RU2656361C1 - Способ позиционирования подвижного объекта - Google Patents

Способ позиционирования подвижного объекта Download PDF

Info

Publication number
RU2656361C1
RU2656361C1 RU2017127360A RU2017127360A RU2656361C1 RU 2656361 C1 RU2656361 C1 RU 2656361C1 RU 2017127360 A RU2017127360 A RU 2017127360A RU 2017127360 A RU2017127360 A RU 2017127360A RU 2656361 C1 RU2656361 C1 RU 2656361C1
Authority
RU
Russia
Prior art keywords
operators
information
location
positioning
time
Prior art date
Application number
RU2017127360A
Other languages
English (en)
Inventor
Игорь Евгеньевич Монвиж-Монтвид
Сергей Иванович Ермиков
Original Assignee
Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств" filed Critical Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств"
Priority to RU2017127360A priority Critical patent/RU2656361C1/ru
Application granted granted Critical
Publication of RU2656361C1 publication Critical patent/RU2656361C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к области навигационных систем и может быть использовано для позиционирования наземных подвижных объектов. Достигаемый технический результат – повышение точности позиционирования подвижного объекта, а также облегчение процедуры ввода операторами информации за счет фиксации изображения и использования при вводе данных манипулятора «мышь», а так же применения интерполяции, сводящей к минимуму ошибку рассогласования во времени вводимой операторами информации. Указанный результат достигается за счет того, что способ позиционирования подвижного объекта осуществляют на основе информации от двух и более разнесенных видеокамер, местоположение и расположение оптических осей которых известно, используют для пресечения диверсионной и террористической деятельности с применением скоростных наземных средств передвижения, при этом операторы при появлении потенциально опасного объекта периодически фиксируют видеоизображение и отмечают объект с помощью манипулятора «мышь», а расчет местоположения и параметров вектора скорости объекта производится на основе трех последних замеров от одной из точек наблюдения и одного замера от другой точки, с использованием интерполяции трассы объекта. 2 ил.

