RU2655682C1 - Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии - Google Patents

Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии Download PDF

Info

Publication number
RU2655682C1
RU2655682C1 RU2017118469A RU2017118469A RU2655682C1 RU 2655682 C1 RU2655682 C1 RU 2655682C1 RU 2017118469 A RU2017118469 A RU 2017118469A RU 2017118469 A RU2017118469 A RU 2017118469A RU 2655682 C1 RU2655682 C1 RU 2655682C1
Authority
RU
Russia
Prior art keywords
well
cable
armored
armor
tape
Prior art date
Application number
RU2017118469A
Other languages
English (en)
Inventor
Алексей Николаевич Донцов
Виталий Рауфович Закиров
Александр Витальевич Закиров
Мария Геннадьевна Донцова
Original Assignee
Виталий Рауфович Закиров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виталий Рауфович Закиров filed Critical Виталий Рауфович Закиров
Priority to RU2017118469A priority Critical patent/RU2655682C1/ru
Application granted granted Critical
Publication of RU2655682C1 publication Critical patent/RU2655682C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/02Equipment or details not covered by groups E21B15/00 - E21B40/00 in situ inhibition of corrosion in boreholes or wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к нефтегазодобывающей отрасли. Способ включает спуск в обсадную колонну насоса с погружным электродвигателем, подключенным к станции управления через кабельную линию, состоящую из токоведущих изолированных жил и навитой на них броневой металлической ленты, причем нижний конец броневой ленты линии подключают к корпусу электродвигателя, а верхний конец ленты выводят из скважины и подключают к обсадной колонне. На контактирующие поверхности указанных соединений наносят электропроводную пасту. В кабельной линии, состоящей из отдельных отрезков кабеля, броневые ленты смежных отрезков соединяют между собой пайкой или сваркой. Для соединения броневых лент могут быть использованы отдельные проводники. Повышается эффективность защиты и увеличивается межремонтный период оборудования скважины. 4 з.п. ф-лы, 1 ил.

