RU2654389C1 - Амперометрический способ измерения концентрации кислорода в газовых смесях - Google Patents

Амперометрический способ измерения концентрации кислорода в газовых смесях Download PDF

Info

Publication number
RU2654389C1
RU2654389C1 RU2017113554A RU2017113554A RU2654389C1 RU 2654389 C1 RU2654389 C1 RU 2654389C1 RU 2017113554 A RU2017113554 A RU 2017113554A RU 2017113554 A RU2017113554 A RU 2017113554A RU 2654389 C1 RU2654389 C1 RU 2654389C1
Authority
RU
Russia
Prior art keywords
gas
oxygen
cell
analyzed
proton
Prior art date
Application number
RU2017113554A
Other languages
English (en)
Inventor
Анатолий Сергеевич Калякин
Анатолий Константинович Демин
Александр Николаевич Волков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2017113554A priority Critical patent/RU2654389C1/ru
Application granted granted Critical
Publication of RU2654389C1 publication Critical patent/RU2654389C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации кислорода в газовых смесях согласно изобретению заключается в том, что в поток анализируемой газовой смеси помещают электрохимическую ячейку с газоплотной полостью, образованной дисками из твердого протонпроводящего электролита с электродами на противоположных поверхностях одного из дисков, на которые подают напряжение постоянного тока в пределах 0,8–1,2 В, с подачей отрицательного полюса на внутренний электрод, посредством чего осуществляют электролиз паров воды, находящихся в анализируемом газе и накачку полученного в результате электролиза водорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружный электрод – твердый электролит – внутренний электрод, при этом в процессе достижения стационарного состояния, когда диффузионный поток продуктов взаимодействия накачанного в полость ячейки водорода и находящегося в ней кислорода станет равным поступающему потоку анализируемого газа, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию водорода, потраченного на взаимодействие с кислородом, определяют концентрацию кислорода в анализируемом газе. Изобретение позволяет достаточно просто и надежно измерять содержание кислорода в газах, в том числе и при температурах 350оС и выше, а также расширить область практического применения твердых электролитов, обладающих протонным характером проводимости. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности, в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита.
Известен способ определения концентрации кислорода (SU 1500925, публ. 15.08.89) [1], которую определяют по тепловому эффекту, возникающему при каталитическом окислении горючих газов в присутствии кислорода на двух нагреваемых электрическим током термочувствительных элементах, расположенных в реакционной камере, один из которых изготовлен из каталитически активного, а другой - из инертного материала. В реакционную камеру помещают легколетучее горючее вещество, а поступление исследуемой газовой смеси в реакционную камеру ограничивают до уровня, обеспечивающего избыток паров горючего. Измеряя прирост температуры каталитически активного элемента, определяют концентрацию кислорода в газовой смеси. Суть данного способа заключается в превращении примеси кислорода в монооксид углерода в присутствии углеродсодержащего реагента и хроматографической регистрации продуктов реакции. Перевод кислородсодержащих примесей из газовой пробы в монооксид углерода производят искровым разрядом в реакционной камере в присутствии газообразного углеводорода. Способ характеризуется трудоемкостью, применением сложного аналитического оборудования и требует квалифицированного обслуживающего персонала.
Наиболее близким к заявляемому способу является способ измерения содержания кислорода в газовых средах (RU 2532139, публ. 27.10.14 [2], осуществляемый с помощью электрохимической ячейки на основе кислородпроводящих твердых электролитов. В этом способе используют ячейку с газоплотной полостью, образованную кислородпроводящим твердым электролитом, на противоположных поверхностях которого расположены две пары электродов, одна из пар выполняет функцию кислородного насоса, а другая содержит, включая измерительный и эталонный, электроды, причем эталонный электрод расположен в полости ячейки (внутренний электрод). Ячейку помещают в поток анализируемого газа, в полость ячейки накачивают чистый кислород из анализируемого газа путем подачи напряжения постоянного тока на пару электродов, выполняющую функцию кислородного насоса, посредством измерительного и эталонного электродов измеряют разность потенциалов между чистым кислородом, омывающим эталонный электрод, и по величине полученной ЭДС согласно уравнению Нернста рассчитывают количество кислорода в анализируемом газе.
Данный способ по своему аппаратурному оформлению прост и надежен. В нем используют электрохимическую ячейку с хорошо изученным кислородпроводящим твердым электролитом, к недостаткам которого можно отнести лишь то, что кислородпроводящие твердые электролиты, как правило, это оксид циркония, стабилизированный иттрием, работоспособны при температурах 700°С и выше, притом, что в настоящее время широко исследуются свойства протонпроводящих твердых электролитов, рабочая температура которых 350°С и выше.
Задача настоящего изобретения заключается с одной стороны в создании способа, позволяющего достаточно просто и надежно измерять содержание кислорода в газах, в том числе и при температурах 350°С и выше, а с другой расширить область практического применения твердых электролитов, обладающих протонным характером проводимости.
