2111602A (en) * 1981-12-18 1983-07-06 Gen Electric Combined cycle apparatus for synthesis gas production
EP0569796A2 (en) * 1992-05-05 1993-11-18 The M. W. Kellogg Company Process furnace with a split flue convection section
RU2055091C1 (ru) * 1991-12-10 1996-02-27 Фирма "Авизо" Способ получения водорода и электроэнергии из низкосортного твердого топлива в плазменной энерготехнологической установке и установка для его осуществления
RU2207975C2 (ru) * 1997-02-14 2003-07-10 Маратон Ойл Компани Сжигание углеводородного газа для получения реформированного газа
RU2250872C1 (ru) * 2003-10-15 2005-04-27 Институт высоких температур РАН (ИВТ РАН) Комбинированный способ производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2442216A1 (fr) * 1978-11-24 1980-06-20 Texaco Development Corp Production d'un courant gazeux contenant h2 et co
GB2111602A (en) * 1981-12-18 1983-07-06 Gen Electric Combined cycle apparatus for synthesis gas production
RU2055091C1 (ru) * 1991-12-10 1996-02-27 Фирма "Авизо" Способ получения водорода и электроэнергии из низкосортного твердого топлива в плазменной энерготехнологической установке и установка для его осуществления
EP0569796A2 (en) * 1992-05-05 1993-11-18 The M. W. Kellogg Company Process furnace with a split flue convection section
RU2207975C2 (ru) * 1997-02-14 2003-07-10 Маратон Ойл Компани Сжигание углеводородного газа для получения реформированного газа
RU2250872C1 (ru) * 2003-10-15 2005-04-27 Институт высоких температур РАН (ИВТ РАН) Комбинированный способ производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок

Also Published As

Publication number Publication date
RU2016125598A (ru) 2018-01-10

Similar Documents

Publication Publication Date Title
JP5913304B2 (ja) 低エミッショントリプルサイクル発電システム及び方法
US10060301B2 (en) Gas turbine unit operating mode and design
KR20160030559A (ko) 발전 플랜트 연도 가스의 co₂ 메탄화를 포함하는 메탄화 방법 및 발전 플랜트
JP5473934B2 (ja) 水素を多く含む第二の燃料を用いてガスタービン設備を動作させる装置及び方法
RU2009127114A (ru) Способ выработки электроэнергии
UA88280C2 (ru) Способ выработки электроэнергии с помощью газовой турбины и паровой турбины (варианты) и устройство для него
JPH0472045B2 (ru)
ES2230717T3 (es) Camara de expansion de sintesis situada en zona de aguas arriba de una turbina de gas.
KR20110114546A (ko) 가스화기에서 유래하는 합성가스를 활용하기 위한 방법
US20100024432A1 (en) Method for improved efficiency for IGCC
KR20100123874A (ko) 통합 보일러 급수 가열 방법 및 시스템
US8191349B2 (en) System and method for low emissions combustion
RU2009105470A (ru) Способ получения углеводородов из газообразных продуктов плазменной переработки твердых отходов (варианты)
CN101915163A (zh) 一种使用氢气燃料和燃气轮机进行氧燃料燃烧的方法及装备
CN113623033A (zh) 一种采用空气气化的igcc系统及其工作方法
RU2012117799A (ru) Способ эксплуатации электростанции igcc с интегрированным устройством для отделения co2
CN101550846A (zh) 利用垃圾填埋气的化学链式燃烧发电工艺及系统
UA99769C2 (ru) Способ получения и сжигания синтез-газа и устройство для его осуществления
Cormos et al. Power generation from coal and biomass based on integrated gasification combined cycle concept with pre‐and post‐combustion carbon capture methods
RU2250872C1 (ru) Комбинированный способ производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок
CN110257106B (zh) 一种采用水煤浆气化的整体煤气化燃料电池发电系统及方法
RU2658175C1 (ru) Усовершенствованный способ комбинированного производства электроэнергии и жидкого синтетического топлива с использованием газотурбинных и парогазовых установок с частичным секвестированием диоксида углерода
KR20140038672A (ko) 이산화탄소 제거공정을 이용한 석탄가스화 복합 발전시스템
RU2587736C1 (ru) Установка для утилизации низконапорного природного и попутного нефтяного газов и способ её применения
GB2456169A (en) A method and associated apparatus for the production of hydrogen and/or electric energy

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190629