Description

Изобретение относится к нефтедобывающей промышленности и может быть использовано для защиты погружного оборудования скважин, использующих погружные электронасосы, от электрохимической коррозии.
Известен способ защиты скважинного оборудования и выкидной линии скважины (патент RU №2170287, МПК C23F 11/00, опубл. 10.07.2001) [1]. Указанный способ включает заливку водорастворимого ингибитора в межтрубное пространство скважины. После чего скважину переводят в режим работы по замкнутому циклу в течение некоторого времени, а затем переводят в нормальный режим работы.
Однако указанный способ не обеспечивает защиты погружного оборудования от электрохимической коррозии, вызванной появлением на поверхности брони кабельной линии, питающей погружной электродвигатель (ПЭД) электроцентробежного насоса (ЭЦН), электрических потенциалов, отличающихся от потенциала, например, обсадной колонны скважины. Эти потенциалы возникают из-за емкостных токов утечки через изоляцию кабельных жил. Как показывают измерения на скважинах, электрические потенциалы на броне кабеля могут достигать величин в несколько десятков и сотен вольт, что пробивает защитную пленку, создаваемую ингибитором на поверхности металла погружного оборудования, и вызывает его электрохимическую коррозию в среде электропроводящей жидкости, например в растворе ингибитора (Закиров В.Р. и др. Об электрохимическом разрушении погружного оборудования на скважинах с частотно-регулируемыми станциями управления // Автоматизация, телемеханизация и связь в нефтяной промышленности. - 2008. - №9. - С. 12-18) [2].
Известен также способ защиты от коррозии погружного электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб (патент RU №2231629, МПК Е21В 41/02, опубл. 27.06.2004) [3], включающий в себя размещение в стволе скважины гальванического протектора, выполненного из материала, имеющего электродный потенциал, меньший по сравнению с материалом корпуса электроцентробежного насоса.
Однако защитная разность потенциалов между металлом гальванопротектора и корпуса ПЭД составляет величину не более чем от 0,32 до 2,29 вольт, в зависимости от материала гальванопротектора, в то время, как потенциалы, наводимые на броне кабеля и корпусе работающего ПЭД могут достигать нескольких десятков и сотен вольт, т.е. гораздо выше. Это делает неэффективной защиту по указанному способу.
Известен также способ защиты погружного оборудования, реализованный в устройстве (патент RU №2478736, C23F 13/00, Е21В 43/00, Н04В 7/17, опубл. 10.04.2013) [4], согласно которому через вторичные обмотки питающего трансформатора, кабельную линию и обмотки погружного электродвигателя (ПЭД) насосной установки на корпус ПЭД подают отрицательное напряжение постоянного тока, создавая тем самым защитный отрицательный электрический потенциал на насосе и корпусе ПЭД по отношению к потенциалу обсадной колонны.
Однако в результате этого происходит электрохимическое разрушение (коррозия) металла обсадной колонны, потенциал которой в данном случае более положительный. Кроме того, способ не устраняет появления электрического потенциала переменного тока на корпусе ПЭД, насосе и броне кабельной линии за счет емкостных токов через изоляцию жил кабельной линии и обмоток ПЭД, что также не обеспечивает защиту погружного оборудования (Закиров В.Р. и др. О причинах разрушения корпусов погружных электродвигателей в добывающих скважинах // Нефть Газ Новации. - 2009. - №2. - С. 46-51) [5].
Наиболее близким к заявляемому является способ катодной защиты спускаемого в скважину электроцентробежного насоса и устройство для его осуществления (патент RU №2215062, C23F 13/06, опубл. 27.10.2003) [6] - прототип. Согласно способу на корпус электроцентробежного насоса через точку подключения кабеля к обсадной колонне и с помощью дополнительной жилы силового кабеля накладывают разность потенциалов между указанным корпусом и отдельным анодным заземлителем, расположенным на дневной поверхности вне скважины.
Недостатком способа является то, что он не устраняет появления электрических потенциалов на броне кабельной линии, возникающих за счет емкостных токов через изоляцию жил кабельной линии [2]. Это обуславливает невозможность защиты от электрохимической коррозии таких узлов погружного оборудования, как колонна НКТ, кабельная линия и обсадная труба. Использование дополнительной жилы кабельной линии для заземления ЭЦН, а также станции катодной защиты и отдельного анодного заземлителя, удорожает защиту, что также является недостатком способа.
Задачей предлагаемого изобретения является повышение эффективности защиты погружного оборудования скважины от электрохимической коррозии и тем самым повышение межремонтного периода оборудования скважины.
Поставленная задача решается тем, что в способе защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии, включающем в себя спуск в обсадную колонну скважины насоса с погружным электродвигателем (ПЭД), который питают от наземной станции управления через кабельную линию, состоящую из токоведущих изолированных жил, подушки и навитой на указанные жилы и подушку броневой металлической ленты, причем указанная кабельная линия может состоять из отдельных последовательно соединенных отрезков кабеля, каждый из которых также состоит из изолированных жил, подушки и навитой на указанные изолированные жилы и подушку броневой металлической ленты, дополнительно электрически подключают нижний конец броневой ленты кабельной линии к корпусу ПЭД, а верхний конец броневой ленты выводят из скважины и электрически подключают к обсадной колонне.
Поставленная задача решается также тем, что в кабельной линии, собранной из отдельных отрезков кабеля, дополнительно электрически соединяют броневые металлические ленты смежных указанных отрезков между собой.
Поставленная задача решается также тем, что на контактируемые поверхности броневой ленты и корпуса ПЭД, а также контактируемые поверхности броневой ленты и обсадной колонны скважины дополнительно наносят электропроводную пасту.
Поставленная задача решается также тем, что броневые металлические ленты смежных отдельных отрезков кабеля дополнительно соединяют между собой пайкой или сваркой.
Поставленная задача решается также тем, что броневые металлические ленты смежных отрезков кабеля, нижний конец броневой ленты кабельной линии и корпус ПЭД, а также верхний конец броневой ленты указанной линии и оголовок скважины электрически соединяют между собой дополнительными отдельными проводниками с электрическим сопротивлением не более 0,15-0,2 Ом.
Сущность заявляемого изобретения сводится к следующему.
Подача напряжения питания от наземной станции управления на ПЭД по изолированным жилам кабельной линии одновременно сопровождается появлением электрического потенциала переменного тока на поверхности изоляции указанных жил, а также на поверхности изоляции обмоток ПЭД. Это происходит за счет емкостных токов утечки через изоляцию кабельных жил. Здесь система жила кабеля - изоляция - металлическая броня кабеля представляет собой электрический цилиндрический конденсатор, через который проходит переменный ток.
