RU2656423C2 - Сейсмостойкая кирпичная стеновая панель - Google Patents

Сейсмостойкая кирпичная стеновая панель Download PDF

Info

Publication number
RU2656423C2
RU2656423C2 RU2014111380A RU2014111380A RU2656423C2 RU 2656423 C2 RU2656423 C2 RU 2656423C2 RU 2014111380 A RU2014111380 A RU 2014111380A RU 2014111380 A RU2014111380 A RU 2014111380A RU 2656423 C2 RU2656423 C2 RU 2656423C2
Authority
RU
Russia
Prior art keywords
damping
vibration
vibration damping
channels
mortar
Prior art date
Application number
RU2014111380A
Other languages
English (en)
Other versions
RU2014111380A (ru
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2014111380A priority Critical patent/RU2656423C2/ru
Publication of RU2014111380A publication Critical patent/RU2014111380A/ru
Application granted granted Critical
Publication of RU2656423C2 publication Critical patent/RU2656423C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Изобретение относится к строительству в сейсмоопасных районах зданий и сооружений. Технический результат - повышение сейсмостойкости кирпичной стеновой панели путем увеличения демпфирования. Сейсмостойкая кирпичная стеновая панель содержит кирпичную кладку из кирпичей с отверстиями по средине ширины и на одной четверти длины от торцов кирпича, уложенных на растворе с совмещением отверстий в каналы, и арматурные стержни, пропущенные через каналы с жестким закреплением их на торцах посредством плоских упоров по толщине, равных толщине растворного шва, а в каналах у торцов панели размещены слои вибродемпфирующего материала П-образного типа, воспринимающие пространственную вибрацию, арматурные стержни выполнены демпфирующими, причем слои вибродемпфирующего материала, конструктивно выполненные П-образного типа и воспринимающие пространственную вибрацию, выполнены из измельченных изношенных автопокрышек на связке в виде резинового клея, жидкого стекла или полимерного связующего, а через каждые 8÷10 рядов уложенных на растворе кирпичей привариваются жесткие упоры, а демпфирующие стержни удлиняются с применением сварки, причем в каналы средней зоны заливается раствор с вибродемпфирующей крошкой из измельченных покрышек автомобильных шин для образования более жестких зон. Каждый из арматурных стержней представляет собой коаксиально расположенные цилиндрические обечайки, между которыми коаксиально расположены полые трубчатые демпфирующие элементы из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры, внутренняя центральная полость которых заполнена крошкой из твердых вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим» с размером фракций крошки 0,5…2,0 мм, залитой эластомером, например полиуретаном, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек, а на цилиндрической поверхности полых демпфирующих элементов, к концам которых жестко присоединены плоские жесткие упоры, выполнены сквозные винтовые канавки, ширина которых меньше минимальных размеров крошки твердых вибродемпфирующих материалов, заполняющих полости демпфирующих элементов. 4 ил.

