RU2655666C1 - Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты) - Google Patents

Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты) Download PDF

Info

Publication number
RU2655666C1
RU2655666C1 RU2017121241A RU2017121241A RU2655666C1 RU 2655666 C1 RU2655666 C1 RU 2655666C1 RU 2017121241 A RU2017121241 A RU 2017121241A RU 2017121241 A RU2017121241 A RU 2017121241A RU 2655666 C1 RU2655666 C1 RU 2655666C1
Authority
RU
Russia
Prior art keywords
plasma
erosion
thickness
rate
target
Prior art date
Application number
RU2017121241A
Other languages
English (en)
Inventor
Валерий Александрович Курнаев
Даниэль Грантович Булгадарян
Дмитрий Николаевич Синельников
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
федеральное государственное автономное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", федеральное государственное автономное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2017121241A priority Critical patent/RU2655666C1/ru
Application granted granted Critical
Publication of RU2655666C1 publication Critical patent/RU2655666C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к способу определения толщины и контроля скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок. В изобретении предусмотрено изготовление и помещение в плазменную установку мишеней из легкого и/или тяжелого элемента (например, вольфрам на боре или углерод на вольфраме) с заданной толщиной поверхностного слоя в те места установки, в которых предполагается исследовать скорость эрозии и/или осаждения, с последующим анализом энергетических спектров отраженных на угол 30-90° от экспонированных мишеней ионов водорода с начальной энергией в диапазоне 1-20 кэВ. Толщина тяжелого поверхностного слоя определяется по полуширине высокоэнергетичного пика на энергетическом спектре, а толщина легкого поверхностного слоя - по положению пика на энергетическом спектре. Скорость эрозии/осаждения при этом, как и при использовании СРОР, определяется как отношение изменения толщины поверхностного слоя мишени к количеству импульсов или времени существования плазменного разряда в плазменной установке. Техническим результатом является увеличение чувствительности, уменьшение времени анализа при определении скорости эрозии и осаждения тонких поверхностных слоев на обращенных к плазме элементах плазменных установок. 2 н. и 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к экспериментальной физике и может быть использовано как способ определения толщины и контроля скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок.
Известен метод анализа тонких поверхностных слоев, образующихся в результате эрозии и переосаждения материалов стенок плазменных установок, с помощью вторично-ионной масс-спектроскопии [L. Feldman, J. Mayer Fundamentals of surface and thin film analysis, Cornell University, 1986]. Этот метод является разрушающим - в процессе анализа исследуемый образец распыляется пучком тяжелых ионов - и не обладает достаточным разрешением по глубине.
Другим применяемым и принятым за прототип способом является использование спектроскопия резерфордовского обратного рассеяния (СРОР) [Krat S. et al. Erosion at the inner wall of JET during the discharge campaign 2011-2012 in comparison with previous campaigns // J. Nucl. Mater. Elsevier, 2015. Vol. 456. P. 106-110]. В этом способе для определения скорости эрозии и осаждения тонких слоев в плазменную камеру помещаются специальные многослойные мишени с известной толщиной слоев, а после экспозиции в плазменной установке толщина поверхностного слоя определяется по энергетическим спектрам обратно рассеянных от мишени протонов или ионов гелия с начальной энергией в диапазоне 1-3 МэВ. Скорость эрозии или осаждения определяется как изменение толщины поверхностного слоя за суммарное время существования плазменного разряда в установке. Однако данный способ имеет несколько существенных недостатков - требуется применение дорогостоящих ускорителей ионов, при этом чувствительность метода недостаточна для анализа слоев толщиной менее 40 нм. К тому же из-за недостаточного разрешения по глубине для определения скорости эрозии и осаждения тонких слоев требуется длительная экспозиция мишени в плазменной установке.
Техническим результатом изобретения является увеличение чувствительности, уменьшение времени анализа и сокращение материальных затрат при реализации способа определения скорости эрозии и осаждения тонких поверхностных слоев на обращенных к плазме элементах плазменных установок.
Технический результат по первому варианту достигается тем, что определяют изменение толщины поверхностного слоя анализируемой мишени с поверхностным слоем заданной толщины при экспозиции в установке с плазменным разрядом путем измерения энергетических спектров ионов водорода, отраженных от мишени, и определяют скорость эрозии и/или осаждения тонкого слоя по отношению изменения толщины этого слоя к времени существованию плазменного разряда в установке, при этом измеряют энергетические спектры отраженных от мишени с тяжелым поверхностным слоем на угол 30-90° относительно первоначального направления пучка ионов водорода с начальной энергией в диапазоне 1-20 кэВ и по изменению толщины поверхностного слоя мишени, которую определяют по полуширине высокоэнергетичного пика на энергетическом спектре, судят о скорости эрозии и/или осаждения тонкого слоя.
Технический результат по второму варианту достигается тем, что определяют изменение толщины поверхностного слоя анализируемой мишени с поверхностным слоем заданной толщины при экспозиции в установке с плазменным разрядом путем измерения энергетических спектров ионов водорода, отраженных от мишени, и определяют скорость эрозии и/или осаждения тонкого слоя по отношению изменения толщины этого слоя к времени существованию плазменного разряда в установке, при этом измеряют энергетические спектры отраженных от мишени с легким поверхностным слоем на угол 30-90° относительно первоначального направления пучка ионов водорода с начальной энергией в диапазоне 1-20 кэВ и по изменению толщины поверхностного слоя мишени, которую определяют по положению пика на энергетическом спектре, судят о скорости эрозии и/или осаждения тонкого слоя.
