RU2656123C1 - Способ определения приближения селя - Google Patents

Способ определения приближения селя Download PDF

Info

Publication number
RU2656123C1
RU2656123C1 RU2017117217A RU2017117217A RU2656123C1 RU 2656123 C1 RU2656123 C1 RU 2656123C1 RU 2017117217 A RU2017117217 A RU 2017117217A RU 2017117217 A RU2017117217 A RU 2017117217A RU 2656123 C1 RU2656123 C1 RU 2656123C1
Authority
RU
Russia
Prior art keywords
mudflow
microseismic
polarization
vibrations
seismic
Prior art date
Application number
RU2017117217A
Other languages
English (en)
Inventor
Анна Александровна Добрынина
Владимир Васильевич Чечельницкий
Евгений Николаевич Черных
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук
Priority to RU2017117217A priority Critical patent/RU2656123C1/ru
Application granted granted Critical
Publication of RU2656123C1 publication Critical patent/RU2656123C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/288Event detection in seismic signals, e.g. microseismics

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Acoustics & Sound (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к способам прогнозирования селевой опасности. Сущность: оценивают спектральный состав и поляризационные характеристики микросейсмического шума в пределах локального участка селеопасной зоны. Прогнозируют приближение селевого потока по увеличению доли высокочастотной компоненты сигнала в спектральном окне 20-50 Гц и изменению поляризации микросейсмического шума. Технический результат: определение приближения селя. 2 ил.