Как показали исследования на скважинах, электрические потенциалы, создаваемые на броне кабеля и на корпусе ПЭД, достигают величины в несколько десятков и сотен вольт напряжения переменного тока. При питании ПЭД от частотно-регулируемых станций управления указанные электрические потенциалы могут содержать также составляющую напряжения постоянного тока [2]. Эти потенциалы существенно отличаются от потенциалов, например, обсадной трубы, НКТ и других элементов погружного оборудования. При этом обсадная колонна, конструктивно представляющая собой заземлитель, имеет электрический потенциал, равный нулю.
Между указанными элементами погружного оборудования в скважине всегда присутствует электропроводящая жидкость (электролит), например скважинная жидкость с высокой степенью обводненности, пластовая вода, растворы ингибиторов, водный конденсат в затрубном пространстве скважины и т.п. Благодаря высокому давлению в полости скважины, электропроводная жидкость проникает во все зазоры между, например, броней кабеля и НКТ, корпусом насоса, ПЭД или обсадной колонны. Это вызывает прохождение электрического тока между элементами оборудования, имеющими разные электрические потенциалы, через указанный электролит. В свою очередь, в соответствии с законами Фарадея, это вызывает электрохимическое травление (коррозию) того элемента оборудования, потенциал которого выше.
В предлагаемом способе защиты, благодаря тому, что броню кабеля выполняют электропроводящей по всей длине кабельной линии, а также благодаря тому, что указанную броню кабеля и корпус ПЭД электрически соединяют с оголовком обсадной трубы скважины, потенциалы, наводимые за счет емкостных токов на броне кабельной линии и на корпусе ПЭД, отводятся через указанную броню и дополнительные соединения на земную поверхность и далее на обсадную трубу скважины, которая является заземлителем. В результате этого устраняется разность электрических потенциалов между элементами погружного оборудования и, следовательно, устраняется электрохимическое травление (коррозия) металла погружного оборудования.
По результатам патентных исследований, применение заявляемого способа защиты не обнаружено. Следовательно, по мнению авторов, заявляемый способ обладает признаками новизны и изобретательского уровня. Сопоставительный анализ существенных признаков предлагаемых технических решений и прототипа позволяет сделать вывод о соответствии заявляемых изобретений критерию "новизна".
Так как отличительные признаки заявляемых технических решений являются новыми, они, по мнению авторов, соответствуют критерию "изобретательский уровень".
Сущность заявляемого способа поясняется фиг. 1.
На фиг. 1:
1 - обсадная колонна;
2 - колонна насосно-компрессорных труб;
3 - насос;
4 - погружной электродвигатель (ПЭД);
5 - броня кабельной линии из навитой металлической ленты;
6 - изолированные жилы кабельной линии;
7 - электрические соединения брони кабельной линии с корпусом ПЭД, с обсадной колонной и брони отдельных отрезков кабеля, соединенных в кабельную линию, между собой;
СУ - станция управления погружным электродвигателем.
Стрелками показано направление емкостных токов утечки через изоляцию жил кабеля ic и направления тока i по броне кабельной линии.
Как показано на фиг. 1, в обсадную колонну 1 скважины опускают колонну насосно-компрессорных труб 2 с прикрепленными к ней насосом 3 и ПЭД 4. К ПЭД 4 подводят кабельную линию, состоящую из изолированных токопроводящих жил 6 с навитыми на них подушкой (не показана) и броневой металлической лентой 5. Через кабельную линию ПЭД 4 подключают к наземной станции управления электродвигателем (не показана). В общем случае кабельная линия может состоять из нескольких отдельных последовательно соединенных отрезков кабеля. При этом броневые ленты 5 смежных отрезков кабеля скрепляют между собой пайкой или сваркой с образованием электрического соединения 7. Нижний конец броневой ленты 5 кабельной линии подключают к корпусу ПЭД 4 с образованием электрического соединения 7, например, используя резьбовой крепеж узлов двигателя 4. При этом для обеспечения надежности контакта в среде добываемой жидкости, находящейся под давлением, между концом броневой ленты и корпусом ПЭД наносят электропроводную пасту, например ПЭА-ХР-01, ЭПС-98 ТУ 0254-002-4796093-2001, или любую другую, стойкую к воздействиям скважинной жидкости. Верхний конец броневой ленты 5 кабельной линии выводят из скважины, например, через дополнительный сальник кабельного ввода на фонтанной арматуре (не показаны) и подключают с образованием электрического контакта 7 к обсадной колонне 1, например, с использованием резьбового крепежа арматуры скважины. Для обеспечения надежности контактного соединения в условиях неблагоприятной окружающей среды на указанные контактирующие поверхности также наносят электропроводную пасту. Для электрического соединения броневых лент 5 смежных отрезков кабеля между собой, а также для соединения брони кабеля с корпусом ПЭД и оголовком обсадной трубы могут быть использованы отдельные проводники с электрическим сопротивлением не более 0,1-0,2 Ом.
Реализация заявляемого способа заключается в следующем.
Напряжение переменного тока, подаваемое от наземной СУ на ПЭД 4 по жилам 6 кабельной линии через токи утечки ic, создает электрические потенциалы на броне 5 кабеля и корпусе ПЭД 4. Одновременно с этим, в силу того, что броневую металлическую ленту 5 кабельной линии с помощью электрических соединений 7 подключают к корпусу ПЭД 4, обсадной колонне 1, а также обеспечивают электрический контакт броневых лент 5 смежных отрезков кабеля между собой, указанные электрические потенциалы стекают на обсадную колонну 1. При этом ток i, вызванный разностью указанных потенциалов, проходит на обсадную колонну 1 через металл броневой ленты 5 и электрические соединения 7, минуя электропроводную жидкость в полости скважины. Этим устраняется электрохимическое травление (коррозия) погружного оборудования и, в свою очередь, повышается межремонтный период скважины.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Способ защиты скважинного оборудования и выкидной линии скважины. Патент RU №2170287, МПК C23F 11/00, опубл. 10.07.2001.
2. Закиров В.Р. и др. Об электрохимическом разрушении погружного оборудования на скважинах с частотно-регулируемыми станциями управления // Автоматизация, телемеханизация и связь в нефтяной промышленности. - 2008. - №9. - С. 12-18.
3. Способ защиты от коррозии погружного электроцентробежного насоса, подвешенного на колонне насосно-компрессорных труб. Патент RU №2231629, МПК Е21В 41/02, опубл. 27.06.2004.
4. Устройство катодной защиты погружного насоса. Патент RU 2478736, МПК C23F 13/00, Е21В 43/00, Н04В 7/17, опубл. 10.04.2013.
5. Закиров В.Р. и др. О причинах разрушения корпусов погружных электродвигателей в добывающих скважинах // Нефть Газ Новации. - 2009. - №2. - С. 46-51.
6. Способ катодной защиты спускаемого в скважину центробежного насоса и устройство для его осуществления. Пат. 2215062 RU, МПК C23F 13/06, опубл. 27.10.2003.