Для анализа скорости эрозии и осаждения тонких слоев используется моноэнергетический пучок ионов Н+ или D+, так как водород и дейтерий обладают необходимой глубиной пробега в мишени и практически не распыляют ее, с такой энергией в диапазоне 1-20 кэВ, при которой энергетический спектр отраженных частиц при их рассеянии на углы 30-90° формируется тонкими поверхностными слоями исследуемого образца. В данном энергетическом диапазоне рассеяние на другие углы не позволяет получить достаточное разрешение по массам, а использование других энергий не позволяет получить нужно глубину пробега частиц в анализируемой мишени. Глубиной пробега определяется и чувствительность метода к самым поверхностным слоям исследуемой мишени, и, соответственно, время анализа, необходимое для определения скорости эрозии и осаждения тонких поверхностных слоев на обращенных к плазме элементах плазменных установок.
При наличии слоя тяжелого элемента на поверхности легкого поверхностный слой формирует острый высокоэнергетичный пик на энергетическом спектре, амплитуда и ширина которого зависят от энергии частиц и угла их рассеяния, при этом эрозия тяжелого поверхностного слоя приводит к уменьшению ширины и амплитуды этого пика, а осаждение, наоборот, приводит к возникновению, росту и увеличению ширины пика.
При наличии слоя легкого элемента на поверхности тяжелого толщина слоя легкого вещества определяется по положению пика, формируемого частицами, прошедшими через слой более легкого вещества и отраженного находящимся под ним слоем более тяжелого. Осаждение легкого вещества приводит к сдвигу пика в область более низких энергий, а эрозия, наоборот, к сдвигу к область более высоких энергий.
Суть способа заключается в изготовлении и помещении в плазменную установку специальных мишеней из легкого и/или тяжелого элемента (например, вольфрам на боре или углерод на вольфраме) с заданной толщиной поверхностного слоя в те места установки, в которых предполагается исследовать скорость эрозии и/или осаждения, с последующим анализом энергетических спектров отраженных на угол 30-90° от экспонированных мишеней ионов водорода с начальной энергией в диапазоне 1-20 кэВ. Скорость эрозии/осаждения при этом, как и при использовании СРОР, определяется как отношение изменения толщины поверхностного слоя мишени к количеству импульсов или времени существования плазменного разряда в плазменной установке.
Предлагаемый способ был проверен на экспериментальной установке «Большой масс-монохроматор МИФИ» [Bulgadaryan D. et al. Facility and the method for MEIS analysis of layers redeposited in plasma devices // J. Phys. Conf. Ser. 2016. Vol. 748, №1]. Схема установки и возможного варианта реализации эксперимента представлена на фиг. 1, где 1 - источник ионов, 2 - сепарирующий электромагнит, 3 - камера взаимодействия, 4 - исследуемая мишень, 5 - энергоанализатор, 6 - детектор, штриховая линия - траектория первичного пучка ионов, штрихпунктирная линия - траектория отраженных от мишени ионов, попадающих в энергоанализатор, θ - угол рассеяния. Пучок ионов водорода, в котором присутствуют как атомарная (Н+), так и молекулярные (Н2 +, Н3 +) компоненты, формируется ионным источником типа «дуоплазматрон», сепарируется по отношению массы к заряду с помощью электромагнита, при этом выполняется соотношение
Figure 00000001
, где U0 - ускоряющее напряжение, М - масса ионов, Z - заряд, В - магнитное поле. Нужная компонента пучка
Figure 00000002
выделяется изменением тока электромагнита, сепарированный пучок попадает на мишень в камере взаимодействия, после чего при помощи системы энергоанализа, состоящей из электростатического анализатора и вторично-электронного умножителя, измеряется энергетический спектр отраженных от мишени частиц, рассеянных под углом θ. Для расчетов использовался компьютерный код SCATTER [В.А. Курнаев, Н.Н. Трифонов. Программа моделирования взаимодействия ионов с твердым телом с учетом микротопографии поверхности // ВАНТ, Сер. Термояд. синтез 3-4, 76 (2002)], позволяющий моделировать энергетические распределения частиц, отраженных от мишени с заданным составом, в приближении парных соударений с помощью численного метода Монте-Карло.
Пример 1. При определении толщины тяжелого слоя на поверхности легкой мишени использовалось напыление тонкого слоя золота на кремниевую мишень с помощью ионного распыления на установке «Большой массмонохроматор МИФИ». Экспериментальные и расчетные спектры отраженных от кремниевой подложки до и после осаждения на нее в этой же установке тонкого слоя золота методом реактивного распыления ионами аргона мишени из золота чистотой 99,999 на угол θ=38° ионов водорода с начальной энергией E0=9000 эВ показаны на фиг. 2. Видно, что осаждение поверхностного слоя золота приводит к образованию высокоэнергетичного пика. Сравнение экспериментальных и расчетных спектров с учетом того, что при реактивном напылении в поверхностном слое подложки происходит перемешивание напыляемого золота с кремнием, позволяет определить толщину тяжелого поверхностного слоя золота на легкой кремниевой мишени как 3.8±0.3 нм. Скорость напыления золота при этом определена как 1 нм/ч.
Пример 2. Для определения толщины легкого слоя на поверхности тяжелой мишени использовались расчеты энергетических спектров ионов водорода, отраженных от мишени, состоящей из вольфрама с тонким поверхностным слоем бора разной толщины. На фиг. 3 показаны спектры, полученные при использовании пучка ионов водорода с начальной энергией E0=4000 эВ, рассеянных на угол θ=38°. Видно, что различным толщинам легкого поверхностного слоя соответствует разное положение пика на энергетическом спектре, что при данных энергии и угле рассеяния позволяет определить толщину слоя с погрешностью 0.3 нм.
Таким образом, из вышесказанного следует, что предлагаемый способ позволяет определять толщину и, соответственно, скорость эрозии и осаждения тонких слоев в плазменных и, в частности, термоядерных установках с большей чувствительностью, за меньшее и время и с меньшими затратами.