Description

Техническое решение относится к геофизике, оно направлено на повышение точности прогнозирования селя и может быть использовано в системе селезащиты.
Известны способы оповещения о сходе селя, реализованные в устройстве, в котором в качестве датчика автоматического радиооповестителя схода селя служит либо трос, заключенный в стальную трубу и протянутый поперек русла, при разрыве троса селевым потоком в эфир идет радиосигнал, оповещающий о начале схода селя (Димаксян A.M. Радиооповеститель селя. Л.: Гидрометеоиздат., 1966, 83 с.), либо свободно свисающий в движущийся селевой либо паводковый поток отвес, связанный с системой передачи данных по радиоканалу, при этом о степени опасности селевого потока судят по углу отклонения отвеса от вертикальной линии (Патент RU №2362191). Эти устройства срабатывают только при достижении селевым потоком в русле некой заданной критической высоты, т.е. после формирования и начала движения селя, вследствие чего слишком мала заблаговременность. Кроме того, каждым датчиком охватывается лишь одно селевое русло, а их сооружение в каждом селевом русле и притоке, а также их восстановление после каждого селя в труднодоступных местах дорого и неоперативно.
Известны способы оповещения о селях и паводках ливневого происхождения, основанные на контроле за количеством осадков. Суть одного из способов заключается в измерении на площадях водосбора количества выпавших и ожидаемых осадков радиолокационным методом и сравнение их суммарного значения с пороговым значением в водосборе с последующим оповещением населенных пунктов, расположенных по руслу селя, о превышении суммарных осадков их порогового значения (авторское свидетельство СССР №284645, 1984 г. (Гриф снят на основании телеграммы Росгидромета №87 от 17.08.94 г. ). Суть второго способа состоит в контроле водного баланса селеносной площади и отличается от вышеупомянутого тем, что в нем определяют количество атмосферных осадков, выпадающих на селеносную площадь, и жидкости, стекающей с нее, и по достижении значения разности этих величин, отнесенной к единице селеносной площади значения 0.45-0.64, соответствующего критическому состоянию водного баланса, объявляется опасность появления селя (авторское свидетельство СССР SU №295102, 1971 г. ). Недостатком указанных способов является сложность используемых систем в целом, требующих значительных затрат на установку метеорадиолокатора (для первого способа) и сети плювиографов и расходомеров (для второго способа), на наладку системы программного обеспечения, а также технического обслуживания.
Известны также способы регистрации селя и системы селеоповещения, основанные на измерении геофизических полей. Это электромагнитный способ, основанный на изменении электрических и магнитных свойств среды (проводимости, диэлектрической и магнитной проницаемости), геометрии русла и селевого потока; наклонометрический способ, в основе которого лежит измерение деформации русла вследствие контакта селевого потока с дном и стенками русла; магнитометрический способ, основанный на магнитной восприимчивости твердой фазы селевого потока и изменении напряженности магнитного поля движущимся потоком; и сейсмический способ, основанный на измерении сейсмических колебаний, возбуждаемых в горных породах движущимся селевым (водным) потоком. Система оповещения на основе сейсмического способа представляет собой группу сейсмических датчиков, блок управления, блок световой регистрации и многоканальный регистратор. Сигнал срабатывания датчика основан на превышении уровня энергии сейсмических волн в частотном диапазоне 5-100 Гц (авторское свидетельство СССР SU №539220, 1976 г.). Эти системы селеоповещения имеют ограниченный радиус действия (50-100 метров) и вырабатывают сигнал оповещения после формирования селя, когда практически не хватает времени для эвакуации населения и движимого имущества.
По назначению, по технической сущности и по наличию сходных признаков данное решение (сейсмический способ) выбрано в качестве ближайшего аналога.
Задачей предлагаемого технического решения является повышение точности прогнозирования селя в селеопасной зоне.
Техническим результатом является регистрация характерных изменений прогнозного параметра за период времени от нескольких десятков минут до несколько часов до прохождения селевого потока.
