RU2654554C1 - Способ определения скорости горения заряда ракетного двигателя твердого топлива - Google Patents

Способ определения скорости горения заряда ракетного двигателя твердого топлива Download PDF

Info

Publication number
RU2654554C1
RU2654554C1 RU2017129022A RU2017129022A RU2654554C1 RU 2654554 C1 RU2654554 C1 RU 2654554C1 RU 2017129022 A RU2017129022 A RU 2017129022A RU 2017129022 A RU2017129022 A RU 2017129022A RU 2654554 C1 RU2654554 C1 RU 2654554C1
Authority
RU
Russia
Prior art keywords
charge
sensors
solid
thickness
frequency
Prior art date
Application number
RU2017129022A
Other languages
English (en)
Inventor
Валерий Григорьевич Ефимов
Андрей Владимирович Литвинов
Original Assignee
Акционерное общество "Федеральный научно-производственный центр "Алтай"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Федеральный научно-производственный центр "Алтай" filed Critical Акционерное общество "Федеральный научно-производственный центр "Алтай"
Priority to RU2017129022A priority Critical patent/RU2654554C1/ru
Application granted granted Critical
Publication of RU2654554C1 publication Critical patent/RU2654554C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области ракетной и измерительной техники и может быть использовано при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ). С помощью датчиков измеряют величину виброускорения, преобразуют полученные данные в вейвлет-коэффициенты по алгоритму непрерывного преобразования, определяют масштаб разложения, имеющий максимальную энергию вейвлет-коэффициентов, определяют толщинную резонансную частоту на данном масштабе, по величине и изменениям которой судят о скорости горения. При этом векторные вибродатчики размещают в точках корпуса двигателя, информативных относительно толщинных колебаний, измерительные оси датчиков ориентируют по радиусу заряда, а измерения проводят на участках времени горения, где канал заряда по всей длине гарантированно имеет цилиндрическую форму. Способ позволяет снизить погрешность определения скорости горения заряда РДТТ за счет обеспечения одинаково эффективной регистрации физического параметра в течение всего процесса горения путем оптимизации позиционирования и ориентации датчиков, а также за счет возможности одновременного определения толщинной резонансной частоты (физический параметр) и ее изменения во времени. 2 ил.