Claims (5)

1. Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии, включающий спуск в обсадную колонну скважины насоса с погружным электродвигателем (ПЭД), который питают от наземной станции управления через кабельную линию, состоящую из токоведущих изолированных жил, подушки и навитой на указанные жилы и подушку броневой металлической ленты, причем указанная кабельная линия может состоять из нескольких последовательно соединенных отрезков кабеля, каждый из которых также состоит из изолированных жил, подушки и навитой на указанные изолированные жилы и подушку броневой металлической ленты, отличающийся тем, что дополнительно электрически подключают нижний конец броневой ленты кабельной линии к корпусу ПЭД, а верхний конец броневой ленты выводят из скважины и электрически подключают к обсадной колонне.
2. Способ по п. 1, отличающийся тем, что в кабельной линии, состоящей из отдельных отрезков кабеля, дополнительно электрически соединяют броневые металлические ленты смежных указанных отрезков между собой.
3. Способ по п. 1, отличающийся тем, что на контактируемые поверхности броневой ленты и корпуса ПЭД, а также броневой ленты и обсадной колонны скважины наносят электропроводную пасту.
4. Способ по п. 2, отличающийся тем, что броневые металлические ленты смежных отдельных отрезков кабеля соединяют между собой пайкой или сваркой.
5. Способ по п. 1 и 2, отличающийся тем, что броневые металлические ленты смежных отрезков кабеля, нижний конец броневой ленты кабельной линии и корпус ПЭД, а также верхний конец броневой ленты указанной линии и оголовок скважины электрически соединяют между собой дополнительными отдельными проводниками с электрическим сопротивлением не более 0,15-0,2 Ом.
RU2017118469A 2017-05-29 2017-05-29 Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии RU2655682C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017118469A RU2655682C1 (ru) 2017-05-29 2017-05-29 Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017118469A RU2655682C1 (ru) 2017-05-29 2017-05-29 Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии

Publications (1)

Publication Number Publication Date
RU2655682C1 true RU2655682C1 (ru) 2018-05-29

Family

ID=62559975

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017118469A RU2655682C1 (ru) 2017-05-29 2017-05-29 Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии

Country Status (1)

Country Link
RU (1) RU2655682C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749787C1 (ru) * 2020-09-11 2021-06-16 Общество с ограниченной ответственностью "Завод нефтегазовой аппаратуры Анодъ" Способ электрохимической защиты от коррозии погружного оборудования в жидкой среде