Description

Изобретение относится к области навигационных систем и может быть использовано для позиционирования наземных подвижных объектов на основе информации, получаемой от двух и более пространственно разнесенных видеокамер.
За последние годы резко возросла опасность диверсионной и террористической деятельности с использованием скоростных наземных средств передвижения. Для пресечения передвижения представляющих опасность подвижных объектов необходимо вовремя отслеживать во времени навигационные параметры этого объекта, его местоположение и скорость. Задача осложняется тем, что во многих случаях, на пересеченной местности с большим числом препятствий и в городских условиях, где присутствуют и другие подвижные объекты, единственным способом обнаружения опасного объекта являются видеонаблюдения, причем действовать ответственному персоналу приходится в экстремальной ситуации и очень быстро.
Давно известны радиолокационные методы позиционирования подвижных объектов, в которых используются радиотехнические средства и методы. При активной радиолокации по пассивным целям сигналы, излучаемые антенной передающего устройства радиолокационной станции (РЛС), фокусируются и направляются на цель. Приемное устройство той же либо другой РЛС принимает отраженные волны и преобразует их так, что выходное устройство с помощью опорных сигналов извлекает содержащуюся в отраженном сигнале информацию: наличие цели, ее дальность, направление, скорость и др. По времени запаздывания отраженного сигнала относительно излученного определяют наклонную дальность цели, а по его амплитудным и фазовым характеристикам - его направление (пеленг). Повторные измерения позволяют определить скорость цели по приращениям направления и дальности, либо по изменению частоты принимаемых сигналов (доплеровского сдвига). Радиолокационные методы с использованием одной либо нескольких РЛС активно применяют там, где это возможно, но в сложных наземных условиях бывает невозможно идентифицировать подвижную цель среди множества других подвижных объектов, поэтому приходится искать другие методы.
Для позиционирования удаленного объекта могут использоваться дальномерно-угломерные приборы (ДУП), снабженные дальномером (как правило, лазерным) и средствами для измерения вертикальных и горизонтальных углов. Направив луч прибора на позиционируемый объект, можно получить с его помощью сферические координаты объекта по отношению к точке наблюдения, где располагается ДУП: наклонную дальность, магнитный азимут и угол места. Для определения собственных координат (привязки к местности) ДУП оснащают спутниковым навигационным приемником (ГЛОНАСС), либо подключают к приборам, его содержащим. На основе сферических координат и местоположения ДУП находят координаты объекта. ДУП удобен для позиционирования статичных объектов, но попасть лучом на подвижный объект, да еще в экстремальной ситуации, практически невозможно.
Наиболее близким к предлагаемому способу (прототипом) является способ позиционирования, основанный на определении углов на объект с двух позиций (Дардари Д. Методы спутникового и наземного позиционирования. Перспективы развития технологий обработки сигналов. М.: Техносфера, 2012, с. 128, 129). Для однократного позиционирования каждый из 2-х операторов с известных позиций в реальном времени фиксирует с помощью угломерных приборов направление от точки наблюдения на объект. Для определения скоростных характеристик подвижного объекта необходимы повторные измерения.
Если в локальной системе координат совместить начало координат с одной из точек наблюдения, а ось X направить в сторону другой точки наблюдения, то позиция объекта определится в ходе решения треугольника, у которого найдено основание (расстояние между позициями наблюдения) и два прилежащих к нему угла на объект. Если в полученном треугольнике со сторонами a, b, c и соответствующими противолежащими углами α, β, ν известна сторона с и прилежащие углы α и β (β - угол при начале координат), то сначала, используя теорему синусов, определяют неизвестную сторону a, а затем и координаты объекта (х,y):
a=c×sinα/sin(α+β)
x=a⋅cosβ
y=a⋅sinβ
В качестве угломерных инструментов могут использоваться те же ДУП, так как фиксация направления значительно проще и не предполагает использования лазерных лучей и попадания их на объект. Однако, учитывая, что для обнаружения объекта используются видеокамеры, более естественно и удобно фиксировать угловые параметры с помощью поворотных видеокамер, на момент прохождения изображения объекта через визирную линию.
Недостатком данного способа позиционирования является то, что в реальном времени, особенно в экстремальной ситуации, очень трудно «засечь» без ошибок быстро передвигающийся объект, к тому же практически невозможно добиться синхронной засечки углов обоими операторами, что неизбежно приводит к ошибкам позиционирования подвижного объекта.
Целью изобретения является повышение точности позиционирования подвижного объекта, а так же облегчение процедуры ввода оператором информации за счет фиксации изображения и использования при вводе данных манипулятора «мышь», а так же применения интерполяции, сводящей к минимуму ошибку рассогласования во времени вводимой операторами информации.
Для достижения цели предложен способ позиционирования подвижного объекта, основанный на многократном периодическом определении углов на объект с двух позиций, заключающийся в том, что для определения углов используются видеоизображения от двух разнесенных видеокамер, местоположение и направление оптических осей которых известно, при этом каждый из операторов, ответственных за свою точку наблюдения, заметив на экране своего ПЭВМ опасный объект, начинает периодическую процедуру фиксации (остановки) изображения выделенной клавишей (например, клавишей «пробел») и засечки объекта на изображении (определения его дисплейных координат) с помощью манипулятора «мышь». Расчет местоположения и параметров вектора скорости производят на основе трех последних замеров от одной из точек наблюдения и одного замера от другой точки, при этом применяют интерполирование трассы объекта при предположении постоянства вектора скорости на интервале 3-х замеров.
Схема получения исходной информации представлена на фиг. 1:
1. Каждая из 2-х точек наблюдения (ТН) оснащена поворотными платформами с видеокамерами, которые транслируют изображения на операторский пункт. Скорости вращения видеокамер, а так же их количество выбирают, исходя из величины и особенностей контролируемой зоны, характеристик видеокамер и потенциально опасных объектов.
2. Каждый из операторов, ответственных за свою точку наблюдения, наблюдает обстановку на экранах ПЭВМ своего АРМ.
3. Заметив на экране потенциально опасный объект, оператор повторяет процедуру ввода параметров - нажатием выделенной клавиши фиксирует изображение и с помощью манипулятора «мышь» отмечает (засекает) объект, автоматически возвращая при этом экран в режим реального просмотра.
4. По отклонению от визирной линии видеокамеры зафиксированных дисплейных координат объекта и по направлению оптической оси самой видеокамеры автоматически определяют на момент засечки направление (азимут) от задействованной точки наблюдения на объект. Информацию о времени засечки, направлении и номере точки наблюдения (t, α(t), N) передают на командный пункт (КП).
5. На основе 3-х последних замеров от одной из ТН и замера от 2-ой ТН вычисляют координаты и параметры вектора скорости подвижного объекта, изображение объекта выводят на электронную карту КП.
Расчет навигационных параметров (фиг. 2) производят на горизонтальной плоскости в выбранной декартовой системе координат «восток-север». В момент t1 в точке M(t1) происходит 1-я засечка объекта. В расчетах предполагают постоянство вектора скорости на интервале 3-х последовательных засечек.
Исходными параметрами служат координаты 2-х ТН: O(х,у), О11,y1), а так же времена засечек и азимуты от 1-й ТН: t1, t2, t3, α(t1), α(t2), α(t3) и 2-й ТН: t11, α1(t11).
Выходными параметрами являются координаты объекта (M(t1)) на момент t1 (X0, Y0), модуль и направление вектора скорости (υ, αν).
Расчет навигационных параметров производят следующим образом.
1. Используя координаты ТН, находят базу - расстояние между точками наблюдения: d(O,O1) и угол наклона базы - δ:
Figure 00000001
2. Используя теорему синусов для треугольников с вершинами O, M(t1), M(t2) и O, M(t1), M(t3) и учитывая линейную зависимость между временем и пройденным расстоянием, после преобразований находят угол β:
Figure 00000002
где
Figure 00000003
3. Затем используя теорему синусов для треугольников с вершинами O, M(t1), M(t2) и O, M(t1), M(t11) и проведя преобразования, находят угол α(t11):
Figure 00000004
где
Figure 00000005
4. Зная d(O,O1), α(t11), α1(t11) из треугольника с вершинами O, M(t11), O1 находят d(O, M(t11)):
Figure 00000006
5. Зная d(O, M(t11)), углы β, α(t1), α(t11) из треугольника с вершинами O, M(t1), M(t11) находят d(O, M(t1)) и d(M(t1), M(t11)):
Figure 00000007
Figure 00000008
6. Находят искомые параметры: координаты объекта в точке (M(t1)) на момент t1 (X0, Y0), модуль и направление вектора скорости (υ, αυ):
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
7. Экстраполированные координаты объекта X(t), Y(t) на текущий момент времени (t) до получения следующей засечки определяют по формулам:
Figure 00000013
Figure 00000014
Достигаемым техническим результатом предлагаемого способа позиционирования является повышение точности позиционирования подвижного объекта, а так же облегчение процедуры ввода операторами информации за счет фиксации изображения и использования при вводе данных манипулятора «мышь», а так же применения интерполяции, сводящей к минимуму ошибку рассогласования во времени вводимой операторами информации.

