RU2654294C2 - Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе - Google Patents
Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе Download PDFInfo
- Publication number
- RU2654294C2 RU2654294C2 RU2016120580A RU2016120580A RU2654294C2 RU 2654294 C2 RU2654294 C2 RU 2654294C2 RU 2016120580 A RU2016120580 A RU 2016120580A RU 2016120580 A RU2016120580 A RU 2016120580A RU 2654294 C2 RU2654294 C2 RU 2654294C2
- Authority
- RU
- Russia
- Prior art keywords
- cholinesterase
- fluorescence
- complex
- ethidium bromide
- active component
- Prior art date
Links
- 102000003914 Cholinesterases Human genes 0.000 title claims abstract description 23
- 108090000322 Cholinesterases Proteins 0.000 title claims abstract description 23
- 229940048961 cholinesterase Drugs 0.000 title claims abstract description 22
- 230000003287 optical effect Effects 0.000 title claims abstract description 16
- 230000002427 irreversible effect Effects 0.000 title claims abstract description 6
- 239000003112 inhibitor Substances 0.000 title abstract description 7
- 229960005542 ethidium bromide Drugs 0.000 claims abstract description 31
- 230000035945 sensitivity Effects 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 14
- 230000007423 decrease Effects 0.000 claims abstract description 10
- 239000013037 reversible inhibitor Substances 0.000 claims abstract description 8
- 239000013038 irreversible inhibitor Substances 0.000 claims abstract description 6
- 238000003980 solgel method Methods 0.000 claims abstract description 3
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 claims description 29
- 102100033639 Acetylcholinesterase Human genes 0.000 claims description 20
- 108010022752 Acetylcholinesterase Proteins 0.000 claims description 20
- 229940022698 acetylcholinesterase Drugs 0.000 claims description 20
- 239000003153 chemical reaction reagent Substances 0.000 claims description 7
- 108010053652 Butyrylcholinesterase Proteins 0.000 claims description 5
- 102100032404 Cholinesterase Human genes 0.000 claims description 5
- 239000000544 cholinesterase inhibitor Substances 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 229940122041 Cholinesterase inhibitor Drugs 0.000 claims 1
- 238000009774 resonance method Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 238000011109 contamination Methods 0.000 abstract 1
- JADVWWSKYZXRGX-UHFFFAOYSA-M thioflavine T Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C1=[N+](C)C2=CC=C(C)C=C2S1 JADVWWSKYZXRGX-UHFFFAOYSA-M 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 239000003570 air Substances 0.000 description 7
- 239000002917 insecticide Substances 0.000 description 6
- WYMSBXTXOHUIGT-UHFFFAOYSA-N paraoxon Chemical compound CCOP(=O)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 WYMSBXTXOHUIGT-UHFFFAOYSA-N 0.000 description 6
- 239000012190 activator Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 229960004623 paraoxon Drugs 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 4
- 239000002779 cholinesterase reactivator Substances 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000002306 biochemical method Methods 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000003743 erythrocyte Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 241000283086 Equidae Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 229940125532 enzyme inhibitor Drugs 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- GXYLXFITCXXCQV-UHFFFAOYSA-N 10-methylacridin-10-ium Chemical compound C1=CC=C2[N+](C)=C(C=CC=C3)C3=CC2=C1 GXYLXFITCXXCQV-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- -1 aromatic amino acids Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- OEBRKCOSUFCWJD-UHFFFAOYSA-N dichlorvos Chemical compound COP(=O)(OC)OC=C(Cl)Cl OEBRKCOSUFCWJD-UHFFFAOYSA-N 0.000 description 1
- 229950001327 dichlorvos Drugs 0.000 description 1
- OTMOUPHCTWPNSL-UHFFFAOYSA-N diethyl (3,5,6-trichloropyridin-2-yl) phosphate Chemical compound CCOP(=O)(OCC)OC1=NC(Cl)=C(Cl)C=C1Cl OTMOUPHCTWPNSL-UHFFFAOYSA-N 0.000 description 1