Технический результат достигается тем, что в способе определения приближения селя, включающем инструментальный мониторинг прогнозного параметра в пределах локального участка земной коры селеопасной зоны, оценку ее динамического состояния по результатам компьютерной обработки получаемого временного ряда данных, прогнозирование схода селя по изменению во времени характеристик прогнозного параметра, в качестве прогнозного параметра используют микросейсмические колебания, проводят спектрально-поляризационный анализ микросейсм и по усилению высокочастотной компоненты колебаний (от 20 до 50 Гц) и по изменению поляризации микросейсмических волн определяют приближение селевого потока.
Сравнительный анализ предлагаемого технического решения с решением, выбранным в качестве ближайшего аналога, показывает следующее.
Предлагаемое техническое решение и решение по ближайшему аналогу характеризуются сходными признаками:
- инструментальный мониторинг прогнозного параметра в пределах локального участка земной коры селеопасной зоны;
- измерение сейсмических колебаний, возбуждаемых в горных породах движущимся селевым (водным) потоком.
Предлагаемое техническое решение характеризуется признаками, отличительными от признаков, характеризующих решение по ближайшему аналогу:
- в качестве прогнозного параметра используют усиление высокочастотной компоненты колебаний (от 20 до 50 Гц) и изменение поляризации микросейсмических волн;
- проводят спектрально-поляризационный анализ регистрируемого прогнозного параметра;
- по усилению высокочастотной компоненты колебаний (от 20 до 50 Гц) и по изменению поляризации микросейсмических волн определяют приближение селевого потока.
Наличие в предлагаемом решении признаков, отличных от признаков, характеризующих решение по ближайшему аналогу, позволяет сделать вывод о его соответствии условию патентоспособности изобретения «новизна».
Техническая сущность предлагаемого решения заключается в следующем.
Микросейсмические волны (микросейсмы, сейсмические шумы) наблюдаются на поверхности Земли в каждой ее точке, вовлекая в колебания как верхние, так и более глубокие части земной коры. По происхождению сейсмический шум Земли можно разделить на эндогенный и экзогенный. Экзогенный связан с внешними источниками: волнением воды, ветром, деятельностью человека. Эндогенный шум обусловлен внутренними источниками, процессами трещинообразования в объеме геосреды, смещением блоков горных пород, перестройкой структур за счет тектонических сил и деформирующих воздействий различной природы. При отсутствии переменных локальных источников возбуждения сейсмических колебаний состав и уровень микросейсмического шума остается постоянным, а поляризация колебаний в микросейсмической волне вследствие сложения сейсмических колебаний разной природы и пришедших из разных азимутов на сейсмическую станцию не имеет четко выраженной ориентации. При движении селевого потока по руслу из-за турбулентности потоков и соударений в горных породах возникают упругие колебания, которые регистрируются сейсмическими станциями и вызывают увеличение уровня и спектрального состава и поляризации микросейсмического шума.
Важнейшей задачей является выбор прогнозного параметра, отражающего реальные процессы прохождения упругих колебаний в земной коре, изменения которого однозначно (с большой вероятностью) свидетельствуют о приближении селевого потока в пределах локального участка селеопасной зоны.
По результатам анализа инструментально регистрируемых сейсмических параметров и последующей обработки полученных данных, авторами в качестве такого прогнозного параметра выбраны вариации поляризации и изменение спектрального состава микросейсмических колебаний, являющиеся следствием возникновения упругих колебаний при прохождении селевого потока. Использование данного прогнозного параметра в значительной степени повышает достоверность определения приближения селевого потока, т.к. микросейсмические колебания регистрируются в каждой точке Земли и отражают текущее состояние геофизической системы и его изменения.
По результатам регистрации сейсмических параметров установлено увеличение уровня микросейсмического шума, усиление доли высокочастотных колебаний в спектре (от 20 до 50 Гц) и изменение поляризации микросейсмических колебаний за 50 минут до начала движения селевых масс. Эти изменения наблюдались в течение всего процесса движения селевого потока и прекратились сразу после его окончания.
Методом анализа направления движения частиц земной поверхности и спектрального анализа микросейсмического шума для катастрофического водокаменного селя по р. Кынгарга и грязекаменных потоков на южных склонах хребта Тункинские Гольцы (поселок Аршан, Республика Бурятия) установлено изменение поляризации микросейсмических колебаний и усиление высокочастотной компоненты в спектре микросейсмического шума за несколько десятков минут перед началом движения селевых масс, что может классифицироваться как способ определения приближения селя. Указанный эффект, в совокупности с мониторингом метеорологической обстановки, может быть использован для автоматического определения приближающегося селя в районах повышенной селеопасности.
