RU2658097C1 - Спектрометр высокоинтенсивного импульсного нейтронного излучения - Google Patents

Спектрометр высокоинтенсивного импульсного нейтронного излучения Download PDF

Info

Publication number
RU2658097C1
RU2658097C1 RU2017129541A RU2017129541A RU2658097C1 RU 2658097 C1 RU2658097 C1 RU 2658097C1 RU 2017129541 A RU2017129541 A RU 2017129541A RU 2017129541 A RU2017129541 A RU 2017129541A RU 2658097 C1 RU2658097 C1 RU 2658097C1
Authority
RU
Russia
Prior art keywords
energy
protons
collimator
spectrometer
neutrons
Prior art date
Application number
RU2017129541A
Other languages
English (en)
Inventor
Михаил Викторович Яковлев
Original Assignee
Михаил Викторович Яковлев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Михаил Викторович Яковлев filed Critical Михаил Викторович Яковлев
Priority to RU2017129541A priority Critical patent/RU2658097C1/ru
Application granted granted Critical
Publication of RU2658097C1 publication Critical patent/RU2658097C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors
    • G01T3/065Spectrometry

Abstract

Изобретение относится к области радиационных исследований. Спектрометр высокоинтенсивного импульсного нейтронного излучения содержит металлический корпус, внутри которого последовательно расположены мишень из материала, содержащего водород, и металлические коллиматор, плоские различной толщины фильтры-поглотители протонов отдачи и коллекторы заряда, сопряженные и равной площади с фильтрами-поглотителями протонов, коллекторы подключены к электроизмерительным приборам, все элементы спектрометра изготовлены из материалов с близким атомным номером, причем толщина мишени из материала, содержащего водород, выбирается менее пробега протонов отдачи с энергией, равной минимальному значению энергии нейтронов в составе анализируемого спектра, коллиматор имеет сотовую структуру с поперечным размером сот менее продольного размера, а соотношение продольного и поперечного размеров сот и толщина фильтров-поглотителей протонов определяются из условий по точности измерения распределения нейтронов по энергии и чувствительности измерительных трактов. Технический результат – повышение точности определения спектрального распределения нейтронов в полях высокоинтенсивного импульсного нейтронного излучения.