- MUCZHBLJLSDCSD-UHFFFAOYSA-N diisopropyl fluorophosphate Chemical compound CC(C)OP(F)(=O)OC(C)C MUCZHBLJLSDCSD-UHFFFAOYSA-N 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229960005051 fluostigmine Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 210000000609 ganglia Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 108010089846 propionylcholinesterase Proteins 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/44—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
- C12Q1/46—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase involving cholinesterase
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Изобретение относится к контролю загрязнений окружающей воздушной среды. Оптический биосенсор в воздухе включает: оптический детектор и активный компонент, состоящий из иммобилизованного флуоресцирующего комплекса холинэстеразы с обратимым ингибитором - флуорогеном, интенсивность флуоресценции которого снижается в присутствии необратимого ингибитора с образованием аналитического сигнала - снижения интенсивности флуоресценции активного компонента биосенсора. Активный компонент оптического биосенсора состоит из комплекса холинэстеразы с обратимым ингибитором - флуорогеном бромидом этидия, иммобилизованного золь-гель методом. Технический результат заключается в увеличении чувствительности оптического биосенсора к необратимым ингибиторам холинэстеразы, а также в повышении скорости формирования аналитического сигнала. 2 з.п. ф-лы, 6 ил., 2 табл.
Description
Настоящее изобретение относится к области техники, предназначенной для контроля загрязнений окружающей воздушной среды фосфорорганическими ингибиторами (ФОИ) холинэстеразы, в частности, фосфорорганическими инсектицидами.
За последние годы во многих продуктах питания обнаружено превышение допустимых норм содержания инсектицидов в ряде европейских стран. Согласно статистическим данным, отравления токсичными фосфорорганическими соединениями - одна из серьезных проблем здравоохранения, являющаяся причиной ежегодной смерти в мире более 200000 человек (Masson P., Rochu D. Acta Nature. 2009. №1. P. 68). Приведенные данные послужили основанием для принятия Евросоюзом решения ограничить производство инсектицидов. Кроме того, существует вероятность реальной угрозы применения фосфорорганических отравляющих веществ (ФОВ) в террористических целях.
Высокая токсичность и кумулятивное действие многих ФОИ холинэстеразы (ХЭ) обусловливают высокие требования по чувствительности, а также к скорости формирования аналитического сигнала к техническим средствам (ТС), предназначенным для мониторинга окружающей воздушной среды на их наличие ФОИ). Так, санитарные требования к содержанию фосфорорганических отравляющих веществ (ФОВ) в атмосферном воздухе населенных пунктов составляют 10-8-10-7 мг/м3.
Технические характеристики известных к настоящему времени газосигнализаторов, предназначенных для мониторинга атмосферного воздуха на содержание фосфорорганических ингибиторов (ФОИ), не в полной мере соответствуют современным требованиям по оптимальному соотношению параметров «чувствительность - время формирования аналитического сигнала», поскольку работают в циклическом режиме. Так, например, время выдачи сигнала при настройке на определение низких концентраций ФОВ с использованием ГСА-14 предусмотрено за 2 минуты 40 с.
Следовательно, создание технического средства (ТС), соответствующего современным требованиям по мониторингу содержания ФОИ в атмосферном воздухе и своевременному оповещению населения, остается актуальной задачей.
В полевых условиях целесообразно использование для определения ФОИ наиболее простых по устройству и удобных в эксплуатации аналитических ТС типа биосенсор - устройства, состоящего из активного компонента и преобразователя аналитического сигнала в регистрируемый сигнал (световой, звуковой и т.п.).
Преимущественное использование в чрезвычайных ситуациях ТС для определения ФОИ на основе биохимического метода (БХМ) связано с его более высокой чувствительностью по сравнению с ТС, основанными на физико-химических методах. Следует отметить, что все ингибиторы холинэстеразы токсичны для человека. Важно также, что БХМ учитывает возможное проявление ФОИ потенцирующего синергизма при наличии в анализируемой пробе или воздухе ксенобиотиков.
