RU2654689C1 - Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником - Google Patents

Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником Download PDF

Info

Publication number
RU2654689C1
RU2654689C1 RU2017128260A RU2017128260A RU2654689C1 RU 2654689 C1 RU2654689 C1 RU 2654689C1 RU 2017128260 A RU2017128260 A RU 2017128260A RU 2017128260 A RU2017128260 A RU 2017128260A RU 2654689 C1 RU2654689 C1 RU 2654689C1
Authority
RU
Russia
Prior art keywords
gas
heat exchanger
pistons
valves
cylinder
Prior art date
Application number
RU2017128260A
Other languages
English (en)
Inventor
Анатолий Александрович Рыбаков
Original Assignee
Анатолий Александрович Рыбаков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Александрович Рыбаков filed Critical Анатолий Александрович Рыбаков
Priority to RU2017128260A priority Critical patent/RU2654689C1/ru
Application granted granted Critical
Publication of RU2654689C1 publication Critical patent/RU2654689C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • H02K7/1884Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts structurally associated with free piston engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику. Тепловая энергия от топки подводится к теплообменнику и нагревает газ в его внутренней полости. Система управления отслеживает величину температуры и давления газа в теплообменнике. В момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра. Газ из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней. Под действием давления газа поршни начинают движение из крайних точек схождения в крайние точки расхождения. Из компрессорных полостей поршней через обратные клапаны газ поступает в пневмоаккумулятор. В результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря и статорный магнит магнитный поток, и в его катушке генерируется импульс электроэнергии. В момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны цилиндра и открывает выпускные клапаны цилиндра. Якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение. Отработавший газ из компрессорных полостей поршней через открытые выпускные клапаны цилиндра вытесняется в холодильник, в котором газ охлаждается, а через впускные обратные клапаны газ из холодильника засасывается в компрессорные полости поршней. Воздух из пневмоаккумулятора через обратный клапан поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора. 1 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области энергомашиностроения.
УРОВЕНЬ ТЕХНИКИ
Ближайший прототип заявленного изобретения патент РФ 2550228 «Электрический генератор переменного тока с двигателем стерлинга».
ЦЕЛЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Основной недостаток устройства по патенту РФ 2550228 состоит в том, что частота колебаний рабочего поршня, соединенного со штоком, напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Следовательно, и эффективность преобразования кинетической энергии рабочего поршня и штока в электроэнергию также напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра. Цель заявленного изобретения состоит в обеспечении максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.
СУЩНОСТЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником состоит в следующем. Тепловая энергия от топки, лучистая энергия солнца и т.д. подводится к теплообменнику 1 и нагревает газ, например гелий, во внутренней полости теплообменника 1. Система управления отслеживает величину температуры и давления газа в теплообменнике 1. В момент времени, когда температура и давление газа в теплообменнике 1 достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра 2, 3. Максимальная величина давления и температуры газа в теплообменнике 1 выбирается из соображения прочностных характеристик материала теплообменника 1. Газ из теплообменника 1 через впускные клапаны цилиндра 2, 3 поступает в рабочие полости поршней 4, 5. Под действием давления газа поршни 4, 5 начинают движение из крайних точек схождения в крайние точки расхождения. Из компрессорных полостей поршней 4, 5 через обратные клапаны пневмоаккумулятора 6, 7 газ поступает в пневмоаккумулятор 8. Магнитный поток статорного магнита линейного электрогенератора 9 (статорный магнит линейного электрогенератора может быть постоянным магнитом или электромагнитом) замыкается через якоря линейного электрогенератора 10 и 11. В результате движения якорей линейного электрогенератора 10, 11 площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря линейного электрогенератора 10 и 11 и статорный магнит линейного электрогенератора 9 магнитный поток, и в катушке линейного электрогенератора 12 генерируется импульс электроэнергии. В момент времени прибытия поршней 4, 5 в крайние точки расхождения система управления закрывает впускные клапаны цилиндра 2, 3 и открывает выпускные клапаны цилиндра 13, 14. Якоря линейного электрогенератора 10, 11 с разноименными полюсами притягиваются друг к другу, и поршни 4, 5, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение. Отработавший газ из компрессорных полостей поршней 4, 5 через открытые выпускные клапаны цилиндра 13, 14 вытесняется в холодильник 15, где охлаждается, а через впускные обратные клапаны 16, 17 газ из холодильника 15 засасывается в компрессорные полости поршней 4, 5. Воздух из пневмоаккумулятора 8 через обратный клапан пневмоаккумулятора 18 поступает в теплообменник 1, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора 12. Таким образом, обеспечивается максимальная эффективность преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику 1.
РАСКРЫТИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником, включающим теплообменник, систему управления, впускные клапаны цилиндра, поршни, обратные клапаны пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якоря линейного электрогенератора, катушку линейного электрогенератора, выпускные клапаны цилиндра, впускные обратные клапаны и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает газ во внутренней полости теплообменника, система управления отслеживает величину температуры и давления газа в теплообменнике, в момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра, газ из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней, под действием давления газа поршни начинает движение из крайних точек схождения в крайние точки расхождения, из компрессорных полостей поршней через обратные клапаны пневмоаккумулятора газ поступает в пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якоря линейного электрогенератора, в результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря линейного электрогенератора и статорный магнит линейного электрогенератора магнитный поток, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны цилиндра и открывает выпускные клапаны цилиндра, якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение, отработавший газ из компрессорных полостей поршней через открытые выпускные клапаны цилиндра вытесняется в холодильник, в котором газ охлаждается, а через впускные обратные клапаны газ из холодильника засасывается в компрессорные полости поршней, воздух из пневмоаккумулятора через обратный клапан пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора.
ОСУЩЕСТВЛЕНИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ
Затраты на НИОКР заявленного изобретения не могут существенно отличаться от таковых при проектировании классических тепловых машин.
ГРАФИЧЕСКИЙ МАТЕРИАЛ
Чертеж. Принципиальная схема двухцилиндрового свободнопоршневого энергомодуля с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником:
1 - теплообменник; 2, 3 - впускные клапаны цилиндра; 4, 5 - поршень; 6, 7 - обратные клапаны пневмоаккумулятора; 8 - пневмоаккумулятор; 9 - статорный магнит линейного электрогенератора; 10, 11 - якорь линейного электрогенератора; 12 - катушка линейного электрогенератора; 13, 14 - выпускной клапан цилиндра; 15 - холодильник; 16, 17 - впускной обратный клапан; 18 - обратный клапан пневмоаккумулятора.