Description

Изобретение относится к области ракетной и измерительной техники и может быть использовано при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ).
Скорость горения является одной из основных характеристик твердого ракетного топлива, используемых при расчете внутрибаллистических характеристик. Современное состояние теории горения не позволяет определять скорость горения для конкретного состава твердого ракетного топлива (ТРТ) расчетным путем с практически приемлемой точностью. Поэтому для экспериментального определения скорости горения ТРТ используют результаты стендовых испытаний модельных или натурных изделий.
Известны способы определения скорости горения, основанные на применении проникающих излучений, к которым относятся радиационный, радиоволновый и ультразвуковой способы (Жарков А.С., Потапов М.Г., Демидов Г.А., Леонов Г.В. Стендовые испытания энергетических установок на твердом топливе: Учебное пособие. Изд-во Алт. гос. техн. ун-та, 2001, с. 182-213).
Перечисленные способы относятся к классу так называемых волновых способов исследования, в которых требуемую информацию получают, используя данные измерения какого-либо параметра взаимодействия электромагнитных или акустических волн с измеряемым сводом заряда и последующего расчета. Способы реализуются с помощью установок (приборов), содержащих два основных блока, один из которых обеспечивает преобразование электрической энергии в требуемый тип волн и их направленное излучение, а другой - их прием после взаимодействия с изделием и измерение информативного параметра.
Недостатком перечисленных способов является необходимость использования специально созданного оборудования для генерации требуемого типа зондирующих волн и их направленного излучения. Наличие в этом оборудовании токонесущих частей, находящихся под высоким напряжением ограничивает, а иногда делает невозможным реализацию с его помощью указанных способов при испытаниях взрывопожароопасных изделий. Использование радиоизотопных источников излучения исключено возможностью разрушения РДТТ и радиационного заражения испытательного стенда.
Другим недостатком перечисленных методов является высокая погрешность определения скорости горения. Так, в наиболее развитом ультразвуковом методе погрешность превышает 10% (Ефимов В.Г., Дерябин Ю.А., Митин А.Г. Экспериментальное использование ультразвукового метода для определения скорости горения по своду заряда в процессе огневой утилизации РДТТ. Известия ВУЗов, сер. Физика, 2004, №10, с. 64-67), что вызвано фактором воздействия, который в настоящее время не может быть смоделирован и учтен в соответствующей технической реализации. Этим фактором является формирование в месте приема сложного акустического поля за счет многолучевого распространения широкополосного шума, сопровождающего процесс горения. Непрерывное изменение внутренней конфигурации и размеров заряда, наличие интерференционных и резонансных явлений приводят к резким флуктуациям амплитуды сигнала на приемном преобразователе, вплоть до его пропадания, т.е. к маскированию или полной утрате информации о временной координате отраженного УЗ-импульса.
Предварительные исследования показали, что даже с использованием современных алгоритмов выделения временной координаты удается выделить не более 30 отсчетов за время горения. Такой массив данных, к тому же полученный на неравномерных временных интервалах, не может быть использован для оценки локальных изменений скорости горения, поскольку скорость обычно вычисляется через достаточно неустойчивую операцию численного дифференцирования.
Более эффективным способом, устраняющим указанные недостатки, является способ, использующий в качестве зондирующего сигнала широкополосный акустический шум, генерируемым самим процессом горения (резонансные эффекты в работающем двигателе).
Известны низкочастотные акустические методы определения резонансных частот изделий с использованием как свободных, так и вынужденных колебаний [Б.А. Глаговский, М.Б. Московенко. Низкочастотные акустические методы контроля в машиностроении. Л. Машиностроение, 1977, с. 79]. В момент совпадения частот вынужденных колебаний с частотой собственных колебаний изделия наступает резонанс, при котором амплитуда колебаний резко возрастает, что и регистрируется амплитудными или фазовыми измерительными устройствами. По частоте собственных колебаний определяются геометрические размеры изделия.
Известен способ определения амплитудно-частотных характеристик колебательных процессов системы «корпус-канальный заряд» также путем импульсного нагружения малогабаритных модельных РДТТ [И.А. Кашина, А.Ф. Сальников Исследование резонансного взаимодействия конструктивных элементов системы РДТТ. Вестник РГАТУ, 2012, №1(22), с. 19-23]. Ударное нагружение обеспечивает формирование широкополосного зондирующего сигнала, из которого свод заряда, как механический резонатор, выделяет, в том числе, толщинный резонанс. По этому резонансу можно определить текущую толщину свода, а, следовательно, и рассчитать скорость горения. Очевидны недостатки способа, связанные с необходимостью механического воздействия на крупногабаритный РДТТ в процессе огневых стендовых испытаний, что недопустимо по условиям испытаний.