Оптические биосенсоры (ОБС), разработанные на основе флуоресцентного метода регистрации аналитического сигнала, можно отнести к числу наиболее чувствительных и быстродействующих. Современные достижения в области оптоэлектроники позволяют с высокой чувствительностью регистрировать интенсивность флуоресценции и упростить само устройство биосенсора. Наибольшей чувствительностью к ФОИ отличаются ОБС на основе ХЭ с флуоресцентной меткой. Преимущество в простоте конструкции и эксплуатации имеют ОБС с бессубстратной аналитической системой.
Заявляемое изобретение направлено на создание оптического бессубстратного биосенсора для мониторинга окружающей воздушной среды на наличие необратимых ингибиторов ХЭ, характеризующегося высокой чувствительностью и специфичностью, на основе модификации данного фермента флуоресцентной меткой.
Известен ряд биосенсоров аналогичного назначения.
Биосенсором - аналогом заявляемого изобретения является бессубстратный ОБС для мониторинга содержания ФОВ в воздухе, основанный на образовании не флуоресцирующего комплекса ацетилхолинэстеразы (АХЭ) с обратимым ингибитором - флуорофором N-метилакридином (Гайнуллина Э.Т., Еремин С.А., Рыбальченко И.В., Рыжиков С.Б., Таранченко В.Ф. Патент №2165458 РФ. Б.и., 2001, №4). При воздействии ФОИ на такой не флуоресцирующий комплекс АХЭ с флуорофором, например, диизопропилфторфосфата, интенсивность флуоресценции активного компонента увеличивается. Наблюдаемый эффект обусловлен ингибированием АХЭ, что ведет к смещению равновесия в реакционной системе в сторону диссоциации комплекса АХЭ-флуорофор, увеличению концентрации свободного обратимого ингибитора - флуорофора, и, как следствие, к увеличению интенсивности флуоресценции активного компонента. Однако обсуждаемый ОБС не отвечает современным требованиям по соотношению параметров «чувствительность - время формирования аналитического сигнала».
К биосенсорам - аналогам заявляемого изобретения следует отнести и универсальный бессубстратный ОБС, предназначенный для определения ФОИ в атмосферном воздухе (Bauer D. Patent №7449299 USA. Б.и., 2008, №7). В модификации ОБС на основе того же активного компонента предусмотрено устройство для контакта с образцом, который может содержать ФОИ.
Активный компонент данного ОБС содержит модифицированную АХЭ и включает: 1) флуорофор-донор, содержащий наночастичку со скрытой квантовой точкой, 2) АХЭ, 3) акцепторный флуорофор. Донорный и акцепторный флуорофоры связаны с АХЭ, среднее расстояние между донором и акцептором составляет ~600 нм.. Флуорофор-донор со скрытой квантовой точкой включает CdS и CdSe, а акцепторный флуорофор является производным флуоресцеина. При этом акцепторный флуорофор способен к поглощению излучения флуорофора-донора. Модифицированная по такой технологии АХЭ включена в гидрогель желатина. Технический результат данным ОБС обеспечивается мониторингом изменения структуры активного центра фермента при воздействии ФОИ путем регистрации безызлучательного резонансного переноса энергии флуоресценции донора к акцептору. Однако изменения в структуре активного центра фермента при воздействии ФОИ незначительные, что не позволяет достигнуть высокой чувствительности. Расстояние между донором и акцептором в модифицированной АХЭ активного компонента данного ОБС составляет ~200-1000 нм, что значительно больше радиуса Ферстера (200-500 нм). Предложенная модификация АХЭ не способствует достижению высокой чувствительности. Кроме того, технология изготовления активного ОБС весьма сложна.
Наиболее близким аналогом (прототипом) является ОБС на основе комплекса АХЭ с обратимым ингибитором - флуорогеном тиофлавином T (ТФ). (Антохин A.M., Андреев О.И., Гайнуллина Э.Т. Патент №2386120 РФ. Б.и., 2010, №4). ТФ одновременно является активатором фосфорилирования активного центра холинэстеразы (активатором) (Radio Z, Taylor P. Chemico-biological interac. 1999. №119-120. P. 111).