Claims (6)

1. Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок, заключающийся в определении изменения толщины поверхностного слоя анализируемой мишени с поверхностным слоем заданной толщины при экспозиции в установке с плазменным разрядом путем измерения энергетических спектров ионов водорода, отраженных от мишени, и определения скорости эрозии и/или осаждения тонкого слоя по отношению изменения толщины этого слоя к времени существования плазменного разряда в установке, отличающийся тем, что измеряют энергетические спектры отраженных от мишени с тяжелым поверхностным слоем на угол 30-90° относительно первоначального направления моноэнергетического пучка ионов водорода с начальной энергией в диапазоне 1-20 кэВ и по изменению толщины поверхностного слоя мишени, которую определяют по полуширине высокоэнергетичного пика на энергетическом спектре, судят о скорости эрозии и/или осаждения тонкого слоя.
2. Способ по п. 1, отличающийся тем, что для определения скорости эрозии тяжелого вещества используют мишень, состоящую из легкой подложки с поверхностным слоем тяжелого вещества заданной толщины.
3. Способ по п. 1, отличающийся тем, что для определения скорости осаждения тяжелого вещества используют мишень из легкого вещества.
4. Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок, заключающийся в определении изменения толщины поверхностного слоя анализируемой мишени с поверхностным слоем заданной толщины при экспозиции в установке с плазменным разрядом путем измерения энергетических спектров ионов водорода, отраженных от мишени, и определения скорости эрозии и/или осаждения тонкого слоя по отношению изменения толщины этого слоя к времени существованию плазменного разряда в установке, отличающийся тем, что измеряют энергетические спектры отраженных от мишени с легким поверхностным слоем на угол 30-90° относительно первоначального направления моноэнергетического пучка ионов водорода с начальной энергией в диапазоне 1-20 кэВ и по изменению толщины поверхностного слоя мишени, которую определяют по положению пика на энергетическом спектре, судят о скорости эрозии и/или осаждения тонкого слоя.
5. Способ по п. 4, отличающийся тем, что для определения скорости эрозии легкого вещества используют мишень, состоящую из тяжелой подложки с поверхностным слоем легкого вещества заданной толщины.
6. Способ по п. 4, отличающийся тем, что для определения скорости осаждения легкого вещества используют мишень из тяжелого вещества.
RU2017121241A 2017-06-16 2017-06-16 Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты) RU2655666C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121241A RU2655666C1 (ru) 2017-06-16 2017-06-16 Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121241A RU2655666C1 (ru) 2017-06-16 2017-06-16 Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты)