Claims (1)

  1. Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником, включающим теплообменник, систему управления, впускные клапаны цилиндра, поршни, обратные клапаны пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якоря линейного электрогенератора, катушку линейного электрогенератора, выпускные клапаны цилиндра, впускные обратные клапаны и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает газ во внутренней полости теплообменника, система управления отслеживает величину температуры и давления газа в теплообменнике, в момент времени, когда температура и давление газа в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры газа, система управления открывает впускные клапаны цилиндра, газ из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней, под действием давления газа поршни начинают движение из крайних точек схождения в крайние точки расхождения, из компрессорных полостей поршней через обратные клапаны пневмоаккумулятора газ поступает в пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якоря линейного электрогенератора, в результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря линейного электрогенератора и статорный магнит линейного электрогенератора магнитный поток, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны цилиндра и открывает выпускные клапаны цилиндра, якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение, отработавший газ из компрессорных полостей поршней через открытые выпускные клапаны цилиндра вытесняется в холодильник, в котором газ охлаждается, а через впускные обратные клапаны газ из холодильника засасывается в компрессорные полости поршней, воздух из пневмоаккумулятора через обратный клапан пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора.
RU2017128260A 2017-08-07 2017-08-07 Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником RU2654689C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017128260A RU2654689C1 (ru) 2017-08-07 2017-08-07 Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017128260A RU2654689C1 (ru) 2017-08-07 2017-08-07 Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником

Publications (1)

Publication Number Publication Date
RU2654689C1 true RU2654689C1 (ru) 2018-05-22

Family

ID=62202648

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017128260A RU2654689C1 (ru) 2017-08-07 2017-08-07 Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником

Country Status (1)

Country Link
RU (1) RU2654689C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680280C1 (ru) * 2018-06-27 2019-02-19 Анатолий Александрович Рыбаков Способ управления давлением воздуха в пневмоаккумуляторе свободнопоршневого энергомодуля с внешней камерой сгорания