Claims (1)

  1. Способ позиционирования подвижного объекта, основанный на многократном определении углов на объект с двух позиций, заключающийся в том, что для определения углов используются видеоизображения от двух разнесенных видеокамер, местоположение и направление оптических осей которых известно, отличающийся тем, что каждый из операторов, ответственных за свою точку наблюдения на соответствующей позиции, определив на экране персональной электронной вычислительной машины (ПЭВМ) своего автоматизированного рабочего места (АРМ) потенциально опасный объект, осуществляет периодическую фиксацию видеоизображения путем его остановки выделенной клавишей, засечку объекта на видеоизображении с помощью манипулятора «мышь» и определение его дисплейных координат, автоматически возвращая экран в режим реального просмотра, затем по отклонению от визирной линии видеокамеры зафиксированных дисплейных координат объекта и по направлению оптической оси самой видеокамеры определяют на момент засечки направление от задействованной точки наблюдения на объект, информацию о времени засечки, направлении и номере точки наблюдения передают на командный пункт, определение местоположения и параметров вектора скорости производят на основе трех последних замеров от одной из точек наблюдения и одного замера от другой точки, при этом осуществляют интерполирование трассы объекта при предположении постоянства вектора скорости на интервале трех замеров.
RU2017127360A 2017-07-31 2017-07-31 Способ позиционирования подвижного объекта RU2656361C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017127360A RU2656361C1 (ru) 2017-07-31 2017-07-31 Способ позиционирования подвижного объекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017127360A RU2656361C1 (ru) 2017-07-31 2017-07-31 Способ позиционирования подвижного объекта

Publications (1)

Publication Number Publication Date
RU2656361C1 true RU2656361C1 (ru) 2018-06-05

Family

ID=62560266

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017127360A RU2656361C1 (ru) 2017-07-31 2017-07-31 Способ позиционирования подвижного объекта