Выбор ТФ для разработки данного ОБС определялся высокой интенсивностью флуоресценции его комплекса с АХЭ эритроцитов человека, в сотни раз превосходящей интенсивность флуоресценции исходного ТФ на длине волны λ~490 нм при возбуждении излучением с λ=448 нм (Антохин A.M., Гайнуллина Э.Т., Рыжиков С.Б., Таранченко В.Ф., Яваева Д.К. Бюл. эксперим. биол. и мед. 2009. Т. 147. С. 119).
Структурная формула ТФ представлена на фиг. 1.
Технический результат данным ОБС основан на смещении равновесия в аналитической системе при воздействии необратимого ингибитора In на ацетилхолинэстеразу E в сторону образования фермент-ингибиторного комплекса EIn, что, в свою очередь, приводит к диссоциации флуоресцирующего комплекса EIf и снижению интенсивности флуоресценции активного компонента ОБС, как это представлено на фиг. 2, где: Е - АХЭ, If - флуороген-активатор, In - необратимый ингибитор.
Интенсивность флуоресценции ОБС - прототипа при воздействии инсектицидов (~50 нМ) диэтил(3,5,6-трихлорпиридин-2-ил)фосфата или дихлофоса снижается на 50% относительно исходной интенсивности флуоресценции ОБС. ОБС характеризуется высокой скоростью формирования аналитического сигнала за 10-15 с.
Конструкция оптической части ОБС представлена на фиг. 3 в виде блок-схемы, на которой: 1 - лазерный источник света, 2 - модулятор, 3 - активный компонент, 4 - фильтр, 5 - линза, 6 - фотоприемник, 7 - синхронный усилитель, 8 - регистрирующее устройство.
Наличие в оптической части ОБС лазерного источника света для возбуждения активного компонента, модулятора и синхронного усилителя позволяет увеличить чувствительность ОБС в целом.
Приведенные данные позволяют прогнозировать высокую чувствительность ОБС к ФОИ на основе обратимого ингибитора флуорогена - активатора, образующего с ХЭ флуоресцирующий комплекс с высоким квантовым выходом, а также высокую скорость формирования аналитического сигнала, учитывая огромную скорость образования комплекса фермента с необратимым ингибитором.
Недостатком данного ОБС является невысокая стабильность его работы при наличии в окружающей воздушной среде различных примесей, что обусловлено вхождением в состав аналитического реагента комплекса АХЭ с флуорогеном ТФ. ТФ относится к группе индикаторов типа "молекулярный ротор", на компланарность его структуры, а, следовательно, на интенсивность его флуоресценции влияет целый ряд факторов (температура, наличие в окружающем воздухе кислых и основных паров и других примесей). ТФ образует флуоресцирующие комплексы только с АХЭ.
Важно отметить: полоса флуоресценции ТФ и его комплекса с АХЭ совпадают (λ=490 нм), что снижает специфичность анализа.
Предлагаемое решение авторами заявляемого изобретения направлено на увеличение специфичности и чувствительности ОБС - прототипа к необратимым ингибиторам ХЭ, а также стабильности работы во времени. Технический результат достигается путем использования авторами в качестве аналитического реагента активного компонента ОБС комплекса бутирилхолинэстеразы (БХЭ) с обратимым ингибитором-флурогеном 3,8-диамино-5-этил-6-фенилфенантридиум бромидом (бромидом этидия), являющимся одновременно активатором фосфорилирования холинэстеразы. Формула бромида этидия представлена на фиг. 4.