Для решения поставленной задачи предложен амперометрический способ измерения концентрации кислорода в газовых смесях, в котором, как и в прототипе, в поток анализируемой газовой смеси помещают электрохимическую ячейку с газоплотной полостью, образованной дисками из твердого электролита с электродами на противоположных поверхностях, на которые подают напряжение постоянного тока. Новый способ отличается тем, что используют электрохимическую ячейку с газоплотной полостью, образованной дисками из твердого протонпроводящего электролита с электродами на противоположных поверхностях одного из дисков, на которые подают напряжение постоянного тока в пределах 0,8-1,2В, с подачей отрицательного полюса на внутренний электрод, посредством чего осуществляют электролиз паров воды, находящихся в анализируемом газе и накачку полученного в результате электролиза водорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружный электрод - твердый электролит - внутренний электрод, при этом в процессе достижения стационарного состояния, когда диффузионный поток продуктов взаимодействия накачанного в полость ячейки водорода и находящегося в ней кислорода станет равным поступающему потоку анализируемого газа, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию водорода, потраченного на взаимодействие с кислородом, определяют концентрацию кислорода в анализируемом газе.
В качестве твердого протонпроводящего электролита используют электролит с протонной проводимостью, например: CaZr0,9In0,1O3-σ.
Используют электрохимическую ячейку с рабочей температурой от 350°С и выше.
Подача на электроды напряжения постоянного тока в пределах 0,8-1,2В с подачей отрицательного полюса на внутренний электрод ячейки, обеспечивает накачку водорода, полученного в результате разложения присутствующей в газовой смеси влаги, из анализируемого газового потока в полость ячейки. В полости ячейки накачанный водород взаимодействует с кислородом, поступившим туда в составе анализируемой газовой смеси. При этом на поверхности внутреннего электрода ячейки будет интенсивно идти процесс взаимодействия кислорода с водородом в соответствии с реакцией:
Figure 00000001
При достижении напряжения постоянного тока величины 0,8-1,2В ток стабилизируется и перестает расти с ростом напряжения. Полученный ток является предельным током, а его величина обусловлена газообменом между анализируемой средой и газом в полости ячейки. Величина предельного тока сенсора, лимитируется диффузионным барьером - капилляром сенсора и связана с концентрацией углекислого газа (Иванов-Шиц, И. Мурин., Ионика твердого тела, том 2, С. Петербург (2010) СС. 964-965) уравнением (2):
Figure 00000002
где: D(Н2) - коэффициент диффузии водорода в азоте, см2/сек;
X(H2) - мольная доля водорода в азоте;
S - площадь сечения капилляра, мм2;
Р - общее давление газовой смеси, атм.
Т - температура анализа, °С;
L - длина капилляра между дисками, (мм) В соответствии с уравнением (2) достаточно легко рассчитать содержание водорода по измеренному значению предельного тока IL(H2) и количеству кислорода, провзамодействующего с ним, в соответствии с уравнением (1).
Новый технический результат, достигаемый заявленным способом, заключается в расширении области практического применения твердых электролитов, обладающих протонным характером проводимости.
Изобретение иллюстрируется рисунками, где на фиг. 1 изображена электрохимическая ячейка для реализации способа; на фиг. 2 - вольт-амперная характеристика при анализе кислорода в смеси с азотом при 550°С; на фиг. 3 - концентрационная зависимость величины предельного тока от концентрации кислорода в смеси с азотом; на фиг. 4 динамическая характеристика электрохимической ячейки.
Электрохимическая ячейка для реализации способа измерения кислорода состоит из двух дисков 1, выполненных из протонопроводящего твердого электролита состава CaZr0,9In0,1O3-σ. На противоположных поверхностях диска 1 расположены внутренний 2 и наружный 3 электроды. Диски 1 соединены между собой газоплотным герметиком 4 с образованием в ячейке внутренней полости. Между дисками находится капилляр 5. Подача напряжения на электроды 2 и 3 осуществляется от источника напряжения постоянного тока (ИН) и контролируется вольтметром (V). Ток, возникающий в цепи ячейки, измеряется амперметром (А). Электрохимическая ячейка помещена в поток анализируемого газа, который омывает ее наружную поверхность и по капилляру 5 поступает в ее полость. Под действием напряжения постоянного тока, приложенного от источника (ИПТ) к электродам 2 и 3, причем на внутренние электроды (2) приложен минус, через твердый протонопроводящий электролит происходит накачка водорода из анализируемого газа в полость ячейки. В полости поступивший водород взаимодействует на поверхности электрода 2 с кислородом с образованием водяного пара. Образовавшиеся продукты взаимодействия, в соответствии с уравнениями (1), обмениваются через капилляр 5 с анализируемым газом. При этом капилляр 5 является диффузионным барьером, лимитирующим этот газовый поток обмена. Этому потоку обмена будет соответствовать и ток ячейки. При достижении приложенного напряжения величины в пределах 0,8-1,2В, газообмен между полостью ячейки и анализируемой средой стабилизируется и в цепи устанавливается предельный диффузионный ток - IL(O2), который измеряют с помощью амперметра (А). Посредством уравнения (2) по величине измеренного IL(O2) можно определить величину Х(Н2), и через нее концентрацию кислорода в анализируемом газе. Для реализации способа может быть использована электрохимическая ячейка с дисками, выполненных из протонпроводящего твердого электролита, имеющего иной химический состав, поскольку главное требование к твердому электролиту состоит в том, чтобы он имел протонное число переноса близкое или равное единице. Преимущество электролитов с протонной проводимостью для использования в данном способе является возможность измерять содержание кислорода в газах при температурах 350°С и выше.
Таким образом, заявленный способ позволяет расширить область практического применения твердых электролитов, обладающих протонным характером проводимости за счет возможности измерения содержания кислорода в газовой смеси посредством амперометрической ячейки с протонопроводящим твердым электролитом.