Country Status (1)

Country Link
RU (1) RU2656361C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776130A2 (en) * 1995-11-27 1997-05-28 Canon Kabushiki Kaisha Camera control system with variable frame rate
GB2323236A (en) * 1997-03-14 1998-09-16 Sick Ag Video surveillance system
US5880815A (en) * 1996-01-17 1999-03-09 Nec Corporation Image pickup apparatus capable of preventing overlap or lack of image
RU38699U1 (ru) * 2004-02-20 2004-07-10 Закрытое акционерное общество "Оптик" Регистратор видеоинформации
RU2268497C2 (ru) * 2003-06-23 2006-01-20 Закрытое акционерное общество "ЭЛВИИС" Система и способ автоматизированного видеонаблюдения и распознавания объектов и ситуаций
WO2006017402A3 (en) * 2004-08-06 2006-12-28 Ipix Corp Surveillance system and method
RU83676U1 (ru) * 2008-10-03 2009-06-10 Закрытое Акционерное Общество "Голлард" Система видеомониторинга

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776130A2 (en) * 1995-11-27 1997-05-28 Canon Kabushiki Kaisha Camera control system with variable frame rate
US5880815A (en) * 1996-01-17 1999-03-09 Nec Corporation Image pickup apparatus capable of preventing overlap or lack of image
GB2323236A (en) * 1997-03-14 1998-09-16 Sick Ag Video surveillance system
RU2268497C2 (ru) * 2003-06-23 2006-01-20 Закрытое акционерное общество "ЭЛВИИС" Система и способ автоматизированного видеонаблюдения и распознавания объектов и ситуаций
RU38699U1 (ru) * 2004-02-20 2004-07-10 Закрытое акционерное общество "Оптик" Регистратор видеоинформации
WO2006017402A3 (en) * 2004-08-06 2006-12-28 Ipix Corp Surveillance system and method
RU83676U1 (ru) * 2008-10-03 2009-06-10 Закрытое Акционерное Общество "Голлард" Система видеомониторинга

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ДАРДАРИ Д. Методы спутникового и наземного позиционирования. Перспективы развития технологий обработки сигналов. Москва, Техносфера, 2012, с.128,129. *

Similar Documents

Publication Publication Date Title
Mautz Indoor positioning technologies
US7619561B2 (en) Managed traverse system and method to acquire accurate survey data in absence of precise GPS data
US9927513B2 (en) Method for determining the geographic coordinates of pixels in SAR images
US20160178754A1 (en) Portable gnss survey system
CN107917880B (zh) 一种基于地基云图的云底高度反演方法
US7792330B1 (en) System and method for determining range in response to image data
KR101394881B1 (ko) 하나 이상의 타겟들의 지리적 위치측정 방법
US10768295B2 (en) Ground-based, multi-bistatic interferometric radar system for measuring 2D and 3D deformations
US10458792B2 (en) Remote survey system
EP3767235B1 (en) System for mapping building interior with pedestrian dead reckoning and ranging and related methods
Pierrottet et al. Flight test performance of a high precision navigation Doppler lidar
EP3385747B1 (en) Method, device and system for mapping position detections to a graphical representation
Kumar et al. Identifying reflected gps signals and improving position estimation using 3d map simultaneously built with laser range scanner
RU2656361C1 (ru) Способ позиционирования подвижного объекта
Mares et al. Vehicle self-localization in GPS-denied zones by multi-band imaging and analysis of prominent scene features
Rouveure et al. High resolution mapping of the environment with a ground-based radar imager
Nitti et al. Automatic GCP extraction with high resolution COSMO-SkyMed products
WO2015194966A1 (en) Method and system for quality control and correction of position data from navigation satellites in areas with obstructing objects
RU2645549C2 (ru) Способ определения координат летательных аппаратов с использованием одного дирекционного угла и двух углов места
Vadlamani et al. Aerial vehicle navigation over unknown terrain environments using flash LADAR and inertial measurements
Sonnessa et al. Indoor Positioning Methods–A Short Review and First Tests Using a Robotic Platform for Tunnel Monitoring
RU2696009C1 (ru) Способ позиционирования подвижного объекта на основе видеоизображений
JPH08145668A (ja) 走査型レーザ測量装置
JP3908350B2 (ja) 監視装置
Rouveure et al. Terrestrial mobile mapping based on a microwave radar sensor. Application to the localization of mobile robots