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211625A (en) * 1978-09-11 1980-07-08 Borg-Warner Corporation Impressed current cathodic protection system for submersible downhole pumping assembly
RU2215062C1 (ru) * 2002-11-25 2003-10-27 ООО Уфимский научно-исследовательский и проектно-инженерный центр "Нефтегаз-2" Способ катодной защиты спускаемого в скважину электроцентробежного насоса и устройство для его осуществления
RU2231575C1 (ru) * 2002-11-25 2004-06-27 Общество с ограниченной ответственностью "Уфимский научно-исследовательский и проектно-инженерный центр "Нефтегаз-2" Устройство для катодной защиты погружного насоса и электрический кабель для питания электродвигателя защищаемого погружного насоса
RU2254400C1 (ru) * 2004-03-03 2005-06-20 ООО НГДУ "Уфанефть" Устройство для катодной защиты спускаемого в скважину оборудования
RU163636U1 (ru) * 2016-03-03 2016-07-27 Общество с ограниченной ответственностью "Татнефть-Кабель" Электрический кабель для установок погружных электронасосов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211625A (en) * 1978-09-11 1980-07-08 Borg-Warner Corporation Impressed current cathodic protection system for submersible downhole pumping assembly
RU2215062C1 (ru) * 2002-11-25 2003-10-27 ООО Уфимский научно-исследовательский и проектно-инженерный центр "Нефтегаз-2" Способ катодной защиты спускаемого в скважину электроцентробежного насоса и устройство для его осуществления
RU2231575C1 (ru) * 2002-11-25 2004-06-27 Общество с ограниченной ответственностью "Уфимский научно-исследовательский и проектно-инженерный центр "Нефтегаз-2" Устройство для катодной защиты погружного насоса и электрический кабель для питания электродвигателя защищаемого погружного насоса
RU2254400C1 (ru) * 2004-03-03 2005-06-20 ООО НГДУ "Уфанефть" Устройство для катодной защиты спускаемого в скважину оборудования
RU163636U1 (ru) * 2016-03-03 2016-07-27 Общество с ограниченной ответственностью "Татнефть-Кабель" Электрический кабель для установок погружных электронасосов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749787C1 (ru) * 2020-09-11 2021-06-16 Общество с ограниченной ответственностью "Завод нефтегазовой аппаратуры Анодъ" Способ электрохимической защиты от коррозии погружного оборудования в жидкой среде

Similar Documents

Publication Publication Date Title
US4693534A (en) Electric fed-thru connector assembly
US4211625A (en) Impressed current cathodic protection system for submersible downhole pumping assembly
EP2755213A2 (en) High pressure, high voltage penetrator assembly
US8149552B1 (en) Downhole measurement tool circuit and method to balance fault current in a protective inductor
US11545790B2 (en) Methods and apparatus for rendering electrical cables safe
EP3262663B1 (en) Subsea transformer with seawater high resistance ground
US6725925B2 (en) Downhole cathodic protection cable system
RU2655682C1 (ru) Способ защиты погружного оборудования нефтедобывающей скважины от электрохимической коррозии
US20090317264A1 (en) Esp motor windings for high temperature environments
US10454219B2 (en) Methods and apparatus for rendering electrical cables safe
CN102725476B (zh) 通过电流体动力学推进力来泵送泥浆
RU179967U1 (ru) Устройство для защиты внутрискважинного оборудования от коррозии
US10132143B2 (en) System and method for powering and deploying an electric submersible pump
RU143463U1 (ru) Погружной электронасосный агрегат
RU180398U1 (ru) Устройство защиты погружной насосной установки от коррозии
RU2303123C1 (ru) Способ совместной эксплуатации скважины и нефтепромыслового трубопровода
RU2231575C1 (ru) Устройство для катодной защиты погружного насоса и электрический кабель для питания электродвигателя защищаемого погружного насоса
RU119412U1 (ru) Устройство защиты погружной насосной установки от коррозии
RU2254400C1 (ru) Устройство для катодной защиты спускаемого в скважину оборудования
US20150103460A1 (en) Wellhead mounted transient voltage surge suppression and method of use thereof
RU2215062C1 (ru) Способ катодной защиты спускаемого в скважину электроцентробежного насоса и устройство для его осуществления
RU198979U1 (ru) Устройство защиты глубинно-насосного оборудования от коррозии
RU144829U1 (ru) Кабель для погружных нефтяных насосов
RU2327856C1 (ru) Устройство для защиты от коррозии глубинного оборудования добывающих скважин, преимущественно электроцентробежных насосов
US20160247618A1 (en) Subsea transformer with integrated high resistance ground

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190530