Description

Изобретение относится к области радиационных исследований и может быть использовано для измерения спектрального распределения нейтронов в полях высокоинтенсивного импульсного нейтронного излучения при проведении экспериментов на ядерно-физических установках различного типа и назначения.
Известны устройства для регистрации нейтронного излучения, основанные на эффекте переноса заряда, которые именуются как «зарядовые детекторы» нейтронов (З.А. Альбиков, A.M. Веретенников, А.В. Козлов. Детекторы импульсного ионизирующего излучения, Москва, Атомиздат, 1978 г.). Различают два типа зарядовых детекторов. К первому типу относятся детекторы прямой зарядки, выполненные в виде эмиттера и коллектора, разделенных тонким диэлектрическим слоем. Эмиттер изготавливается из материала, в котором при облучении нейтронами образуются радиоактивные изотопы, распадающиеся с выходом заряженных частиц. Заряженные частицы (продукты распада) проходят через диэлектрический слой и собираются коллектором. В электрической цепи протекает ток, который характеризует плотность потока первичного нейтронного излучения. Если период полураспада радиоактивного изотопа много меньше длительности импульса нейтронного излучения, то амплитуда тока коллектора пропорциональна плотности потока нейтронов. Указанная функциональная зависимость используется для определения формы импульса воздействующего нейтронного излучения. Недостатком данного типа детекторов является сравнительно низкое временное разрешение (более сотых долей секунды), что обусловлено периодом полураспада образующихся в эмиттере радиоактивных изотопов. Поэтому на многих ядерно-энергетических установках при длительностях импульса нейтронного излучения менее миллисекунды (например, импульсные установки термоядерного синтеза, импульсные ядерные реакторы и др.) детекторы этого типа используются, в основном, для измерения флюенса нейтронов.
Известен детектор радиоактивных излучений, который основан на переносе заряда вторичных высокоэнергетических электронов (Г.Ф. Иоилев, В.А. Сафонов. Детекторы с диэлектрическим рассеивателем. Приборы и техника эксперимента, т. 14, вып. 5, с. 210, 1969). Детектор состоит из корпуса и сигнального электрода, которые разделены двумя одинаковыми диэлектрическими слоями. Перенос заряда в детекторе осуществляется вторичными высокоэнергетическими электронами, которые образуются за счет комптоновского и фотоэффектов при взаимодействии гамма-излучения с материалами конструкции детектора. Детектор обладает высоким временным разрешением, которое определяется электрической схемой подключения детектора к электроизмерительному прибору.
Известно защищенное авторским свидетельством изобретение – аналог - авторское свидетельство №713293 G01T 3/00, 1978 год «Детектор мононаправленного нейтронного излучения» (М.В. Яковлев, И.С. Терешкин, Г.В. Кулаков, Н.А. Комаров), который основан на измерении тока протонов отдачи, образующихся в результате упругого рассеяния нейтронов на ядрах атомов водорода в облучаемом материале-рассеивателе. Детектор содержит металлический корпус, внутри которого расположена пластина-рассеиватель из водородосодержащего материала, например полиэтилена. За рассеивателем расположены металлическая пластина-коллектор и электроизолирующая пластина из материала, не содержащего водород. Коллектор подключен к электроизмерительному прибору. Толщина полиэтиленовой пластины-рассеивателя выбирается много меньше свободного пробега первичных нейтронов, но значительно больше пробега вторичных протонов отдачи в данном материале. Корпус и коллектор выполнены из низкоатомного металла алюминия, чтобы в смешанных полях гамма-нейтронного излучения внутри детектора не нарушались условия гамма-электронного равновесия. Коллектор имеет толщину, достаточную для поглощения протонов отдачи, движущихся со стороны пластины-рассеивателя.
При облучении детектора нейтронами со стороны пластины-рассеивателя сигнал коллектора обусловлен сбором заряда протонов отдачи q1, а также токами смещения от объемных зарядов q2, q3, которые образуются в объеме рассеивателя. Вблизи границы раздела с металлическим корпусом образуется область отрицательного объемного заряда q2 за счет оттока из этой области протонов отдачи. Положительный объемный заряд q3 образуется в пластине-рассеивателе за счет ослабления потока нейтронов. Заряд q3 имеет сравнительно малую величину, поэтому отрицательный объемный заряд приблизительно равен заряду протонов отдачи, инжектируемых в коллектор. Однако в силу выбранной геометрии детектора емкостная связь отрицательного заряда с коллектором значительно меньше, чем с корпусом, поэтому вклад отрицательного заряда в результирующий положительный сигнал детектора оказывается незначительным.
При облучении нейтронами с противоположной стороны сигнал детектора определяется отрицательным объемным зарядом, который находится вблизи коллектора в приграничной области пластины-рассеивателя. Временное разрешение детектора определяется его собственной емкостью и параметрами регистрирующего тракта и может быть доведено до единиц наносекунд. При энергии гамма-квантов ~1,25 МэВ чувствительность детектора-прототипа к действию гамма-излучения составляет ~5%. (И.С. Терешкин, М.В. Яковлев. Детектор высокоинтенсивного нейтронного излучения. Сборник научных трудов ФГУП ЦНИИмаш «Теоретические и экспериментальные исследования вопросов общей физики» под редакцией академика РАН Н.А. Анфимова, ФГУП ЦНИИмаш, с. 122, 2003 г. Недостатком изобретения является невозможность его использования для определения энергии воздействующих нейтронов.
Известно защищенное патентом изобретение - прототип: патент №2445649, заявка 2010135091/28 МПК G01J 3/00, 2010 год «Нейтронный спектрометр на базе протонного телескопа» (Богдзель А.А., Пантелеев Ц.Ц., Милков В.М.). Сущность изобретения заключается в том, что измерения энергетических распределений потоков нейтронов осуществляются путем измерений кинетической энергии упруго рассеянных на малые углы протонов отдачи в результате (n, p) взаимодействия в газовой водородосодержащей среде. Для достижения необходимой коллимации используется принцип снятия сигналов с анодной нити и с двух дополнительных электродов (трубок) с последующей записью многомерного амплитудного спектра в компьютере. Энергия нейтронов определяется после сортировки многомерной информации. В качестве протонной мишени используется слой газа в первой трубке, толщина и положение которого произвольно выбирается программой обработки; вторая трубка служит в качестве коллиматора протонов отдачи, а выбор минимального угла коллиматора осуществляется во время обработки информации в компьютере. Изобретение относится к области регистрации и спектрометрии быстрых нейтронов и может быть использовано в области физики реакторов и экспериментальной нейтронной физике. Технический результат - повышение точности определения распределения по энергии быстрых нейтронов. Недостатком изобретения является невозможность его использования для определения спектрального распределения нейтронов в полях высокоинтенсивного импульсного нейтронного излучения.
Целью предлагаемого изобретения является определение спектрального распределения нейтронов в полях высокоинтенсивного импульсного нейтронного излучения.
Указанная цель достигается в заявляемом спектрометре высокоинтенсивного импульсного нейтронного излучения. Спектрометр содержит металлический корпус, внутри которого последовательно расположены мишень из материала, содержащего водород, и выполненные из металла коллиматор, плоские различной толщины фильтры-поглотители протонов отдачи и коллекторы заряда, сопряженные и равной площади с фильтрами-поглотителями протонов. Коллекторы подключены к электроизмерительным приборам. Все элементы спектрометра изготовлены из материалов с близким атомным номером. Толщина мишени из материала, содержащего водород, выбирается менее пробега протонов отдачи с энергией, равной минимальному значению энергии нейтронов в составе анализируемого спектра. Коллиматор спектрометра имеет сотовую структуру с поперечным размером сот менее их продольного размера. Соотношение продольного и поперечного размеров сот и толщина фильтров-поглотителей протонов определяются из условий по точности измерения распределения нейтронов по энергии и чувствительности измерительных трактов.
Реализуемость заявляемого спектрометра высокоинтенсивного импульсного нейтронного излучения подтверждается следующим образом. Толщина мишени из материала, содержащего водород, выбирается менее пробега протонов отдачи с энергией, равной минимальному значению энергии нейтронов в составе анализируемого спектра, что исключает погрешности измерений за счет самопоглощения протонов отдачи внутри мишени. В «лобовом» столкновении нейтронов с ядрами атомов водорода образуются протоны отдачи с энергией, равной энергии первичных нейтронов. Применение «узкого» коллиматора позволяет выделить протоны отдачи, энергетический спектр которых практически совпадает с измеряемым спектром нейтронного излучения. Выделение интересующей энергетической группы частиц выполняется фильтрами-поглотителями протонов отдачи путем подбора их толщины с использованием хорошо известных соотношений «пробег-энергия». Недостатком технологии «узкого» коллиматора является ограничение тока протонов отдачи.
Сущность заявляемого изобретения составляет предложение использовать сотовый коллиматор для увеличения интенсивности пучка протонов отдачи в заданном диапазоне энергий. Увеличение поперечного размера сот коллиматора увеличивает ток протонов отдачи, но одновременно «размывает» измеряемый спектр. Точно так же увеличение разности толщин фильтров-поглотителей приводит к росту амплитуды регистрируемого сигнала от протонов отдачи в пределах измеряемой энергетической группы, но одновременно расширяет контролируемый диапазон энергий и тем самым снижает точность измерений нейтронного спектра. При подготовке и проведении экспериментов путем подбора соотношения продольного и поперечного размеров сот коллиматора, а также вариацией толщин фильтров-поглотителей протонов отдачи обеспечиваются заданные условия по точности измерения распределения нейтронов по энергии с учетом чувствительности измерительных трактов.
Заявляемый спектрометр высокоинтенсивного импульсного нейтронного излучения работоспособен в полях смешанного гамма-нейтронного излучения. Для исключения сигналов, обусловленных действием гамма-излучения, в непосредственной близости от спектрометра располагают аналогичный ему прибор, в котором отсутствует мишень из материала, содержащего водород. Сигналы от соответствующих коллекторов спектрометра и дублирующего прибора подключают через схему вычитания к электроизмерительным приборам. При этом наводки, обусловленные сопутствующим гамма-излучением, а также вторичными частицами, образующимися в результате неупругого рассеяния нейтронов на ядрах атомов конструкционных материалов спектрометра, взаимно компенсируются, и регистрируется только исследуемые протоны отдачи. Вклад водородосодержащей мишени в силу ее пренебрежимо малой массовой толщины практически не искажает картину эксперимента.
Таким образом, техническая возможность реализации заявляемого спектрометра высокоинтенсивного импульсного нейтронного излучения не вызывает сомнений.