В результате поиска и сравнительного анализа не выявлено технических решений, характеризующихся совокупностью признаков, аналогичной или идентичной совокупности признаков, характеризующей предлагаемое техническое решение, обеспечивающей при использовании достижение аналогичных технико-экономические результатов, что позволяет сделать вывод о соответствии предлагаемого решения условию патентоспособности изобретения «изобретательский уровень».
Предлагаемый способ определения приближения селя реализуется следующим образом.
В качестве примера был выбран катастрофический водокаменный сель, прошедший в поселке Аршан (Республика Бурятия) 28 июня 2014 г. Анализировалась сейсмограмма, полученная на сейсмической станции Аршан (входит в состав сети сейсмостанций Байкальского филиала Федерального исследовательского центра «Единая Геофизическая служба РАН» (БФ ФИЦ ЕГС РАН), международный код ARS, расположенной на окраине поселка на правом берегу р. Кынгарга (Фиг. 1). Координаты станции 51.920° с.ш. и 102.421° в.д., наименьшее расстояние от сейсмопавильона до русла реки составляет 250 м.
На Фигуре 1 показана сейсмограмма микросейсмического шума и селевого потока, зарегистрированная на сейсмической станции Аршан 27 июня 2014 г. Время указано по Гринвичу (местное время - 8 часов). Скобками выделены периоды «нормальных» фоновых колебаний (фон), начало селевой активности (начало) и сейсмограммы движения селевых масс по руслу (I, II).
На Фигуре 2 вверху показаны спектры «нормального» микросейсмического шума (а), микросейсмического шума в начале селевой активности (б) и спектр сейсмограммы селевого потока (в); внизу - поляризационные диаграммы (горизонтальная плоскость) в нормальных условиях (фон) и для разных стадий селевого процесса.
На сейсмограмме до момента времени 16:25:44.36 (27 июня) микросейсмический фон остается спокойным (Фиг. 1). С указанного времени наблюдаются общее увеличение амплитуды фоновых колебаний и смена поляризации колебаний - появление явно выраженной северо-восточной ориентации движения частиц, в спектре появляются высокочастотные пики (Фиг. 2). На фоне этих изменений в 16:41:36.7 зарегистрировано слабое землетрясение в районе Южного Байкала (энергетический класс 9.3, расстояние до станции Аршан 310 км, по данным БФ ФИЦ ЕГС РАН). По причине его удаленности и малой энергии оно никак не связано с последующими событиями. В момент времени 17:18:52.17 зарегистрировано начало движения влекомых наносов по дну реки Кынгарга (см. участок I на Фиг. 1). Спектральный анализ показывает преобладание высоких частот 24-44 Гц, максимум на частотах 36-40 Гц (Фиг. 2). Поляризационный анализ показал преобладание северо-восточной ориентации колебаний, вертикальная компонента колебаний выражена слабо. Общая длина события до снижения уровня фона до уровня начала селевой активности оценивается в 12 минут. Второе движения влекомых наносов по дну реки зарегистрировано в 18:02:00.47 (см. участок II на Фиг. 1). В спектре также преобладают высокочастотные колебания (21-45 Гц, максимум на 32-40 Гц). Поляризация колебаний север-северо-восточная (Фиг. 2).
Для того чтобы установить «нормальный» (обычный) режим фоновых колебаний для данной станции, были получены спектры колебаний микросейсмического шума, а также проанализированы поляризационные диаграммы колебаний микросейсмического шума за период с 2004 по 2014 гг. Для того, чтобы избежать влияния сезонных условий (промерзание грунтов в зимний период), анализировались записи летнего периода (июнь - июль). Согласно этим данным, в обычном режиме микросейсмические колебания представлены, в основном, цугами низкочастотных сейсмических волн (пики наблюдаются на частотах 0.25, 2.00 и 6.00 Гц) (Фиг. 2). Поляризационный анализ колебаний микросейсмических волн в обычных условиях не показывает какого-либо преобладающего направления (Фиг. 2).
То есть появление предвестника (изменение спектрально-поляризационных свойств микросейсмических колебаний) было зарегистрировано сейсмической станцией за 50 минут до начала движения селевых масс по руслу.
Предлагаемый способ, в совокупности с мониторингом метеоусловий, позволяет определить приближение селя и предпринять необходимые меры по предотвращению серьезных последствий в селеопасных районах.