Claims (3)

1. Амперометрический способ измерения концентрации кислорода в газовых смесях, заключающийся в том, что в поток анализируемой газовой смеси помещают электрохимическую ячейку с газоплотной полостью, образованной дисками из твердого электролита с электродами на противоположных поверхностях, на которые подают напряжение постоянного тока, отличающийся тем, что используют электрохимическую ячейку с газоплотной полостью, образованной дисками из твердого протонпроводящего электролита с электродами на противоположных поверхностях одного из дисков, на которые подают напряжение постоянного тока в пределах 0,8-1,2 В, с подачей отрицательного полюса на внутренний электрод, посредством чего осуществляют электролиз паров воды, находящихся в анализируемом газе и накачку полученного в результате электролиза водорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружный электрод - твердый электролит - внутренний электрод, при этом в процессе достижения стационарного состояния, когда диффузионный поток продуктов взаимодействия накачанного в полость ячейки водорода и находящегося в ней кислорода станет равным поступающему потоку анализируемого газа, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию водорода, потраченного на взаимодействие с кислородом, определяют концентрацию кислорода в анализируемом газе.
2. Способ по п. 1, отличающийся тем, что в качестве твердого протонпроводящего электролита используют электролит с протонной проводимостью, например CaZr0,9In0,1O3-σ.
3. Способ по п. 1, отличающийся тем, что используют электрохимическую ячейку с рабочей температурой от 350°С и выше.
RU2017113554A 2017-04-20 2017-04-20 Амперометрический способ измерения концентрации кислорода в газовых смесях RU2654389C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017113554A RU2654389C1 (ru) 2017-04-20 2017-04-20 Амперометрический способ измерения концентрации кислорода в газовых смесях

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017113554A RU2654389C1 (ru) 2017-04-20 2017-04-20 Амперометрический способ измерения концентрации кислорода в газовых смесях

Publications (1)

Publication Number Publication Date
RU2654389C1 true RU2654389C1 (ru) 2018-05-17

Family

ID=62152844

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017113554A RU2654389C1 (ru) 2017-04-20 2017-04-20 Амперометрический способ измерения концентрации кислорода в газовых смесях

Country Status (1)

