RU2655365C1 - Способ синтеза нанодисперсного нитрида титана - Google Patents

Способ синтеза нанодисперсного нитрида титана Download PDF

Info

Publication number
RU2655365C1
RU2655365C1 RU2016132918A RU2016132918A RU2655365C1 RU 2655365 C1 RU2655365 C1 RU 2655365C1 RU 2016132918 A RU2016132918 A RU 2016132918A RU 2016132918 A RU2016132918 A RU 2016132918A RU 2655365 C1 RU2655365 C1 RU 2655365C1
Authority
RU
Russia
Prior art keywords
titanium
synthesis
plasma
titanium nitride
nanodispersed
Prior art date
Application number
RU2016132918A
Other languages
English (en)
Inventor
Дмитрий Юрьевич Герасимов
Александр Анатольевич Сивков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2016132918A priority Critical patent/RU2655365C1/ru
Application granted granted Critical
Publication of RU2655365C1 publication Critical patent/RU2655365C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0761Preparation by direct nitridation of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0763Preparation from titanium, zirconium or hafnium halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, к электротехнике и электрофизике, а именно к ускорительной технике. Способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор, заполненную газообразным азотом при атмосферном давлении, при этом синтез ведут в камере-реакторе объемом от 0,022 м3 до 0,055 м3 и от 0,057 м3 до 0,098 м3 при температуре от 0°C до 19°C и от 21°C до 40°C соответственно. Технический результат: регулирование дисперсности нитрида титана в интервале 9-86 нм. 1 ил., 1 табл.