Наиболее близким к заявляемому техническому решению является акустический способ определения скорости горения образцов заряда торцевого горения, основанный на измерении акустических мод колебаний газа в камере сгорания, вызванных шумом горения и турбулентностью.
При горении торцевого заряда длина газовой части камеры увеличивается, так что осевая акустическая частота уменьшается. Тангенциальная частота колебаний определяется диаметром камеры, остается неизменной и ее можно использовать, чтобы калибровать длину камеры по моде осевых частот. Таким образом, способ заключается в регистрации акустических мод колебаний газа в камере сгорания, выделении осевой моды частот, расчете мгновенного значения длины газовой части камеры и расчете скорости горения, как производной по времени от длины камеры [R.O. Hessler, R.L. Glick Concept for Passive Burning Rate Measurement. The Bo Stokes Memorial Workshop, Milano, 22-24 June, 1998].
Недостатком упомянутого ближайшего аналога является сложность проведения регистрации акустических мод. При установке датчика в камере необходимо обеспечить его тепловую защиту, а при контактной установке датчика на внешней цилиндрической поверхности камеры не удается обеспечить одинаково эффективную регистрацию акустических мод (физический параметр) в течение всего процесса горения, т.к. при горении образца изменяется положение на поверхности камеры пучностей давления, где достигается максимальная амплитуда колебаний и где обычно проводятся измерения.
Другим недостатком ближайшего аналога является использование в процедуре выделения доминирующей моды частот оконного Фурье-преобразования. Проблемы, связанные с выбором формы и размеров окна, появлением спектральных компонент, которых не было в исходном сигнале, обусловливают достигнутую погрешность регистрации осевой частоты 11% для первой моды колебаний. Кроме того Фурье-преобразование не в состоянии одновременно определить собственно частоту сигнала и ее изменение во времени, а только констатирует факт ее наличия в пределах выбранного окна.
Известно, что горящий заряд представляет собой колебательную систему с определенными собственными частотами. Воздействие вынуждающей силы (меняющееся давление) с частотой, близкой к собственной частоте заряда, естественно приводит к резонансу.
РДТТ со сложнопрофильным каналом имеет три явно выраженных частоты механического резонанса, для которых справедливы следующие утверждения:
а) частоты размерного резонанса на толщине свода в области дна щепи ƒщ, в области цилиндрического канала ƒк и в области зоны сопряжения щелей ƒc удовлетворяют следующему неравенству ƒщck, вплоть до момента времени
Figure 00000001
, когда канал по всей длине приобретает цилиндрическую форму, где tполн - полное время горения заряда;
б) скорости увеличения частот упомянутых размерных резонансов различны и совпадут в момент t.
в) колебания РДТТ вызываются двумя вынуждающими силами: пульсациями давления на частотах толщинного (ƒD) и продольного (ƒL) внутрикамерных резонансов и широкополосным акустическим шумом.
Задачей заявляемого технического решения является снижение погрешности определения скорости горения заряда РДТТ за счет обеспечения одинаково эффективной регистрации физического параметра в течение всего процесса горения путем оптимизации позиционирования и ориентации датчиков, а также за счет возможности одновременного определения толщинной резонансной частоты (физический параметр) и ее изменения во времени.
Поставленная задача решается заявляемым способом определения скорости горения заряда ракетного двигателя твердого топлива, включающим измерение физического параметра во времени с помощью датчиков, регистрацию параметра в компьютерном блоке, преобразование параметра. Особенность заключается в том, что с помощью датчиков измеряют величину виброускорения, преобразуют полученные данные в вейвлет-коэффициенты по алгоритму непрерывного преобразования, определяют масштаб разложения, имеющий максимальную энергию вейвлет-коэффициентов, определяют толщинную резонансную частоту на данном масштабе, по величине и изменениям которой судят о скорости горения, при этом векторные вибродатчики размещают в точках корпуса двигателя, информативных относительно толщинных колебаний, измерительные оси датчиков ориентируют по радиусу заряда, а измерения проводят на участках времени горения, где канал заряда по всей длине гарантированно имеет цилиндрическую форму.
Известно, что при работе РДТТ в камере сгорания возникают акустические колебания, амплитуда которых может достигать значительных величин (до 3% от среднего давления (Абугов Д.И., Бобылев В.М. Теория и расчет ракетных двигателей твердого топлива. - М.: Машиностроение, 1987. - С. 143-147). Заряд, как механический резонатор выделяет из акустических шумов частоты своих размерных резонансов по своей толщине и длине. Этим резонансам соответствуют частоты продольных ƒL (по длине) и поперечных ƒD (по толщине) колебаний
Figure 00000002
, где
с - скорость звука, м/с;
L - длина заряда, м;
D - толщина свода заряда, м.
При горении заряда, его толщина, а соответственно частота толщинного размерного резонанса, будет изменяться. Таким образом, измеряя через определенные интервалы времени значения указанной частоты, можно определять скорость горения. Резонансная частота по длине ƒL не изменяется.