Country Link
RU (1) RU2654389C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189631U1 (ru) * 2019-03-18 2019-05-29 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Сенсор для измерения концентрации кислорода и водорода в инертных, защитных и окислительных газовых смесях
RU2750136C1 (ru) * 2020-12-16 2021-06-22 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ определения ионного числа переноса твердых электролитов с протонной проводимостью
RU2788154C1 (ru) * 2022-04-05 2023-01-17 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Амперометрический способ измерения концентрации водорода в воздухе

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483298C1 (ru) * 2011-11-22 2013-05-27 Учреждение Российской академии наук Институт высокотемпературной электрохимии Уральского отделения РАН Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях
US20130264223A1 (en) * 2012-04-05 2013-10-10 Sensore Electronic GmbH Method and Apparatus for Measurement of the Oxygen content or the Oxygen Partial Pressure in a Measurement Gas
RU2532139C1 (ru) * 2013-04-25 2014-10-27 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ измерения кислорода в газовых средах
RU2540450C1 (ru) * 2013-09-13 2015-02-10 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ измерения кислородосодержания и влажности газа

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483298C1 (ru) * 2011-11-22 2013-05-27 Учреждение Российской академии наук Институт высокотемпературной электрохимии Уральского отделения РАН Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях
US20130264223A1 (en) * 2012-04-05 2013-10-10 Sensore Electronic GmbH Method and Apparatus for Measurement of the Oxygen content or the Oxygen Partial Pressure in a Measurement Gas
RU2532139C1 (ru) * 2013-04-25 2014-10-27 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ измерения кислорода в газовых средах
RU2540450C1 (ru) * 2013-09-13 2015-02-10 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ измерения кислородосодержания и влажности газа

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU189631U1 (ru) * 2019-03-18 2019-05-29 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Сенсор для измерения концентрации кислорода и водорода в инертных, защитных и окислительных газовых смесях
RU2750136C1 (ru) * 2020-12-16 2021-06-22 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ определения ионного числа переноса твердых электролитов с протонной проводимостью
RU2788154C1 (ru) * 2022-04-05 2023-01-17 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Амперометрический способ измерения концентрации водорода в воздухе
RU2821167C1 (ru) * 2024-04-02 2024-06-17 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской академии наук (ИВТЭ УрО РАН) Способ определения содержания компонентов в высокотемпературных газовых средах

Similar Documents

Publication Publication Date Title
Wang et al. Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor
Kalyakin et al. Combined amperometric-potentiometric oxygen sensor
Fadeyev et al. A simple and low-cost amperometric sensor for measuring H2, CO, and CH4
WO2004068129A1 (ja) ガスセンサ
RU2654389C1 (ru) Амперометрический способ измерения концентрации кислорода в газовых смесях
US6090268A (en) CO gas sensor and CO gas concentration measuring method
Kalyakin et al. An electrochemical method for the determination of concentration and diffusion coefficient of ammonia‑nitrogen gas mixtures
Vernoux et al. In-situ electrochemical control of the catalytic activity of platinum for the propene oxidation
Kalyakin et al. Determining humidity of nitrogen and air atmospheres by means of a protonic ceramic sensor
RU2483298C1 (ru) Твердоэлектролитный датчик для амперометрического измерения концентрации водорода и кислорода в газовых смесях
Schelter et al. Highly selective solid electrolyte sensor for the analysis of gaseous mixtures
RU2483299C1 (ru) Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях
JP4175767B2 (ja) ガス分析計およびその校正方法
RU2490623C1 (ru) Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях
Wallgren et al. Oxygen sensors based on a new design concept for amperometric solid state devices
RU2683134C1 (ru) Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода
Möbius et al. Solid-state potentiometric gas sensors—a supplement
Kalyakin et al. Dual chamber YSZ-based sensor for simultaneous measurement of methane and water vapor concentrations in CH4+ H2O+ N2 gas mixtures
Guth et al. Gas sensors
RU2735628C1 (ru) Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси
RU2563325C1 (ru) Амперометрический способ измерения концентрации горючих газов в азоте
RU191013U9 (ru) Амперометрический датчик для измерения концентрации горючих газов и их влажности
RU2779253C1 (ru) Способ определения концентрации монооксида и диоксида углерода в анализируемой газовой смеси с азотом
RU2755639C1 (ru) Амперометрический способ измерения содержания монооксида углерода в инертных газах
Kalyakin et al. Solid-electrolyte amperometric sensor for measuring NO in air, nitrogen, and nitrogen-oxygen gas mixtures

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190421