Description

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, а также к области электротехники и электрофизики, а именно к ускорительной технике, и может быть использовано для синтеза нанодисперсного нитрида титана путем распыления электроразрядной плазмы титана в камеру-реактор, заполненную газообразным азотом.
Известен способ синтеза нанодисперсного нитрида титана (Сивков А.А., Сайгаш А.С., Герасимов Д.Ю., Привезенцев С.И., Шарипов P.P. Динамический синтез нанодисперсных порошкообразных кристаллических материалов на основе титана // "Нано-2007". II Всероссийская конференция по наноматериалам. "Наноструктурные материалы-2007". IV Международный семинар. Сборник тезисов. Беларусь-Россия, Новосибирск. 13-16 марта 2007. - С. 227), который осуществляют путем распыления электроразрядной плазмы титана в камеру-реактор, заполненную газообразным азотом при нормальном давлении и температуре.
Недостатком известного способа является синтез нитрида титана недостаточной чистоты с содержанием не прореагировавшего титана.
Известен способ синтеза нанодисперсного нитрида титана, выбранный в качестве прототипа (Сивков А.А., Найден Е.П., Герасимов Д.Ю. Прямой динамический синтез нанодисперсного нитрида титана в высокоскоростной импульсной струе электроэрозионной плазмы. Сверхтвердые материалы, 2008, №5. - С. 33-39), который осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор объемом 0,056 м3, заполненную газообразным азотом при близком к атмосферному давлении и комнатной температуре.
Недостатком прототипа является отсутствие возможности регулирования дисперсности синтезируемого нитрида титана за счет изменения объема камеры-реактора и температуры газообразного азота.
Задачей изобретения является создание способа синтеза нанодисперсного нитрида титана.
Указанную задачу достигают тем, что так же, как в прототипе, способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор объемом 0,056 м3, заполненную газообразным азотом при атмосферном давлении и температуре 20°С.
Согласно изобретению синтез ведут в камере-реакторе объемом от 0,022 м3 до 0,055 м3 и от 0,057 м3 до 0,098 м3 при температуре от 0°С до 19°С и от 21°С до 40°С.
Объем камеры-реактора и температура азота в указанных диапазонах обеспечивают регулирование дисперсности получаемого в процессе синтеза нанодисперсного нитрида титана. Это обусловлено изменением времени кристаллизации частиц, что непосредственно влияет на их размер.
На фиг. 1 изображено устройство для реализации способа синтеза нанодисперсного нитрида титана.
В таблице 1 представлены значения основных параметров и результатов экспериментов.
Предложенный способ синтеза нанодисперсного нитрида титана был реализован с использованием коаксиального магнитоплазменного ускорителя (фиг. 1), состоящего из цилиндрического электропроводящего титанового ствола 1, центрального титанового электрода 2, соединяющей их плавкой перемычки 3, состоящей из титановых проволочек, расходящихся от центрального электрода 2 и огибающих торцевую часть изолятора 4 центрального электрода 2. Корпус 5 узла центрального электрода 2, выполненный из магнитного материала, конструкционной стали, сопряжен со стволом 1, укрепляя узел центрального электрода 2 и перекрывая зону размещения грибообразной плавкой перемычки 3. Длина части перекрывающей зону размещения титановой плавкой перемычки 3 составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной. Соленоид 6 выполнен за одно целое с фланцем 7 и цилиндрической частью 8, в котором размещен корпус 5 узла центрального электрода 2 и закреплен резьбовой заглушкой 9. Соленоид 6 укреплен прочным стеклопластиковым корпусом 10 и стянут мощными токопроводящими шпильками 11 между фланцем 7 и стеклопластиковым упорным кольцом 12. Токопроводящие шпильки 11 электрически соединены токопроводящим кольцом 13, а к токопроводящим шпилькам 11 присоединен шинопровод 14 внешней схемы электропитания. Второй шинопровод 15 схемы электропитания присоединен к центральному электроду 2. К шинопроводу 15 последовательно присоединены ключ 16 и конденсаторная батарея 17, связанная с шинопроводом 14. На торцевую часть титанового ствола 1 установлена цилиндрическая вставка 18 из стали Ст.3, длиной 15-20 мм и толщиной 3-5 мм. Ускоритель через ствол 1 состыковывается с камерой-реактором объемом от 0,022 м3 до 0,098 м3, заполненной газообразным азотом при атмосферном давлении и температуре от 0°С до 40°С.
Работа устройства заключается в следующем. При замыкании ключа 16 в контуре электропитания ускорителя начинает протекать ток от конденсаторной батареи 17, по шинопроводу 14, токопроводящему кольцу 13, шпилькам 11, фланцу 7, виткам соленоида 6, корпусу 5, стволу 1, плавкой перемычке 3, центральному электроду 2, шинопроводу 15, через ключ 16 и к конденсатору 17. При достижении нарастающим током I(t) некоторого уровня плавкая перемычка 3 взрывается с образованием сильноточного дугового разряда, начальная форма плазменной структуры которого задается конфигурацией и расположением проволочек плавкой перемычки 3. Плазма сильноточного разряда сжимается магнитным полем собственного тока, магнитным полем соленоида 6 и приобретает грибообразную форму. Конусообразная часть корпуса 5 узла центрального электрода 2, перекрывает зону размещения плавкой перемычки 3 и формирования плазменной структуры, экранирует эту зону в течение некоторого времени и исключает вращение грибообразной плазменной перемычки, уменьшая эрозию ствола 1 на его начальном участке. Цилиндрическая вставка 18 создает ступенчатое изменение толщины стенки ствола 1, создает "магнитную пробку" движению плазмы сильноточного дугового разряда, выравнивает эрозионный износ ствола 1 и тем самым позволяет эффективно использовать расходный материал - ствол 1 коаксиального магнитоплазменного ускорителя.
Предложенный способ был испытан при следующих параметрах: емкость конденсаторной батареи 17 С=28,8 мФ; зарядное напряжение UЗАР=3,5 кВ; диаметр ствола 1 dC=21 мм; длина ствола
Figure 00000001
=150 мм; давление газообразного азота PN=0,1 МПа. В опытах изменяли объем камеры-реактора VКР от 0,022 м3 до 0,098 м3 и температуру газообразного азота tN от 0°С до 40°С. Примеры соответствия объема камеры-реактора, температуры азота и параметров продукта синтеза приведены в таблице 1. Основные параметры генерируемой плазменной струи: амплитуда импульса тока 210 к А, мощность разряда 330 MBА, подведенная энергия 90 кДж.
Как видно из таблицы 1, при увеличении объема камеры-реактора от 0,022 м3 до 0,098 м3 и при уменьшении температуры азота от 40°С до 0°С происходит уменьшение среднего размера частиц нитрида титана от 86 нм до 9 нм.
Figure 00000002