Если регистрация частоты осуществляется в моменты t1 и t2, и при значениях частоты основной гармоники ƒ1 и ƒ2 в указанные моменты
Figure 00000003
где
D1 и D2 - толщина свода заряда в момент времени t1 и t2, то выражение для расчета скорости горения имеет вид
Figure 00000004
При использовании современных методов и средств погрешность измерения временных интервалов может быть сведена до величины 0,1-0,2%.
Другими составляющими погрешности являются погрешность определения скорости звука и погрешность определения частоты размерного резонанса по толщине, что вызвано шумоподобностью возбуждающего заряд акустического сигнала и его статистическим характером.
В ближайшем аналоге скорость звука в газовой части камеры сгорания определяется только расчетным путем и сложным образом зависит от температуры и состава топлива. Это может быть причиной появления значительной систематической погрешности. [Яскин А.В. Теория устройств ракетных двигателей / Алт. гос. техн. ун-т, БТИ. Бийск: Изд-во Алт. гос. техн. ун-та, 2013, 262 с.]. В заявляемом способе скорость предварительно определяется экспериментально на образцах, вырезанных из натурного заряда и с набором большой статистики. В этом случае погрешность определения скорости не превышает 2-3%.
Уменьшение погрешности определения частоты размерного резонанса по толщине в заявляемом способе достигается двумя путями.
На этапе регистрации для уменьшения влияния неинформативных резонансных сигналов (продольных, тангециальных) и различных типов волн (корпусных, сдвиговых) используют векторно ориентированные вибродатчики, обеспечивающие регистрацию вибрации только в выделенном направлении, что повышает достоверность измерений. Основная погрешность таких датчиков не превышает 5%.
На этапе обработки, в отличие от ближайшего аналога, где проводят Фурье-преобразование с его отмеченными недостатками, осуществляют непрерывное вейвлет-преобразование зарегистрированных сигналов и определяют масштаб вейвлетного разложения, на котором коэффициенты преобразования принимают максимальное значение. Масштаб разложения однозначно связан с частотой сигнала через вид применяемого вейвлета.
Максимальные коэффициенты разложения будут получены при одновременной локализации сигнала и вейвлета по времени и по частоте. Тем самым достигается повышение точности определения масштаба и, соответственно, частоты резонанса, а также времени появления этой частоты. Наконец, реализуется возможность непрерывного отслеживания изменения частоты резонанса (в нашем случае - увеличения) и исключается учет случайных гармонических компонент, близких по частоте к резонансной, но имеющих обратные тенденции.
Таким образом, совокупно по двум своим составляющим погрешность не превысит 6%. С учетом многоканальности измерений (использование нескольких датчиков) это значение может быть уменьшено по закону
Figure 00000005
n - число датчиков.
Предлагаемый способ реализуют следующим образом.
Предварительно, вибродатчики, например типа ВТК-3 (зарегистрированы в Госреестре под номером 23241-02, изготовитель - Торговый дом СпецТехноРесурс, г. Москва), с ориентацией измерительной оси по радиусу заряда устанавливают на корпусе в заранее определенных узлах пучности акустического давления, расположенные в средней части корпуса между силовыми бандажами, крепящими корпус к силовому полу стенда.
Измеряют значения виброускорения и передают результаты измерения в компьютерный блок.
Проводят непрерывное вейвлет-преобразование пошагово с назначенным интервалом и определяют масштаб (частоту) преобразования, на котором энергия вейвлет-коэффициентов имеет максимальное значение.
Рассчитывают скорость горения по формуле (1).
Заявляемый способ подтверждается примером анализа результатов огневых испытаний.
Пример. Частота дискретизации сигнала вибродатчика, установленного на крупногабаритном РДТТ, - 20000 Гц. Измерения проводились на участках времени горения, где канал заряда по всей длине гарантированно имеет цилиндрическую форму.
На фиг. 1 представлено окно разработанной программы на этапе расчета резонансной частоты. Предварительно на этапе «преобразование» происходит вычисление вейвлетных коэффициентов, а на этапе «подробности» определяется масштаб разложения, имеющий максимальную энергию коэффициентов. Так, при длительности исходного сигнала 10000 отсчетов (что соответствует 0,5 с) и использовании комплексного вейвлета Morlet, анализируется 98 масштабов, из которых максимальную энергию несет масштаб j=30. Этот масштаб соответствует частоте Fr[30]=719,48 Гц. Обработка следующего кадра записи (через 1 с) дает значение масштаба j=29, что соответствует частоте Fr[29]=727,17 Гц. При скорости звука в заряде 1600 м/сек по формуле (1) получаем значение скорости горения 12 мм/сек.
На фиг. 2 приведена трехмерная картина вейвлетных коэффициентов в осях «TIME-SCALE-АМР» («время-масштаб-амплитуда»). Картина наглядно отображает колебательный (резонансный) характер поведения коэффициентов на масштабе с максимальной энергией. Такой же характер носит и дисперсия коэффициентов.
Таким образом, заявляемое техническое решение практически реализуемо и позволяет удовлетворить давно существующую потребность в решении поставленной задачи.