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835824A (en) * 1973-01-22 1974-09-17 Donald R Mac Free piston engine
SU1740727A1 (ru) * 1990-05-31 1992-06-15 Войсковая часть 19163 Свободнопоршневой двухтактный двигатель-электрогенератор с противоположно движущимис поршн ми
SU1800079A1 (ru) * 1990-06-05 1993-03-07 Ivan I Bille Свободнопоршневой двухтактный двигатель-электрогенератор 2
RU2150014C1 (ru) * 1999-03-16 2000-05-27 Пинский Феликс Ильич Свободнопоршневой двигатель внутреннего сгорания с линейным электрическим генератором переменного тока
RU2328608C1 (ru) * 2007-02-06 2008-07-10 Анатолий Александрович Рыбаков Энергомодуль с ускорителем якоря
RU2422655C1 (ru) * 2010-04-09 2011-06-27 Анатолий Александрович Рыбаков Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей
RU143160U1 (ru) * 2013-12-30 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Линейный генератор постоянного тока с приводом от свободнопоршневого двигателя внутреннего сгорания

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835824A (en) * 1973-01-22 1974-09-17 Donald R Mac Free piston engine
SU1740727A1 (ru) * 1990-05-31 1992-06-15 Войсковая часть 19163 Свободнопоршневой двухтактный двигатель-электрогенератор с противоположно движущимис поршн ми
SU1800079A1 (ru) * 1990-06-05 1993-03-07 Ivan I Bille Свободнопоршневой двухтактный двигатель-электрогенератор 2
RU2150014C1 (ru) * 1999-03-16 2000-05-27 Пинский Феликс Ильич Свободнопоршневой двигатель внутреннего сгорания с линейным электрическим генератором переменного тока
RU2328608C1 (ru) * 2007-02-06 2008-07-10 Анатолий Александрович Рыбаков Энергомодуль с ускорителем якоря
RU2422655C1 (ru) * 2010-04-09 2011-06-27 Анатолий Александрович Рыбаков Двухцилиндровый свободнопоршневой энергомодуль с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей
RU143160U1 (ru) * 2013-12-30 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Линейный генератор постоянного тока с приводом от свободнопоршневого двигателя внутреннего сгорания

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680280C1 (ru) * 2018-06-27 2019-02-19 Анатолий Александрович Рыбаков Способ управления давлением воздуха в пневмоаккумуляторе свободнопоршневого энергомодуля с внешней камерой сгорания

Similar Documents

Publication Publication Date Title
US8601988B2 (en) Free piston assembly and method for controlling a free piston assembly
Jia et al. Design, modelling and validation of a linear Joule Engine generator designed for renewable energy sources
US10871106B2 (en) Free piston engine power plant
JP6695338B2 (ja) 熱を電気エネルギーに変換するための熱サイクル内の装置
US20120024264A1 (en) Heat engine
Jia et al. Investigation of the starting process of free-piston engine generator by mechanical resonance
RU2427718C1 (ru) Способ охлаждения поршней двухцилиндрового однотактного свободнопоршневого энергомодуля с общей внешней камерой сгорания и линейным электрогенератором с оппозитным движением якорей
CN101375018A (zh) 电耦合热循环系统及方法
JP2013526677A (ja) フリーピストン内燃エンジン
Wu et al. Design and parametric analysis of linear Joule-cycle engine with out-of-cylinder combustion
RU2654689C1 (ru) Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором, теплообменником и холодильником
CN102374021B (zh) 自由活塞发动机
RU2655684C1 (ru) Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором
RU2476699C1 (ru) Способ продувки камеры сгорания свободнопоршневого двухцилиндрового энергомодуля с общей внешней камерой сгорания и линейным электрогенератором
RU2652092C1 (ru) Способ преобразования тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с оппозитным движением поршней, линейным электрогенератором и теплообменником
RU2659908C1 (ru) Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором и теплообменником
RU2659598C1 (ru) Способ трансформации тепловой энергии в электроэнергию свободнопоршневым энергомодулем с линейным электрогенератором, теплообменником и холодильником
RU2479733C1 (ru) Способ увеличения эффективности процесса расширения продуктов сгорания перепуском воздуха между компрессорными полостями расширительных машин в свободнопоршневом двухцилиндровом энергомодуле с общей внешней камерой сгорания и линейным электрогенератором
Dawi et al. Gamma Stirling engine for a small design of renewable resource model
RU2659581C1 (ru) Способ синхронизации движения поршней в противофазе двухцилиндровой свободнопоршневой тепловой машины внешнего сгорания
RU180663U1 (ru) Устройство преобразования тепловой энергии в электрическую
RU2625075C1 (ru) Способ управления температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения сжатым воздухом
RU2653613C1 (ru) Способ предотвращения ударов поршня о стенки цилиндра одноцилиндровой свободнопоршневой тепловой машины внешнего сгорания
RU2340783C1 (ru) Блок поршней и якоря энергомодуля
RU2641997C1 (ru) Способ пневматического привода двухклапанного газораспределителя свободнопоршневого энергомодуля с общей внешней камерой сгорания