Description

Изобретение относится к строительству в сейсмоопасных районах зданий и сооружений.
Известны малошумные конструкции для производственных зданий в виде акустических облицовок и штучных звукопоглотителей, полости которых заполнены звукопоглощающим материалом [1]. В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике.
Недостатками известных конструкций звукопоглотителей являются их сравнительно невысокая эффективность на низких и средних частотах, а также они не отвечают возросшим требованиям, предъявляемым к дизайну помещений и сейсмической стойкости возводимых сооружений.
Известны малошумные сейсмостойкие производственные здания, содержащие каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием [2].
Их недостаток - сравнительно невысокая эффективность шумоглушения на высоких частотах, из-за отсутствия в элементах конструкций схем, содержащих резонаторы Гельмгольца.
Известны малошумные сейсмостойкие производственные здания, содержащие базовые несущие плиты перекрытия, снабженные в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки [3].
Недостатками известных конструкций зданий являются их сравнительно невысокая эффективность на низких и средних частотах, а также они не отвечают возросшим требованиям, предъявляемым к сейсмической стойкости возводимых сооружений.
Известно малошумное сейсмостойкое производственное здание [4], основание каркаса здания которого выполнено с виброизоляцией железобетонной плиты, состоящей из связанных между собой железобетонных балок в основании здания, которая включает в себя по крайней мере, четыре виброизолятора, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, а также сейсмостойкую панель.
Недостатками этого сейсмостойкого производственного здания является сравнительно невысокая эффективность шумоподавления на низких и средних частотах, а также сравнительно невысокое демпфирование на резонансных частотах в системах виброизоляции, и как следствие - сравнительно невысокая сейсмостойкость.
Наиболее близким техническим решением к заявляемому объекту является сейсмостойкая кирпичная панель с перевязкой в полкирпича из кирпичей на растворе, имеющих отверстия по середине ширины на четверти длины от торцов кирпича, в которые пропущены демпфирующие стержни, зафиксированные на прижимной пластине гайками по патенту на полезную модель РФ №118331, - прототип [5].
Конструкция этой кирпичной панели обладает следующими недостатками. Ввиду повышенной жесткости и отсутствия эффективных демпфирующих многослойных элементов, стержни являются волноводами механических колебаний, что не только в условиях сейсмической опасности, но и при транспортных нагрузках ведет к разрушению панели.
Технически достижимый результат - повышение сейсмостойкости кирпичной стеновой панели путем увеличения демпфирования.
Это достигается тем, что в сейсмостойкой кирпичной стеновой панели, содержащей кирпичную кладку из кирпичей с отверстиями по средине ширины и на одной четверти длины от торцов кирпича, уложенных на растворе с совмещением отверстий в каналы, и арматурные стержни, пропущенные через каналы с жестким закреплением их на торцах посредством плоских упоров по толщине, равных толщине растворного шва, а в каналах у торцов панели размещены слои вибродемпфирующего материала П-образного типа, воспринимающие пространственную вибрацию, арматурные стержни выполнены демпфирующими, а каждый из них представляет собой цилиндрический демпфирующий элемент, к концам которого жестко присоединены плоские жесткие упоры, а внутренняя полость заполнена слоем вибродемпфирующего материала, например песком, при этом плотность вибродемпфирующего слоя меньше плотности внешней цилиндрической обечайки демпфирующего элемента, причем слои вибродемпфирующего материала, конструктивно выполненные П-образного типа и воспринимающие пространственную вибрацию, выполнены из измельченных изношенных автопокрышек на связке в виде резинового клея, жидкого стекла, или полимерного связующего, а через каждые 8÷10 рядов уложенных на растворе кирпичей привариваются жесткие упоры, а демпфирующие стержни удлиняются с применением сварки, причем в каналы средней зоны заливается раствор с вибродемпфирующей крошкой из измельченных покрышек автомобильных шин для образования более жестких зон, а арматурные стержни выполнены демпфирующими, и каждый из них представляет собой коаксиально расположенные цилиндрические обечайки, между которыми коаксиально расположены трубчатые демпфирующие элементы из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры, а внутренняя центральная полость заполнена песком, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек.
На фиг.1 изображен кирпич (несущий элемент) в аксонометрии с двумя отверстиями; на фиг.2 - сейсмостойкая кирпичная стеновая панель, вид в плане, на фиг.3 - схема демпфирующего стержня кирпичной стеновой панели, на фиг.4 - вариант выполнения арматурных стержней в виде набора чередующихся цилиндрических обечаек и трубчатых демпфирующих элементов.
Сейсмостойкая кирпичная стеновая панель (фиг.2) выполнена из кирпичей 1 (фиг.1) с двумя отверстиями 2 по середине ширины и на одной четверти длины от торцов кирпича. В совмещенные отверстия 2 кирпичей 1 помещены демпфирующие (арматурные) стержни 3 (фиг.3), на торцах которых жестко закреплены плоские упоры 5 по толщине, равные толщине растворного шва 4.
Каждый из демпфирующих (арматурных) стержней 3 представляет собой цилиндрический демпфирующий элемент, к концам которого жестко присоединены (например, посредством сварки) плоские жесткие упоры 5, а внутренняя полость заполнена слоем вибродемпфирующего материала, например песком, причем плотность вибродемпфирующего слоя должна быть меньше плотности внешней цилиндрической обечайки демпфирующего элемента. В случае, если плотности вибродемпфирующего слоя и внешней цилиндрической обечайки будут равны, то демпфирующий элемент 3 потеряет свойства гасить вибрации, что недопустимо.
Для повышения эффективности гашения ударных нагрузок и вибрации в каналах, предназначенных для размещения слоя строительного раствора 4, у торцов панели (и сбоку) размещают слои 7 вибродемпфирующего материала, конструктивно выполненные П-образного типа и воспринимающие пространственную вибрацию, и выполненные, например, из измельченных покрышек пневматиков (изношенных автопокрышек) на связке (резиновый клей, жидкое стекло, полимерное связующее). После достижения запроектированной высоты панели для усадки слоев вибродемпфирующего материала 7 по времени, делают выдержку и приваривают последние жесткие упоры 5. Оставшийся промежуток (щель) заделывают обычным способом.