Claims (1)

  1. Способ определения скорости горения заряда ракетного двигателя твердого топлива, включающий измерение физического параметра во времени с помощью датчиков, регистрацию параметра в компьютерном блоке, преобразование параметра, отличающийся тем, что с помощью датчиков измеряют величину виброускорения, преобразуют полученные данные в вейвлет-коэффициенты по алгоритму непрерывного преобразования, определяют масштаб разложения, имеющий максимальную энергию вейвлет-коэффициентов, определяют толщинную резонансную частоту на данном масштабе, по величине и изменениям которой судят о скорости горения, при этом векторные вибродатчики размещают в точках корпуса двигателя, информативных относительно толщинных колебаний, измерительные оси датчиков ориентируют по радиусу заряда, а измерения проводят на участках времени горения, где канал заряда по всей длине гарантированно имеет цилиндрическую форму.
RU2017129022A 2017-08-14 2017-08-14 Способ определения скорости горения заряда ракетного двигателя твердого топлива RU2654554C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017129022A RU2654554C1 (ru) 2017-08-14 2017-08-14 Способ определения скорости горения заряда ракетного двигателя твердого топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017129022A RU2654554C1 (ru) 2017-08-14 2017-08-14 Способ определения скорости горения заряда ракетного двигателя твердого топлива

Publications (1)

Publication Number Publication Date
RU2654554C1 true RU2654554C1 (ru) 2018-05-21

Family

ID=62202330

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017129022A RU2654554C1 (ru) 2017-08-14 2017-08-14 Способ определения скорости горения заряда ракетного двигателя твердого топлива

Country Status (1)

Country Link
RU (1) RU2654554C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741687C2 (ru) * 2019-06-10 2021-01-28 Федеральное государственное бюджетное учреждение науки Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук Способ измерения скорости горения твердых ракетных топлив и скорости сублимации полимерных покрытий при обдуве высокотемпературным газом и устройство для его осуществления
CN114778757A (zh) * 2022-04-01 2022-07-22 北京理工大学 一种“十字”型可视化振动实验发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201973A (en) * 1962-12-14 1965-08-24 John E Fitzgerald Solid propellant burning rate detector
US6530213B2 (en) * 2001-05-22 2003-03-11 Lockheed Martin Corporation Method and apparatus for ignition detection
RU2215170C1 (ru) * 2002-04-05 2003-10-27 Федеральный центр двойных технологий "Союз" Модельный двигатель для определения скорости горения твердого ракетного топлива
RU2493549C1 (ru) * 2012-04-28 2013-09-20 Открытое Акционерное Общество "Авиационная Холдинговая Компания "Сухой" Способ диагностики входного устройства силовой установки самолета
RU2542162C1 (ru) * 2014-02-24 2015-02-20 Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" Способ диагностики предаварийных режимов работы рдтт при огневых стендовых испытаниях
RU2578787C1 (ru) * 2015-01-12 2016-03-27 Акционерное общество "Федеральный научно-производственный центр "Алтай" Способ определения скорости горения твердого ракетного топлива