Claims (1)

  1. Способ синтеза нанодисперсного нитрида титана путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор, заполненную газообразным азотом при атмосферном давлении, отличающийся тем, что синтез ведут в камере-реакторе объемом от 0,022 м3 до 0,055 м3 и от 0,057 м3 до 0,098 м3 при температуре от 0°C до 19°C и от 21°C до 40°C.
RU2016132918A 2016-08-09 2016-08-09 Способ синтеза нанодисперсного нитрида титана RU2655365C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016132918A RU2655365C1 (ru) 2016-08-09 2016-08-09 Способ синтеза нанодисперсного нитрида титана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016132918A RU2655365C1 (ru) 2016-08-09 2016-08-09 Способ синтеза нанодисперсного нитрида титана

Publications (1)

Publication Number Publication Date
RU2655365C1 true RU2655365C1 (ru) 2018-05-25

Family

ID=62202068

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016132918A RU2655365C1 (ru) 2016-08-09 2016-08-09 Способ синтеза нанодисперсного нитрида титана

Country Status (1)

Country Link
RU (1) RU2655365C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2212983C2 (ru) * 2001-01-04 2003-09-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" Способ получения нанокристаллических порошков химсоединений

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2212983C2 (ru) * 2001-01-04 2003-09-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит" Способ получения нанокристаллических порошков химсоединений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СИВКОВ А.А. и др., Прямой динамический синтез нанодисперсного нитрида титана в высокоскоростной импульсной струе электроэрозионной плазмы, "Сверхтвердые материалы", 2008, 5, стр.33-39. *

Similar Documents

Publication Publication Date Title
WO2006118870A3 (en) Pulsed dielectric barrier discharge
JP5871789B2 (ja) 束縛されたプラズマビームを生成させるための方法及びビーム発生器
RU2655365C1 (ru) Способ синтеза нанодисперсного нитрида титана
WO2020197704A1 (en) Durable auto-ignition device for plasma reactor
CN203758390U (zh) 爆炸丝起爆装置
CN110996489B (zh) 等离子体喷射装置
CN103925856A (zh) 爆炸丝起爆装置
CN109578233B (zh) 一种基于多阳极电极结构的烧蚀型脉冲等离子体推进器
EP3124891A2 (en) Method for producing thermal and electrical energy and device for implementing said method
RU2559510C1 (ru) Способ синтеза нанокристаллического карбида кремния
CN108566716A (zh) 一种气体放电等离子体喷流装置
RU2442095C1 (ru) Коаксиальный магнитоплазменный ускоритель
RU2406278C1 (ru) Коаксиальный магнитоплазменный ускоритель
CN110035595B (zh) 一种圆柱形等离子体发生器及其应用
RU2475449C2 (ru) Способ динамического синтеза ультрадисперсного кристаллического ковалентного нитрида углерода c3n4 и устройство для его осуществления
RU61856U1 (ru) Коаксиальный магнитоплазменный ускоритель
RU137443U1 (ru) Коаксиальный магнитоплазменный ускоритель
RU2646845C2 (ru) Устройство формирования импульса сильноточного ускорителя электронов
RU2431947C1 (ru) Коаксиальный магнитоплазменный ускоритель
Krastelev et al. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz
RU2459394C1 (ru) Коаксиальный магнитоплазменный ускоритель
Kuznetsov et al. Arc initiation in plasma installations
CN208445821U (zh) 一种气体放电等离子体喷流器
Wang et al. Study on the energy deposition in fast electrical explosion of single aluminum wire in vacuum
RU173070U1 (ru) Приспособление для получения соединений нерастворимых друг в друге металлов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190810