Publications (1)

Publication Number Publication Date
RU2655666C1 true RU2655666C1 (ru) 2018-05-29

Family

ID=62559970

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121241A RU2655666C1 (ru) 2017-06-16 2017-06-16 Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты)

Country Status (1)

Country Link
RU (1) RU2655666C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266437A1 (en) * 2010-05-03 2011-11-03 Samsung Electro-Mechanics Co., Ltd. Method for chemical analysis and apparatus for chemical analysis
RU2522667C2 (ru) * 2012-07-30 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ определения элементного состава и толщины поверхностной пленки твердого тела при внешнем воздействии на поверхность
KR20160079763A (ko) * 2013-07-03 2016-07-06 페어발퉁스게젤샤프트 퓌어 에미씨온스아날뤼제 우게(하프퉁스베슈랭크트) 모터의 탄화수소 배출물에 대한 결정 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266437A1 (en) * 2010-05-03 2011-11-03 Samsung Electro-Mechanics Co., Ltd. Method for chemical analysis and apparatus for chemical analysis
RU2522667C2 (ru) * 2012-07-30 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ определения элементного состава и толщины поверхностной пленки твердого тела при внешнем воздействии на поверхность
KR20160079763A (ko) * 2013-07-03 2016-07-06 페어발퉁스게젤샤프트 퓌어 에미씨온스아날뤼제 우게(하프퉁스베슈랭크트) 모터의 탄화수소 배출물에 대한 결정 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Krat S. et al. Erosion at the inner wall of JET during the discharge campaign 2011-2012 in comparison with previous campaigns // J. Nucl. Mater. Elsevier, 2015. Vol. 456. P. 106-110. *

Similar Documents

Publication Publication Date Title
WO2012096959A1 (en) Technique and apparatus for monitoring ion mass, energy, and angle in processing systems
Bulgadaryan et al. Facility and the method for MEIS analysis of layers redeposited in plasma devices
Lohmann et al. Analysis of photon emission induced by light and heavy ions in time-of-flight medium energy ion scattering
Creutzburg et al. Angle-dependent charge exchange and energy loss of slow highly charged ions in freestanding graphene
RU2655666C1 (ru) Способ определения скорости эрозии и осаждения тонких слоев на обращенных к плазме элементах плазменных установок (варианты)
Toburen et al. Time‐of‐flight measurements of low‐energy electron energy distributions from ion–atom collisions
Ntemou et al. Electronic interaction of slow hydrogen, helium, nitrogen, and neon ions with silicon
Szabo Experimental and simulated sputtering of Gold, Iron and Wollastonite with a Catcher-QCM setup
RU2522667C2 (ru) Способ определения элементного состава и толщины поверхностной пленки твердого тела при внешнем воздействии на поверхность
Szabo Novel insights into ion-solid interaction: Case studies for space weathering and nuclear fusion research
Børgesen et al. Stopping of keV light ions in solid hydrogen
Taglauer Low‐Energy Ion Scattering and Rutherford Backscattering
Ryan Electron diagnostics of magnetron discharges
Funsten et al. Thickness uniformity and pinhole density analysis of thin carbon foils using incident keV ions
Biber Sputtering investigations of wollastonite using solar wind ions
Kurnaev et al. On the Possibility of Surface Analysis by keV-Energy Proton Scattering in Magnetic Fusion Devices
Palla et al. Preliminary measurements on the new TOF system installed at the AMS beamline of INFN-LABEC
Kawatoh et al. Analysis of Sputtered Neutrals by Nonresonant Multiphoton Ionization. II. A Quantitative Composition Analysis of Cu-Al Alloy
Valkealahti et al. Ranges and stopping power of KeV electrons in the solid hydrogens
Smith Development of a Time of Flight Spectrometer for Rutherford Backscattering Studies with keV ions
Wampler et al. High-Z materials erosion and its control in DIII-D carbon divertor.
Fejes et al. Fabrication and characterizationof self-supporting Yttrium foils
Krasa et al. Determination of energy spectrum of laser-created heavy ions from their implantation depth profile in a metallic substrate
Van Kan et al. Glancing incident MeV ion beams for total reflection PIXE (TPIXE) and RBS surface analysis
Waets et al. Very-High-Energy Heavy Ion Beam Dosimetry using Solid State Detectors for Electronics Testing

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190617