Claims (1)

  1. Спектрометр высокоинтенсивного импульсного нейтронного излучения, содержащий металлический корпус, внутри которого последовательно расположены мишень из материала, содержащего водород, и металлические коллиматор, плоские различной толщины фильтры-поглотители протонов отдачи и коллекторы заряда, сопряженные и равной площади с фильтрами-поглотителями протонов, коллекторы подключены к электроизмерительным приборам, все элементы спектрометра изготовлены из материалов с близким атомным номером, причем толщина мишени из материала, содержащего водород, выбирается менее пробега протонов отдачи с энергией, равной минимальному значению энергии нейтронов в составе анализируемого спектра, коллиматор имеет сотовую структуру с поперечным размером сот менее продольного размера, а соотношение продольного и поперечного размеров сот и толщина фильтров-поглотителей протонов определяются из условий по точности измерения распределения нейтронов по энергии и чувствительности измерительных трактов.
RU2017129541A 2017-08-18 2017-08-18 Спектрометр высокоинтенсивного импульсного нейтронного излучения RU2658097C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017129541A RU2658097C1 (ru) 2017-08-18 2017-08-18 Спектрометр высокоинтенсивного импульсного нейтронного излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017129541A RU2658097C1 (ru) 2017-08-18 2017-08-18 Спектрометр высокоинтенсивного импульсного нейтронного излучения