В качестве кирпичей (несущих элементов) могут быть применены не только керамические кирпичи, но также (кирпичи) несущие элементы из синтетических материалов, дерева с пропиткой, полые кирпичи, заполненные легкими виброизолирующими и виброгасящими материалами (на чертеже не показано).
Возможен вариант выполнения арматурных стержней в виде набора чередующихся цилиндрических обечаек 3 и 6 (фиг.4) и трубчатых демпфирующих элементов 9, количество которых подбирается с учетом требуемого демпфирования, зависящего от уровня сейсмозащищенности объекта.
Арматурные стержни выполнены демпфирующими, и каждый из них представляет собой коаксиально расположенные цилиндрические обечайки 3 и 6, между которыми коаксиально расположены трубчатые демпфирующие элементы 9 из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры 5, а внутренняя центральная полость 8 заполнена песком, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек 3 и 6.
Возможен вариант выполнения демпфирующих (арматурных) стержней 3, когда их внутренняя полость заполнена слоем вибродемпфирующего материала, плотность которого меньше плотности внешней цилиндрической обечайки демпфирующего элемента, при этом в качестве вибродемпфирующего материала используется крошка твердых вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим» с размером фракций крошки 0,5…2,0 мм, залитая эластомером, например полиуретаном.
Возможен вариант, когда между коаксиально расположенными цилиндрическими обечайками 3 и 6 расположены трубчатые демпфирующие элементы 9 из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры 5, а внутренняя центральная полость 8 заполнена крошкой из твердых вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим» с размером фракций крошки 0,5…2,0 мм, залитой эластомером, например полиуретаном, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек 3 и 6.
Возможен вариант, когда на цилиндрической поверхности полых демпфирующих элементов (арматурных стержней 3), к концам которых жестко присоединены плоские жесткие упоры 5, выполнены сквозные винтовые канавки (на чертеже не показано), ширина которых меньше минимальных размеров крошки твердых вибродемпфирующих материалов, заполняющих полости демпфирующих элементов (арматурных стержней 3).
Сейсмостойкая кирпичная стеновая панель монтируется и осуществляет виброизоляцию следующим образом.
На фундамент (на чертеже не показано) между колоннами наносят слой строительного раствора 4. На строительный раствор устанавливают в виде полос плоские жесткие упоры 5 с приваренными к ним вертикально демпфирующими стержнями 3 длиной 1000 мм и диаметром, например, 16 мм, если диаметр отверстия 2 кирпича равен 20 мм, например на кирпиче размером 70×120×250 мм. Через каждые 8÷10 рядов уложенных на растворе кирпичей 1 привариваются жесткие упоры 5, а демпфирующие стержни 3 удлиняются с применением сварки. В целях экономии арматуры в каналах средней зоны может заливаться раствор с вибродемпфирующей крошкой из измельченных покрышек автомобильных шин (изношенных) для образования более жестких зон.
Сейсмостойкая кирпичная стеновая панель в динамике обладает следующими особенностями.
Более короткие демпфирующие стержни 3 арматуры не являются волноводами механических колебаний, так как распространению колебаний препятствуют во-первых узлы сварки с жесткими упорами 5, а во-вторых слои 6 вибродемпфирующего материала, расположенные в самих демпфирующих стержнях 3. При подходе волн механических колебаний к панели извне их встречает вибродемпфирующий материал в слоях 7, размещенных в каналах у торцов панели, и гасит, препятствуя их проникновению к средней зоне. Между слоем строительного раствора 4 и поверхностями жестких упоров 5, а также кирпичами 1 происходит бесконечно убывающее отражение волн механических колебаний.
По сравнению с конструкцией прототипа предлагаемая сейсмостойкая панель обладает следующими преимуществами: расширен диапазон гашения колебаний механических воздействий за счет комплексных конструктивных особенностей: более коротких арматурных стержней 3 и наличия в их полостях 6 вибродемпфирующего материала, а также слоев 7 вибродемпфирующего материала, конструктивно выполненных П-образного типа и экономно размещенных по периметру панели. На цилиндрической поверхности полых демпфирующих элементов (арматурных стержней 3) выполнены сквозные винтовые канавки, что позволяет увеличить надежность стержней 3 при стохастическом вибрационном нагружении за счет небольшого изменения их длины, что предотвратит разрушение стеновой панели в динамике и повысит сейсмостойкость конструкции в целом.
Кроме того, возможна стыковка панелей сваркой выпусков плоских жестких упоров 5.
Монтаж балок для полов осуществляется сваркой П-образных накладок на кирпич (на чертеже не показано), одновременно выполняющих функцию упоров 5, жестко соединенных с арматурным стержнем 3. Стыковка панелей осуществляется сваркой выпусков плоских жестких упоров 5 (на чертеже не показано).
Монтаж балок для полов, крепление трубопроводов, кабелей производится сваркой их креплений к П-образным поперечным накладкам на кирпич, одновременно выполняющим функцию жестких упоров 5, жестко соединенных с арматурным стержнем 3.
Сейсмостойкая панель может быть применена при строительстве кузовов транспортных средств путем использования кирпичей из легких и прочных материалов, дерева с пропиткой, пластмасс, синтетических смесей, микропористых материалов.
Источники информации
1. Кочетов О.С., Сажин Б.С. Снижение шума и вибраций в производстве: теория, расчет, технические решения. М.: МГТУ им. А.Н. Косыгина, 2001. - 319 с. (рис.П.III.10, стр.263).
2. Дурнев Р.А., Кочетов О.С., Иванова О.Ю. Сейсмостойкое здание // Патент на полезную модель №120447. Опубликовано 20.09.2012. БИ №26.
3. Дурнев Р.А., Кочетов О.С., Иванова О.Ю., Авгуцевичс А.Х. Сейсмостойкое сооружение // Патент на полезную модель №123433. Опубликовано 27.12.2012. БИ №36.
4. Дурнев Р.А., Иванова О.Ю., Кочетов О.С. Малошумное сейсмостойкое производственное здание // Патент на полезную модель №129125. Опубликовано 20.06.2013. БИ №17.
5. Дурнев Р.А., Кочетов О.С., Иванова О.Ю., Авгуцевичс А.Х. Сейсмостойкая кирпичная стеновая панель // Патент на полезную модель №118331. Опубликовано 20.07.2012. БИ №20.