Claims (1)

  1. Способ определения приближения селя, включающий инструментальный мониторинг прогнозного параметра в пределах локального участка селеопасной зоны, прогнозирование приближения селевого потока по изменению во времени характеристик прогнозного параметра, отличающийся тем, что в качестве прогнозного параметра используют микросейсмические колебания, проводят спектрально-поляризационный анализ регистрируемого прогнозного параметра, включающий оценку спектрального состава и поляризационных характеристик микросейсмического шума получаемого временного ряда данных по результатам компьютерной обработки, по увеличению доли высокочастотной компоненты сигнала в спектральном окне 20-50 Гц и по изменению поляризации микросейсмического шума определяют приближение селевого потока.
RU2017117217A 2017-05-17 2017-05-17 Способ определения приближения селя RU2656123C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017117217A RU2656123C1 (ru) 2017-05-17 2017-05-17 Способ определения приближения селя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017117217A RU2656123C1 (ru) 2017-05-17 2017-05-17 Способ определения приближения селя

Publications (1)

Publication Number Publication Date
RU2656123C1 true RU2656123C1 (ru) 2018-05-31

Family

ID=62560603

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017117217A RU2656123C1 (ru) 2017-05-17 2017-05-17 Способ определения приближения селя

Country Status (1)

Country Link
RU (1) RU2656123C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495434A (zh) * 2022-02-08 2022-05-13 北京寒武智能科技有限公司 一种滑坡灾害临滑预测预报的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU539220A1 (ru) * 1975-04-17 1976-12-15 Казахский Опытно-Экспериментальный Завод Геофизических Приборов "Казгеофизприбор" Способ измерени расхода водных, водных наносонесущих и селевых потоков в необорудованных руслах
SU853396A2 (ru) * 1978-12-25 1981-08-07 Казахский Опытно-Экспериментальныйзавод Геофизических Приборов "Казгео-Физприбор" Способ измерени расхода водных,вод-НыХ НАНОСОНЕСущиХ и СЕлЕВыХ пОТОКОВ ВНЕОбОРудОВАННыХ РуСлАХ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU539220A1 (ru) * 1975-04-17 1976-12-15 Казахский Опытно-Экспериментальный Завод Геофизических Приборов "Казгеофизприбор" Способ измерени расхода водных, водных наносонесущих и селевых потоков в необорудованных руслах
SU853396A2 (ru) * 1978-12-25 1981-08-07 Казахский Опытно-Экспериментальныйзавод Геофизических Приборов "Казгео-Физприбор" Способ измерени расхода водных,вод-НыХ НАНОСОНЕСущиХ и СЕлЕВыХ пОТОКОВ ВНЕОбОРудОВАННыХ РуСлАХ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495434A (zh) * 2022-02-08 2022-05-13 北京寒武智能科技有限公司 一种滑坡灾害临滑预测预报的方法
CN114495434B (zh) * 2022-02-08 2024-01-12 北京寒武智能科技有限公司 一种滑坡灾害临滑预测预报的方法

Similar Documents

Publication Publication Date Title
KR101431707B1 (ko) 엑스밴드 이중편파 레이더 관측자료를 이용한 통합형 강우량 산정 방법
Schimmel et al. Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals
Lacroix et al. Monitoring of snow avalanches using a seismic array: Location, speed estimation, and relationships to meteorological variables
Pérez-Guillén et al. Deducing avalanche size and flow regimes from seismic measurements
Lim et al. Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the Hydrometeorology Testbed
JP5924469B2 (ja) 津波監視システム
RU2656123C1 (ru) Способ определения приближения селя
US8284072B1 (en) Tsunami detection system
Shusse et al. Relationship between precipitation core behavior in cumulonimbus clouds and surface rainfall intensity on 18 August 2011 in the Kanto Region, Japan
Yawar et al. Microtremor response of a mass movement in Federal District of Brazil
Navratil et al. High-frequency monitoring of debris flows in the French Alps
RU2457514C1 (ru) Способ определения предвестника цунами
RU2510053C1 (ru) Способ динамической оценки сейсмической опасности
RU2758582C1 (ru) Способ обнаружения комплексного предвестника землетрясений
RU2433430C2 (ru) Способ обнаружения возможности наступления катастрофических явлений
RU2238575C2 (ru) Способ прогноза землетрясений
RU2466432C1 (ru) Способ обнаружения возможности наступления катастрофических явлений
Hussain et al. Spectral analysis of the recorded ambient vibration at a mass movement in Brasilia
Heck et al. Automatic detection of avalanches using a combined array classification and localization
RU2521762C1 (ru) Способ обнаружения возможности наступления катастрофических явлений
Lim et al. Classification and quantification of snow based on spatial variability of radar reflectivity
HIRAKAWA et al. Monitoring System of a Large Rockslide in Heisei-Shinzan Lava Dome, Mt. Unzen, Japan
OTSUBO et al. Short-Term Predictability of Extreme Rainfall Using Dual-Polarization Radar Measurements
SU1193620A1 (ru) Способ прогноза землетр сений
RU2563338C2 (ru) Способ обнаружения высокочастотных геоакустических предвестников землетрясения