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201973A (en) * 1962-12-14 1965-08-24 John E Fitzgerald Solid propellant burning rate detector
US6530213B2 (en) * 2001-05-22 2003-03-11 Lockheed Martin Corporation Method and apparatus for ignition detection
RU2215170C1 (ru) * 2002-04-05 2003-10-27 Федеральный центр двойных технологий "Союз" Модельный двигатель для определения скорости горения твердого ракетного топлива
RU2493549C1 (ru) * 2012-04-28 2013-09-20 Открытое Акционерное Общество "Авиационная Холдинговая Компания "Сухой" Способ диагностики входного устройства силовой установки самолета
RU2542162C1 (ru) * 2014-02-24 2015-02-20 Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" Способ диагностики предаварийных режимов работы рдтт при огневых стендовых испытаниях
RU2578787C1 (ru) * 2015-01-12 2016-03-27 Акционерное общество "Федеральный научно-производственный центр "Алтай" Способ определения скорости горения твердого ракетного топлива

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741687C2 (ru) * 2019-06-10 2021-01-28 Федеральное государственное бюджетное учреждение науки Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук Способ измерения скорости горения твердых ракетных топлив и скорости сублимации полимерных покрытий при обдуве высокотемпературным газом и устройство для его осуществления
CN114778757A (zh) * 2022-04-01 2022-07-22 北京理工大学 一种“十字”型可视化振动实验发动机
CN114778757B (zh) * 2022-04-01 2024-04-05 北京理工大学 一种“十字”型可视化振动实验发动机

Similar Documents

Publication Publication Date Title
US20220244156A1 (en) Method and system for analysing a test piece
US20050265124A1 (en) Method for detecting acoustic emission using a microwave doppler radar detector
US11092573B2 (en) Apparatus, systems, and methods for determining nonlinear properties of a material to detect early fatigue or damage
EP2014019B1 (en) Triangulation with co-located sensors
RU2654554C1 (ru) Способ определения скорости горения заряда ракетного двигателя твердого топлива
Alzebda et al. Ultrasonic sensing of temperature of liquids using inexpensive narrowband piezoelectric transducers
AU2019341638A1 (en) Signal processing
Dubuc et al. Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines
Lebedev et al. Resonant acoustic spectroscopy at low Q factors
Barth et al. Experimental determination of Lamb wave dispersion diagrams using 2d Fourier transform and laser vibrometry
JP2008151705A (ja) 超音波厚さ測定方法および装置
Lebedev Method of linear prediction in the ultrasonic spectroscopy of rock
Ranjbar Naserabadi et al. Ultrasonic high frequency lamb waves for evaluation of plate structures
Liu et al. Implementation of coda wave interferometry using Taylor series expansion
Ponschab et al. Towards an inverse characterization of third order elastic constants using guided waves
Wang et al. Early bolt looseness monitoring using the leading waves energy in piezoelectric active sensing
Zhu et al. Stress evaluation using ultrasonic interference spectrum of leaky lamb waves
RU2146818C1 (ru) Способ определения характеристик напряженно-деформированного состояния конструкционных материалов
Gushchina et al. Development of the experimental equipment for measuring the velocity of ultrasonic waves with high accuracy
Konovalov et al. Generating short pulses at the output of an emission–reception system when the emitter is excited with pulses with a special shape
RU2569636C2 (ru) Способ динамических испытаний конструкций и систем на механические и электронные воздействия
Wang et al. Study on monitoring and estimating soil physical properties using piezoceramic transducer
RU2466368C1 (ru) Способ определения динамических характеристик тензометрического преобразователя давления (варианты)
Zaz et al. Adaptation of a high frequency ultrasonic transducer to the measurement of water temperature in a nuclear reactor
Abusoua et al. Investigate resonances of bonded Piezoelectric Wafer Active Transducer (PWaT) using laser ultrasound excitation