Бромид этидия имеет ряд преимуществ, по сравнению с известными флуорогенами, образующими флуоресцирующие комплексы с ХЭ:
1) его полоса флуоресценции находится в красной области спектра (λмакс ~610 нм при возбуждении излучением с λ=470 нм), удаленной от полос флуоресценции триптофана и других ароматических аминокислот, что вносит вклад в повышение специфичности анализа;
2) образует интенсивно флуоресцирующие комплексы не только с АХЭ эритроцитов человека, но и с АХЭ эритроцитов быка, БХЭ человека и лошади, а также с пропионилхолинэстеразой зрительных ганглиев кальмара;
3) в составе комплекса с холинэстеразой флуоресцирует в условиях (pH, температура), оптимальных для ее ингибирования фосфорорганическими ингибиторами;
4) отсутствует концентрационное тушение флуоресценции бромида этидия и его комплексов с холинэстеразой в исследованном интервале концентраций реагентов;
5) образует с холинэстеразами комплексы, спектры поглощения (фиг. 5) и флуоресценции (фиг. 6) которых отличаются от соответствующих спектров самого бромида этидия, что обеспечивает прямой метод определения фосфорорганических ингибиторов ХЭ, в том числе ФОВ и существенно повышает специфичность анализа.
На фиг. 5 представлены спектры поглощения бромида этидия и его комплекса с БХЭ лошади: 9 - бромида этидия (7.5 мкМ), 10 - комплекса бромид этидия с БХЭ лошади (0.50 Е/мл).
Важной особенностью бромида этидия является образование с холинэстеразами комплексов, полосы флуоресценции которых отличаются от соответствующих полос самого бромида этидия (фиг. 6), что открывает перспективу использования для регистрации аналитического сигнала метода резонансного переноса энергии флуоресценции - одного из самых чувствительных методов измерения интенсивности флуоресценции (Higgins В. Chemical and biological sensor controls. The world of electronics, 2005. P. 1.
На фиг. 6 представлены спектры флуоресценции при возбуждении λ=470 нм: 11 - бромида этидия (0.6 мкмоль/л), 12 и 10 - комплексов бромида этидия с БХЭ лошади (0.36 Е/мл и 0,50 Е/мл, соответственно)
Зависимость интенсивности флуоресценции от активности БХЭ при возбуждении длиной волны , соответствующей длине волны поглощения бромида этидия, носит сложный характер. В определенном интервале относительно низкой активности фермента (фиг. 6) имеет место повышение интенсивности флуоресценции на длине волны ~610 нм, что обусловлено резонансным переносом энергии флуоресценции комплекса бромида этидия с БХЭ с длины волны 550 нм, на длину волны ~610 нм, соответствующую полосе флуоресценции бромида этидия. При этом зависимость интенсивность флуоресценции на длине волны ~610 нм по мере увеличения активности БХЭ в интервале 0,20 Е/мл - 0,45 Е/мл при исследованном соотношении реагентов носит линейный характер. После добавления фермента к раствору бромида этидия увеличение интенсивности флуоресценции на длине волны ~610 нм регистрируется в пределах 10 с, при этом зарегистрированная интенсивность флуоресценции остается стабильной более 30 мин. В присутствии ФОИ, в частности фосфорорганического инсектицида параоксона, интенсивность флуоресценции на длине волны 610 нм снижается в пределах 10-15 с.
Дальнейшее повышение активности БХЭ ведет к появлению новой полосы флуоресценции на длине волны ~550 нм, соответствующей полосе флуоресценции комплекса бромида этидия с БХЭ, и постепенному снижению интенсивности флуоресценции на длине волны ~610 нм. Наблюдаемый эффект обусловлен уменьшением концентрации свободного бромида этидия по мере связывания в комплекс с БХЭ, что ведет к снижению интенсивности флуоресценции на длине волны ~610 нм и появлению новой полосы флуоресценции на длине волны 550 нм.
Зависимость интенсивности флуоресценции комплекса бромида этидия с БХЭ при λ ~550 нм по мере увеличения активности фермента (x) в исследованном интервале активности фермента (0.5-2,0. Е/мл) имеет линейный характер:
При воздействии фосфорорганического инсектицида параоксона интенсивность флуоресценции Iфл системы бромид этидия - БХЭ на длине волны 550 нм снижается в течение 10-15 с. Зависимость интенсивности флуоресценции системы бромид этидия - БХЭ от концентрации параоксона (x) в исследованном интервале концентраций носит линейный характер и может быть представлена в виде:
На основе приведенных выше данных авторами заявляемого изобретения разработан флуоресцентный ОБС для мониторинга окружающего воздуха на содержание необратимых ингибиторов ХЭ, характеризующийся высокой чувствительностью и быстродействием. Активный компонент ОБС представляет собой комплекс бромида этидия с БХЭ лошади, иммобилизованный золь-гель методом, размещенный на нейтральной полимерной пленке.
Технический результат предлагаемым ОБС достигается аналогично техническому результату ОБС - прототипа и также может быть представлен схемой на фиг. 2.
Исследования показали, что данный активный компонент в присутствии параоксона дает устойчивый сигнал за 10-15 с. В предлагаемым ОБС реализован прямой метод определения ФОИ, в том числе ФОВ, что существенно повышает специфичность определения.
Скорость формирования аналитического сигнала (в виде тушения флуоресценции) прямо пропорциональна концентрации необратимого ингибитора In, значению константы скорости образования фермент-ингибиторного комплекса EIn, концентрации комплекса EIf и значению его константы диссоциации.
Конструкция оптической части предлагаемого ОБС идентична конструкции оптической части ОБС - прототипа, представленной на фиг. 3 виде блок-схемы.
Пример 1. Изготовление активного компонента
Реагенты. Тетраэтоксисилан (TEOS) и бромид этидия фирмы Sigma. Бутирилхолинэстераза - фирмы «Биомед» (Россия).
Иммобилизация. Раствор геля был приготовлен перемешиванием 4,5 мл TEOS, 1,4 мл бидистиллята и 0,10 мл 0,1 М НС1 в стеклянном сосуде 5 часов до прозрачного состояния и оставлен на ночь при комнатной температуре.
Для получения активного компонента 3 мкл полученного прозрачного раствора геля и 10 мкл фосфатного буфера (pH 8) тщательно перемешивают (раствор №1). Затем 30 мкл раствора фермента в буфере (100 Е/мл) смешивают с 3 мкл раствора бромида этидия (0,02 мг/мл). Полученный таким образом раствор комплекса бромида этидия с бутирилхолинэстеразой добавляют к 3 мкл раствора №1 при очень интенсивном перемешивании. Смесь заливают в формочку диаметром 10 мм и толщиной 1 мм и оставляют на 5 дней в холодильнике при 4°C.
Пример 2. Результаты определения параоксона активным компонентом биосенсора прототипа и предлагаемого биосенсора на длине волны 610 нм.
Из представленных в таблице данных следует, что чувствительность к параоксону предложенного оптического биосенсора существенно выше, чем прототипа.
Таким образом, использование в качестве активного компонента биосенсора активного компонента, состоящего из иммобилизованного флуоресцирующего комплекса бутирилхолинэстеразы с обратимым ингибитором - флуорогеном бромидом этидия позволяет сконструировать ОБС, более специфичный и чувствительный к необратимым ингибиторам холинэстеразы, по равнению с ОБС прототипом.
Авторы полагают, что успешное использование достижений в области нанотехнологий при создании уникальных конструкционных материалов, полупроводников, датчиков обнаружения химических веществ, компьютеров, производительность которых на несколько порядков выше, чем у существующих, открывает перспективу модификации предлагаемого авторами биосенсора для индивидуального назначения (Антипов В.Б., Завьялова Н.В., Ефременко Е.Н., Ковтун В.А., Носичков СП., Антипов А.Б., Завьялов В.В. Доклады академии военных наук. 2016. №4 (68). С 82-89).
В таблице 2 сопоставлены существенные отличительные признаки ОБС прототипа и предлагаемого ОБС.
Литература
1. Антохин A.M., Гайнуллина Э.Т., Рыжиков С.Б., Таранченко В.Ф., Яваева Д.К. Бюл. эксперим. биол. и мед. 2009. Т. 147. С. 119.
2. Гайнуллина Э.Т., Еремин С.А., Рыбальченко И.В., Рыжиков С.Б., Таранченко В.Ф. Патент №2165458 РФ. Б.и., 2001, №4.
3. Антипов В.Б., Завьялова Н.В., Ефременко Е.Н., Ковтун В.А., Носичков С.П., Антипов А.Б., Завьялов В.В. Доклады академии военных наук. 2016. №4 (68). С 82-89.
4. Bauer D. Patent №7449299 USA. Б.и., 2008, №7.
5. Higgins В. Chemical and biological sensor controls. The world of electronics, 2005. P. 1.
6. Masson P., Rochu D. Acta Nature. 2009. №1. P. 68.
7. Radio Z, Taylor P. // Chemico-biological interac. 1999. №119-120. P. 111.
Claims (3)
1. Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе, включающий оптический детектор и активный компонент, состоящий из иммобилизованного флуоресцирующего комплекса холинэстеразы с обратимым ингибитором - флуорогеном, интенсивность флуоресценции которого снижается в присутствии необратимого ингибитора с образованием аналитического сигнала - снижения интенсивности флуоресценции активного компонента биосенсора, отличающийся тем, что активный компонент состоит из комплекса холинэстеразы с обратимым ингибитором - флуорогеном бромидом этидия, иммобилизованного золь-гель методом.
2. Оптический биосенсор по п. 1, отличающийся тем, что в качестве аналитического реагента активного компонента могут быть использованы флуоресцирующие комплексы бромида этидия и с бутирилхолинэстеразой, и с ацетилхолинэстеразой.
3. Оптический биосенсор по пп. 1 и 2, отличающийся тем, что использование в качестве аналитического реагента комплекса бромида этидия с холинэстеразой, полоса флуоресценции которого отличается от полосы флуоресценции самого бромида этидия, позволяет повысить и специфичность, и чувствительность определения необратимого ингибитора холинэстеразы благодаря использованию для регистрации аналитического сигнала биосенсора метода резонансного переноса энергии флуоресценции.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016120580A RU2654294C2 (ru) | 2016-05-26 | 2016-05-26 | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016120580A RU2654294C2 (ru) | 2016-05-26 | 2016-05-26 | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016120580A RU2016120580A (ru) | 2017-11-30 |
RU2654294C2 true RU2654294C2 (ru) | 2018-05-17 |
Family
ID=60580814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016120580A RU2654294C2 (ru) | 2016-05-26 | 2016-05-26 | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2654294C2 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2198394C2 (ru) * | 2000-12-18 | 2003-02-10 | Военный университет радиационной, химической и биологической защиты | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе |
RU2386120C2 (ru) * | 2007-07-31 | 2010-04-10 | Андрей Михайлович Антохин | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе |
US20120160708A1 (en) * | 2007-05-16 | 2012-06-28 | The Regents Of The University Of Michigan | Nanostructured Biosensor Containing Neuropathy Target Esterase Activity |
-
2016
- 2016-05-26 RU RU2016120580A patent/RU2654294C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2198394C2 (ru) * | 2000-12-18 | 2003-02-10 | Военный университет радиационной, химической и биологической защиты | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе |
US20120160708A1 (en) * | 2007-05-16 | 2012-06-28 | The Regents Of The University Of Michigan | Nanostructured Biosensor Containing Neuropathy Target Esterase Activity |
RU2386120C2 (ru) * | 2007-07-31 | 2010-04-10 | Андрей Михайлович Антохин | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе |
Non-Patent Citations (3)
Title |
---|
SCHASFOORT R. B. M., et all., "DETECTION OF INHIBITORY COMPOUNDS OF ACETYLCHOLINE ESTERASE WITH A NOVEL ION RESPONDING IMPEDANCE SENSOR (IRIS)", SENSORS AND ACTUATORS B: CHEMICAL,Том 18, N 1-3, стр. 175-177, 1994 г. * |
SCHASFOORT R. B. M., et all., "DETECTION OF INHIBITORY COMPOUNDS OF ACETYLCHOLINE ESTERASE WITH A NOVEL ION RESPONDING IMPEDANCE SENSOR (IRIS)", SENSORS AND ACTUATORS B: CHEMICAL,Том 18, N 1-3, стр. 175-177, 1994 г. АНТОХИН А. М. И ДР. "НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ТЕХНИЧЕСКИХ СРЕДСТВ МОНИТОРИНГА ВОЗДУХА НА СОДЕРЖАНИЕ ФОСФОРОРГАНИЧЕСКИХ ОТРАВЛЯЮЩИХ ВЕЩЕСТВ", РОССИЙСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ. ТОМ 51, N2, стр. 136-140, 2007 г. * |
АНТОХИН А. М. И ДР. "НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ ТЕХНИЧЕСКИХ СРЕДСТВ МОНИТОРИНГА ВОЗДУХА НА СОДЕРЖАНИЕ ФОСФОРОРГАНИЧЕСКИХ ОТРАВЛЯЮЩИХ ВЕЩЕСТВ", РОССИЙСКИЙ ХИМИЧЕСКИЙ ЖУРНАЛ. ТОМ 51, N2, стр. 136-140, 2007 г. * |
Also Published As
Publication number | Publication date |
---|---|
RU2016120580A (ru) | 2017-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pathak et al. | Detection of reactive oxygen species (ROS) in cyanobacteria using the oxidant-sensing probe 2’, 7’-dichlorodihydrofluorescein diacetate (DCFH-DA) | |
Viveros et al. | A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents | |
Yordanova et al. | Involvement of ethylene and nitric oxide in cell death in mastoparan‐treated unicellular alga Chlamydomonas reinhardtii | |
DeSa et al. | The characterization of scintillons: Bioluminescent particles from the marine dinoflagellate, Gonyaulax polyedra | |
Li et al. | Biocatalytic CsPbX3 Perovskite Nanocrystals: A Self‐Reporting Nanoprobe for Metabolism Analysis | |
Földes-Papp et al. | Ultrasensitive detection and identification of fluorescent molecules by FCS: impact for immunobiology | |
Esposito et al. | Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase | |
Jiao et al. | 3D-printed, portable, fluorescent-sensing platform for smartphone-capable detection of organophosphorus residue using reaction-based aggregation induced emission luminogens | |
Zhang et al. | Sensitive detection of ozone by a practical resorufin-based spectroscopic probe with extremely low background signal | |
Carullo et al. | Direct detection of organophosphate compounds in water by a fluorescence-based biosensing device | |
US10458916B2 (en) | Rapid tests for the detection of inhibitors of enzymes and human exposure to the same | |
Starodub et al. | Optical immune sensors for the monitoring protein substances in the air | |
RU2654294C2 (ru) | Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе | |
Lakowicz et al. | Low-frequency modulation sensors using nanosecond fluorophores | |
US20050089926A1 (en) | Ligand sensing fluorescent acetylcholinesterase for detection of organophosphate activity | |
Schouest et al. | Toxicological assessment of chemicals using Caenorhabditis elegans and optical oxygen respirometry | |
US20020142472A1 (en) | Tissue-based standoff biosensors for detecting chemical warfare agents | |
Aloraij et al. | Development of Rapid Aptamer-Based Screening Assay for the Detection of Covid-19 Variants | |
Dean et al. | Rates of electron transport in the thylakoid membranes of isolated, illuminated chloroplasts are enhanced in the presence of ammonium chloride | |
Voznesenskiy et al. | Biosensors based on micro-algae for ecological monitoring of the aquatic environment | |
Quickenden et al. | Ice triboluminescence | |
Kuznetsov et al. | Microfluorimeter for studying the state of photosynthetic apparatus of individual cells of microalgae | |
Sengupta et al. | Detection of Bacillus anthracis Spores Using Peptide Functionalized SERS‐Active Substrates | |
Tsai et al. | Optimization of sol-gel based fibre-optic cholinesterase biosensor for the determination of organophosphorus pesticides | |
Matveeva et al. | Ratiometric Zinc Biosensor Based on Bioluminescence Resonance Energy Transfer: Trace Metal Ion Determination with Tunable Response |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190527 |