Claims (1)

  1. Сейсмостойкая кирпичная стеновая панель, содержащая кирпичную кладку из кирпичей с отверстиями по средине ширины и на одной четверти длины от торцов кирпича, уложенных на растворе с совмещением отверстий в каналы, и арматурные стержни, пропущенные через каналы с жестким закреплением их на торцах посредством плоских упоров по толщине, равных толщине растворного шва, а в каналах у торцов панели размещены слои вибродемпфирующего материала П-образного типа, воспринимающие пространственную вибрацию, арматурные стержни выполнены демпфирующими, причем слои вибродемпфирующего материала, конструктивно выполненные П-образного типа и воспринимающие пространственную вибрацию, выполнены из измельченных изношенных автопокрышек на связке в виде резинового клея, жидкого стекла или полимерного связующего, а через каждые 8÷10 рядов уложенных на растворе кирпичей привариваются жесткие упоры, а демпфирующие стержни удлиняются с применением сварки, причем в каналы средней зоны заливается раствор с вибродемпфирующей крошкой из измельченных покрышек автомобильных шин для образования более жестких зон, отличающаяся тем, что каждый из арматурных стержней представляет собой коаксиально расположенные цилиндрические обечайки, между которыми коаксиально расположены полые трубчатые демпфирующие элементы из вибродемпфирующего материала, к концам которых жестко присоединены плоские жесткие упоры, внутренняя центральная полость которых заполнена крошкой из твердых вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим» с размером фракций крошки 0,5…2,0 мм, залитой эластомером, например полиуретаном, при этом плотность слоев вибродемпфирующего материала меньше плотности коаксиально расположенных цилиндрических обечаек, а на цилиндрической поверхности полых демпфирующих элементов, к концам которых жестко присоединены плоские жесткие упоры, выполнены сквозные винтовые канавки, ширина которых меньше минимальных размеров крошки твердых вибродемпфирующих материалов, заполняющих полости демпфирующих элементов.
RU2014111380A 2014-03-26 2014-03-26 Сейсмостойкая кирпичная стеновая панель RU2656423C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014111380A RU2656423C2 (ru) 2014-03-26 2014-03-26 Сейсмостойкая кирпичная стеновая панель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014111380A RU2656423C2 (ru) 2014-03-26 2014-03-26 Сейсмостойкая кирпичная стеновая панель

Publications (2)