Publications (1)

Publication Number Publication Date
RU2658097C1 true RU2658097C1 (ru) 2018-06-19

Family

ID=62620263

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017129541A RU2658097C1 (ru) 2017-08-18 2017-08-18 Спектрометр высокоинтенсивного импульсного нейтронного излучения

Country Status (1)

Country Link
RU (1) RU2658097C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115267879A (zh) * 2022-08-01 2022-11-01 西北核技术研究所 一种高分辨脉冲快中子通量、能谱的测量装置及测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU904451A1 (ru) * 1980-08-04 1983-09-07 Институт космических исследований АН СССР Рентгеновский спектрометр
US4837442A (en) * 1988-03-10 1989-06-06 The United States Of America As Represented By The United States Department Of Energy Neutron range spectrometer
RU2445649C1 (ru) * 2010-08-20 2012-03-20 Объединенный Институт Ядерных Исследований Нейтронный спектрометр на базе протонного телескопа
RU2011140751A (ru) * 2009-04-01 2013-05-10 Брукхэвен Сайенс Ассошиэйтс Коллиматор с перемешанными каналами для получения трехмерных изображений с помощью излучения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU904451A1 (ru) * 1980-08-04 1983-09-07 Институт космических исследований АН СССР Рентгеновский спектрометр
US4837442A (en) * 1988-03-10 1989-06-06 The United States Of America As Represented By The United States Department Of Energy Neutron range spectrometer
RU2011140751A (ru) * 2009-04-01 2013-05-10 Брукхэвен Сайенс Ассошиэйтс Коллиматор с перемешанными каналами для получения трехмерных изображений с помощью излучения
RU2445649C1 (ru) * 2010-08-20 2012-03-20 Объединенный Институт Ядерных Исследований Нейтронный спектрометр на базе протонного телескопа

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115267879A (zh) * 2022-08-01 2022-11-01 西北核技术研究所 一种高分辨脉冲快中子通量、能谱的测量装置及测量方法

Similar Documents

Publication Publication Date Title
Caresana et al. Intercomparison of radiation protection instrumentation in a pulsed neutron field
Taieb et al. A new fission chamber dedicated to prompt fission neutron spectra measurements
Silari et al. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response
Fain et al. Experimental results on elastic scattering of protons on the light nuclei 2H, 3H, 3He and 4He at 600 MeV
RU2583861C1 (ru) Детектор мононаправленного нейтронного излучения
Hendrie et al. Spin Flip in the Inelastic Scattering of 19.6-MeV Protons from Fe 54 and Fe 56
RU2658097C1 (ru) Спектрометр высокоинтенсивного импульсного нейтронного излучения
Tang et al. Initial years’ neutron-induced cross-section measurements at the CSNS Back-n white neutron source
Barschall Methods for Measuring Fast Neutron Cross Sections
Cui et al. Measurement of relative differential cross sections of the neutron-deuteron elastic scattering for neutron energy from 13 to 52 MeV
US3238369A (en) Fast neutron spectroscope for measurements in a high intensity time dependent neutron environment
Tamburro Measurements of cosmic rays with icetop/icecube: status and results
RU2716456C1 (ru) Способ раздельной регистрации мононаправленных нейтронов и гамма-квантов, действующих совместно
Lamanna High-energy gamma-ray detection with the Alpha Magnetic Spectrometer on board the International Space Station
RU2676822C1 (ru) Способ измерения плотности потока нейтронного излучения низкой интенсивности в статических полях смешанного гамма-нейтронного излучения
Campbell et al. A coincidence technique for study of Ge (Li) detector profiles
RU2706807C1 (ru) Способ определения электрических сигналов в конструкциях диэлектрик-металл при действии высокоинтенсивного импульсного ионизирующего излучения по результатам измерений на статических источниках излучения низкой интенсивности
Hunter et al. Development of a telescope for medium-energy gamma-ray astronomy
Tatel The Angular Distribution of Protons Scattered by High Energy Neutrons
Pirovano et al. Measurements of neutron scattering angular distributions with a new scintillator setup
Leeper et al. ZR neutron diagnostic suite
Tarrío et al. Characterization of the Medley setup for measurements of neutron-induced fission cross sections at the GANIL-NFS facility
Hutcheson et al. A liquid scintillator fast neutron double-scatter imager
Toomey A Measurement of the 18 O (α, n) 21 Ne Reaction
Olsher et al. Proton recoil scintillator neutron rem meter

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190819