Publication Number Publication Date
RU2014111380A RU2014111380A (ru) 2015-10-10
RU2656423C2 true RU2656423C2 (ru) 2018-06-05

Family

ID=54289228

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014111380A RU2656423C2 (ru) 2014-03-26 2014-03-26 Сейсмостойкая кирпичная стеновая панель

Country Status (1)

Country Link
RU (1) RU2656423C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779101A1 (en) 2019-08-16 2021-02-17 Flexandrobust Systems Spolka z o.o. The method of anti-seismic protection of frames and filling walls in frame buildings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727817B1 (ko) * 2015-08-28 2017-05-02 최원옥 건축물 슬래브의 내진 공법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU139795A1 (ru) * 1961-01-25 1961-11-30 В.И. Коноводченко Кирпична стенова панель
SU690140A1 (ru) * 1977-06-20 1979-10-05 Трест По Проектированию И Внедрению Новой Техники В Строительство "Киеворгстрой" Ордена Ленина Галвкиевгорстроя Стенова панель
EP0183652B1 (en) * 1984-11-30 1991-11-06 Phillip Hanford Boot Brick panel
RU118331U1 (ru) * 2012-02-10 2012-07-20 Федеральное государственное бюджетное учреждение Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России (федеральный центр науки и высоких технологий ФГБУ ВНИИ ГОЧС (ФЦ)) Сейсмостойкая кирпичная стеновая панель

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU139795A1 (ru) * 1961-01-25 1961-11-30 В.И. Коноводченко Кирпична стенова панель
SU690140A1 (ru) * 1977-06-20 1979-10-05 Трест По Проектированию И Внедрению Новой Техники В Строительство "Киеворгстрой" Ордена Ленина Галвкиевгорстроя Стенова панель
EP0183652B1 (en) * 1984-11-30 1991-11-06 Phillip Hanford Boot Brick panel
RU118331U1 (ru) * 2012-02-10 2012-07-20 Федеральное государственное бюджетное учреждение Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России (федеральный центр науки и высоких технологий ФГБУ ВНИИ ГОЧС (ФЦ)) Сейсмостойкая кирпичная стеновая панель

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3779101A1 (en) 2019-08-16 2021-02-17 Flexandrobust Systems Spolka z o.o. The method of anti-seismic protection of frames and filling walls in frame buildings

Also Published As

Publication number Publication date
RU2014111380A (ru) 2015-10-10

Similar Documents

Publication Publication Date Title
RU2537421C2 (ru) Сейсмостойкая кирпичная стеновая панель
RU118331U1 (ru) Сейсмостойкая кирпичная стеновая панель
RU2572869C1 (ru) Стержень для кирпичной стеновой панели кочетова
RU2606885C1 (ru) Стержень для кирпичной стеновой панели кочетова
RU2544184C2 (ru) Сейсмостойкая кирпичная стеновая панель
RU2656423C2 (ru) Сейсмостойкая кирпичная стеновая панель
RU2615183C1 (ru) Сейсмостойкое сооружение кочетова
RU2646143C1 (ru) Стержень для кирпичной панели сейсмостойкого здания
RU2643202C2 (ru) Сейсмостойкая кирпичная стеновая панель кочетова
RU2615185C1 (ru) Стержень для кирпичной панели
RU2579030C1 (ru) Кирпичная сейсмостойкая стеновая панель кочетова
RU2646144C1 (ru) Стержень для кирпичной панели сейсмостойкого объекта
RU2606887C1 (ru) Малошумное сейсмостойкое производственное здание кочетова
RU2014113448A (ru) Сейсмостойкое здание кочетова
RU2646080C1 (ru) Стержень для кирпичной панели
RU2646145C1 (ru) Стержень для кирпичной стеновой панели
RU2573882C1 (ru) Малошумное сейсмостойкое производственное здание кочетова
RU2555986C2 (ru) Малошумное сейсмостойкое производственное здание
RU2544185C2 (ru) Способ повышения сейсмостойкости кирпичной стеновой панели
RU2656425C2 (ru) Малошумное сейсмостойкое производственное здание
RU131036U1 (ru) Сейсмостойкое сооружение
RU2624842C2 (ru) Здание сейсмостойкое с кирпичной стеновой панелью
RU2624057C2 (ru) Здание сейсмостойкое кочетова с кирпичной стеновой панелью
RU2658937C2 (ru) Здание сейсмостойкое кочетова с кирпичной стеновой панелью
RU2658934C2 (ru) Здание сейсмостойкое кочетова с кирпичной стеновой панелью

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant