RU2653091C1 - Многоканальное устройство измерения влажности сыпучих материалов - Google Patents

Многоканальное устройство измерения влажности сыпучих материалов Download PDF

Info

Publication number
RU2653091C1
RU2653091C1 RU2016152104A RU2016152104A RU2653091C1 RU 2653091 C1 RU2653091 C1 RU 2653091C1 RU 2016152104 A RU2016152104 A RU 2016152104A RU 2016152104 A RU2016152104 A RU 2016152104A RU 2653091 C1 RU2653091 C1 RU 2653091C1
Authority
RU
Russia
Prior art keywords
input
output
comparator
moisture
channel number
Prior art date
Application number
RU2016152104A
Other languages
English (en)
Inventor
Георгий Афанасьевич Бибик
Original Assignee
Георгий Афанасьевич Бибик
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Георгий Афанасьевич Бибик filed Critical Георгий Афанасьевич Бибик
Priority to RU2016152104A priority Critical patent/RU2653091C1/ru
Application granted granted Critical
Publication of RU2653091C1 publication Critical patent/RU2653091C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Устройство относится к измерительной технике, в частности к техническим средствам измерения влажности зерна во время сушки и хранения. Сущность заявленного устройства заключается в том, что многоканальное устройство измерения влажности сыпучих материалов содержит источник питания, компаратор, RS триггер, ключ, датчики, конденсатор образцовый, тактовый генератор, мультиплексор, счетчик номеров каналов, индикатор номера канала, генератор контрольной частоты, элементы «И» первый и второй, счетчик влажности, калибратор, индикатор влажности, при этом от источника питания опорное напряжение поступает на прямой вход компаратора, а рабочее напряжение поступает на вход ключа, управляющий вход которого соединен с инверсным выходом RS триггера и вторым входом второго элемента «И», а выход через образцовый конденсатор с общей шиной; входы датчиков соединены с инверсным входом компаратора и выходом ключа, а выходы через мультиплексор с общей шиной; вход R триггера соединен с выходом компаратора, а вход S - с выходом тактового генератора, вторым входом счетчика влажности и входом счетчика номеров каналов, выход которого соединен с управляющим входом мультиплексора и входом индикатора номера канала; прямой выход триггера соединен с вторым входом первого элемента «И», первый вход которого соединен с выходом генератора контрольной частоты, а выход с первым входом счетчика влажности, выход которого соединен с первым входом второго элемента «И», выход которого через калибратор соединен с входом индикатора влажности. Технический результат, наблюдаемый при реализации заявленного устройства, заключается в повышении точности измерений, упрощении устройства и его эксплуатации, сокращении времени измерений, расширении функциональных возможностей устройства. 1 ил.

Description

Устройство относится к измерительной технике, в частности к техническим средствам измерения влажности зерна во время сушки и хранения.
Известно много способов измерения влажности, начиная с классического - измерение веса до и после сушки. Для реализации способов разработаны устройства, каждое из которых не удовлетворяет одному или нескольким основным условиям:
- быстродействие;
- точность;
- простота в изготовлении и эксплуатации;
- надежность;
- низкая стоимость;
- возможность автоматизации измерений.
Наибольшее распространение нашли электрические методы измерений.
1. Известен способ (А.с. №630571 кл. G01N 25/56. Опубликовано 30.10.78. Бюл. №40), по которому в барабанной сушилке влажность определяется по разности температур зерна и пыли, собирающейся в циклоне во время сушки.
Недостатки способа:
а) Точность измерения низкая - нет устойчивой связи между температурой пыли и влажностью зерна. Она зависит от температуры и влажности окружающего воздуха, изменений температуры агента сушки, которая, в свою очередь, зависит от вида и качества топлива.
б) От сравнения температур до индикации необходимо выполнить еще калибровку сигналов, а для автоматизации измерений нужно преобразовать результат в цифровой вид.
2. Известен способ (А.с. №693204 кл. G01N 25/56. Опубликовано 25.10.79. Бюл. №39), по которому используется зависимость энергии шума движущегося материала от влажности. Измеряется энергия шума во всей полосе частот и в части ее, составляющей 0,01-0,1 полосы.
Недостатки способа:
а) Нет устойчивого распределения шума по частоте, поэтому диапазон измерения неопределен. Кроме того, результат зависит от температуры и влажности окружающего воздуха, плотности и равномерности потока зерна.
б) Устройство сложное - многоканальный приемник, самописец, фильтры, которые требуют настройки и контроля.
в) Требуется калибровка (масштабирование) результата и преобразование его в цифровой код.
3) Известен способ (А.с. №1260802 кл. G01N 25/56. Опубликовано 30.09.86. Бюл. №36), в котором влажность определяется по времени перехода частиц материала, находящегося в конденсаторе, от одной поляризации к другой.
Недостатки способа:
а) Точность низкая, т.к. измеряется время нестационарного переходного процесса. Процесс нестационарный, т.к. зависит от гранулометрического состава частиц, их случайного взаиморасположения, которое меняется в процессе. Время установления любого переходного процесса, как правило, велико, поэтому конец процесса определяют по достижению определенного уровня, а этот уровень при нестационарном процессе плавает. В результате точность градуировочной кривой низкая.
б) Требуется большое время для получения результата.
в) Процесс измерения трудно автоматизировать, т.к. не обеспечивается получение результата в цифровой форме.
Наиболее близким к предлагаемому устройству (прототип) является устройство измерения влажности сыпучих материалов, содержащее емкостной преобразователь, блок управления исполнительными механизмами и устройство ввода, отличающееся тем, что емкостной преобразователь подключен к датчику влажности, имеющему исполнительные механизмы загрузки-разгрузки и регулировки площади поверхности измерительных электродов этого датчика, блок управления исполнительными механизмами автоматически осуществляет подстройку датчика влажности при помощи исполнительных механизмов для достижения максимальной точности измерения влажности, а устройство ввода задает все значения, вводимые в блок управления исполнительными механизмами и режимы его работы (Патент РФ №2394232. Опубл. 10.07.2010).
Основные недостатки устройства:
1. Необходимость коррекции датчика определяется его конструкцией, а не примесями. Перед сушкой всегда идет очистка зернового вороха и примесей остается в нем 1…3%. Поэтому примеси повлиять на точность измерения влажности не могут. Причина в том, что используется камерный влагомер. Результаты измерения камерными влагомерами зависят от гранулометрического состава образца. Для уменьшения этой зависимости предложено много способов (точно выверенный объем образца, его вес, давление и т.д.), но ни один из них не решил проблему. Проблема не решена и в прототипе. Во всех камерных влагомерах образец изымается из своей среды, поэтому его характеристики отличаются от тех, которые были у него в среде, а в данном случае он должен еще попасть в лабораторию, т.е. добавляются транспортные и тепловые ошибки. Следовательно, как без подстройки датчика, так и с подстройкой, точность устройства низкая.
2. Подстройка частоты генератора выполняется механическим путем, поэтому люфт, истирание поверхностей увеличивают ошибки и уменьшают срок службы измерителя.
3. Кроме датчика, ошибки в измерение вносит преобразователь емкости в частоту. В качестве преобразователя авторами выбран мультивибратор на логическом элементе (ЛЭ). «Подобные мультивибраторы имеют невысокую временную и температурную стабильность частоты колебаний. Так для ЛЭ семейства155 нестабильность частоты может достигнуть 5…10% при изменении напряжения питания на 5%. Колебания температуры от 5 до 60°C меняет частоту на 10…20%» (Гусев В.Г. Электроника и микропроцессорная техника: Учеб. для вузов [Текст] / В.Г. Гусев, Ю.М. Гусев - 4-е изд., доп. - М.: Высш. шк., 2006. - 799 с.: ил. (стр. 649)).
4. Результат измерений не калибруется, то есть не приводится к стандартным единицам.
5. Устройство не может одновременно измерять влажность нескольких объектов.
6. Устройство сложное и громоздкое.
Цель изобретения - повышение точности измерений, упрощение устройства и его эксплуатацию, сокращение времени измерений, расширение функциональных возможностей устройства.
Цель достигается тем, что многоканальное устройство измерения влажности сыпучих материалов содержит источник питания, компаратор, RS триггер, ключ, датчики, конденсатор образцовый, тактовый генератор, мультиплексор, счетчик номеров каналов, индикатор номера канала, генератор контрольной частоты, элементы «И» первый и второй, счетчик влажности, калибратор, индикатор влажности, при этом от источника питания опорное напряжение поступает на прямой вход компаратора, а рабочее напряжение поступает на вход ключа, управляющий вход которого соединен с инверсным выходом RS триггера и вторым входом второго элемента «И», а выход через образцовый конденсатор с общей шиной; входы датчиков соединены с инверсным входом компаратора и выходом ключа, а выходы через мультиплексор с общей шиной; вход R триггера соединен с выходом компаратора, а вход S с выходом тактового генератора, вторым входом счетчика влажности и входом счетчика номеров каналов, выход которого соединен с управляющим входом мультиплексора и входом индикатора номера канала; прямой выход триггера соединен с вторым входом первого элемента «И», первый вход которого соединен с выходом генератора контрольной частоты, а выход с первым входом счетчика влажности, выход которого соединен с первым входом второго элемента «И», выход которого через калибратор соединен с входом индикатора влажности.
Новые существенные признаки:
1. Устройство многоканальное с периодическим автоматическим опросом каналов и индикацией результатов измерений;
2. Введен генератор контрольной частоты, период которой много меньше периода тактовой частоты. Это позволяет определять доли принятой единицы влажности, что повышает точность измерений;
3. Устройство содержит датчики в виде конденсаторов с потерями, между электродами которых находится неисследуемый образец (с неизвестными свойствами), влажность которого определяется, а поглотитель с известными свойствами, с известной зависимостью его свойств от влажности среды, в которой он находится. Нет ни механической настройки, ни подстройки. Известно, что при разработке электронных схем переменными резисторами и конденсаторами пользуются только на этапе разработки, а в разработанном рабочем изделии переменные элементы заменяют постоянными. Причина - «плывут» параметры этих элементов. В большей степени это относится к механическим подстройкам;
4. Датчики устройства свободны от ограничений, налагаемых схемой обработки сигналов (внешней по отношению к датчикам), так как для измерения используется только разряд, протекающий внутри датчиков, при отключенном от датчиков источнике питания;
5. При наличии генератора контрольной частоты возникает возможность увеличения времени индикации данного сигнала, т.е. нет необходимости время такта ограничивать периодом наинизшей частоты генератора с датчиком;
6. Установка устройства на измерение влажности одной культуры производится один раз при градуировке устройства на данную культуру и может сохраняться не один сезон. Нет необходимости в подстройках ни электрических, ни механических;
7. Результат прокалиброван в принятых единицах влажности.
Перечисленные новые существенные признаки в совокупности с известными обеспечивают быстрое получение высокоточного результата измерений влажности сыпучих материалов нескольких объектов.
На Фиг. 1 изображена структурная схема устройства.
Устройство, представленное на Фиг. 1, содержит источник 1 питания, компаратор 2, RS триггер 3, ключ 4, датчики 5, конденсатор 6 образцовый, тактовый генератор 7, мультиплексор 8, счетчик 9 номеров каналов, индикатор 10 номера канала, генератор 11 контрольной частоты, элемент 12 «И» первый, счетчик 13 влажности, элемент 14 «И» второй, калибратор 15, индикатор 16 влажности, при этом от источника 1 питания опорное напряжение UОП поступает на прямой вход компаратора 2, а рабочее напряжение U0 поступает на вход ключа 4, управляющий вход которого соединен с инверсным выходом RS триггера 3 и вторым входом второго элемента «И» 14, а выход через образцовый конденсатор 6 - с общей шиной; входы датчиков 5 соединены с инверсным входом компаратора 2 и выходом ключа 4, а выходы через мультиплексор 8 - с общей шиной; вход R триггера 3 соединен с выходом компаратора 2, а вход S с выходом тактового генератора 7, вторым входом счетчика 13 влажности и входом счетчика 9 номеров каналов, выход которого соединен с управляющим входом мультиплексора 8 и входом индикатора номера канала 10; прямой выход триггера 3 соединен со вторым входом первого элемента «И» 12, первый вход которого соединен с выходом генератора 11 контрольной частоты, а выход - с первым входом счетчика 13 влажности, выход которого соединен с первым входом второго элемента «И» 14, выход которого через калибратор 15 соединен с входом индикатора 16 влажности.
Устройство работает следующим образом.
Очередность подключения датчиков 5 определяет счетчик 9 через мультиплексор 8. Для этого счетчик 9 циклически считает импульсы тактового генератора 7 и полученный на выходе счетчика 9 код заставляет мультиплексор 8 подключить соответствующий коду датчик к общей шине. Каждый датчик 5 соответствует своему каналу измерения и в каждом такте работает только один датчик. Модуль счета счетчика 9 равен числу каналов. Код канала с выхода счетчика 9 подается на индикатор 10 номера канала. В качестве датчика 5 влажности взят конденсатор с потерями, т.е. между электродами помещается поглотитель влаги, поэтому и емкость, и сопротивление такого конденсатора зависят от влажности окружающей датчик среды. Нами в качестве поглотителя взят гипс.
В исходном состоянии и в паузах между тактовыми импульсами триггер 3 находится в нулевом (закрытом) состоянии (S=0, R=0, UВЫХ=0) и будет в нем находиться до прихода следующего тактового импульса. Покажем это:
1. Триггер 3 открыт (находится в единичном состоянии) UВЫХ=1. Сигнал с инверсного выхода триггера
Figure 00000001
откроет ключ 4, и напряжение U0 источника 1, поступавшее при закрытом ключе 4 на конденсатор 6, не будет поступать, и конденсатор 6 начнет разряжаться через датчик 5. Когда напряжение на конденсаторе 6 (UC) станет меньше опорного (UC<UОП), то компаратор 2 выдаст единичный сигнал на вход R триггера 3. При входных сигналах (S=0, R=1) триггер 3 перейдет в закрытое (нулевое) состояние UВЫХ=0.
2. Триггер 3 закрыт UВЫХ=0, сигнал
Figure 00000002
закроет ключ 4, и он будет пропускать напряжение U0 источника 1 на конденсатор 6. Когда станет UС>UОП, компаратор 2 выдаст нулевой сигнал на вход R триггера 3. При входных сигналах (S=0, R=0) триггер 3 будет хранить нулевой сигнал на выходе UВЫХ=0.
Приход тактового (запускающего) импульса с тактового генератора 7 открывает триггер 3, UВЫХ=1, так как S=1, R=0. Сигнал
Figure 00000003
с инверсного выхода триггера 3 открывает ключ 4. Напряжение U0 источника 1 перестает поступать на конденсатор 6, и конденсатор 6 начинает разряжаться через датчик 5. Когда напряжение на нем (UС) станет меньше опорного (UС<UОП), то компаратор 2 выдаст единичный сигнал на вход R триггера 3. При входных сигналах (S=0, R=1) триггер 3 перейдет в закрытое (нулевое) состояние UВЫХ=0. Этот процесс смены состояний триггера 3 будет происходить после каждого тактового (запускающего) импульса.
По каждому тактовому импульсу генератора 7 триггер 3 выдает импульс, длительность которого пропорциональна сопротивлению датчика 5. Это длительность единичного состояния триггера 3 и равна длительности разряда емкости С0 конденсатора 6 от U0 до UОП, т.е.
Figure 00000004
где RХ и СX - сопротивление и емкость датчика 5.
На практике всегда можно подобрать емкость С0 много больше емкости СX, т.е. С0>>CX. В этом случае время разряда линейно зависит от сопротивления датчика
Figure 00000005
Особенность работы устройства - конденсатор 6 разряжается не через внешние цепи, как принято, а через датчик 5, поскольку датчик 5 - конденсатор с потерями и его электрическая схема - параллельное соединение сопротивления RX и емкости CX.
Длительность импульса, полученного на выходе триггера 3, измеряется периодом контрольной частоты, поэтому импульсы с выхода триггера 3 и с генератора 11 подаются на первый элемент «И» 12. Прошедшие элемент 12 импульсы считает счетчик 13. Для правильного счета счетчик 13 обнуляется тактовым импульсом, поступающим от тактового генератора 7. Полученный на выходе счетчика 13 цифровой код соответствует измеряемой влажности, но его необходимо прокалибровать в общепринятых единицах влажности. Чтобы счетчик 13, во время счета, не создавал помехи последующей схеме, код счетчика 13 передается на калибратор 15, когда счет в данном такте закончен, а именно по нулевому сигналу триггера 3. Калибратор 15 масштабирует полученный результат. В простейшем случае калибратор - это блок памяти, в который во время градуировки устройства записывается соотношение между влажностью и ее кодом, получаемым в устройстве. Влажность, выраженная в требуемых единицах, записывается в поле данных, а соответствующий ей код, полученный устройством, записывается в адресное поле. Для многократного измерения влажности одного и того же материала целесообразно в качестве калибратора 15 использовать постоянное запоминающее устройство, так как датчики на конденсаторах с потерями служат достаточно долго - по литературным данным больше 10 лет [Бойукос Дж. Дж. Блок из чистого гипса для непрерывных измерений влажности в полевых условиях. Влажность. Т. 4. - С. 176-182. Материалы международного симпозиума по влагометрии, проходившего в Вашингтоне в 1963 г. Гидрометеоиздат, Л., 1969 г.].
Код влажности в двоично-десятичном виде, промасштабированный калибратором 15, поступает на индикатор 16 влажности. Индикатор строится по общепринятой методике - последовательно соединенные преобразователь двоично-десятичного кода, поступающего с калибратора 15, в код семи сегментных индикаторов и семисегментные индикаторы.
Перечень позиций Фиг. 1
Многоканальное устройство измерения влажности сыпучих материалов
1 - Источник питания;
2 - Компаратор;
3 - RS триггер;
4 - Ключ;
5 - Датчики;
6 - Конденсатор образцовый;
7 - Генератор тактовых импульсов;
8 - Мультиплексор;
9 - Счетчик номеров каналов;
10 - Индикатор номера канала;
11 - Генератор контрольной частоты;
12 - Элемент «И» первый;
13 - Счетчик влажности;
14 - Элемент «И» второй;
15 - Калибратор;
16 - Индикатор влажности.

Claims (1)

  1. Многоканальное устройство измерения влажности сыпучих материалов, содержащее датчики влажности, тактовый генератор, счетчик влажности, индикатор влажности, отличающееся тем, что введены источник питания, компаратор, RS триггер, ключ, конденсатор образцовый, мультиплексор, счетчик каналов, индикатор номера канала, генератор контрольной частоты, элементы «И» первый и второй, калибратор, при этом от источника питания опорное напряжение поступает на прямой вход компаратора, а рабочее напряжение поступает на вход ключа, управляющий вход которого соединен с инверсным выходом RS триггера и вторым входом второго элемента «И», а выход через образцовый конденсатор с общей шиной; входы датчиков соединены с инверсным входом компаратора и выходом ключа, а выходы через мультиплексор - с общей шиной; вход R триггера соединен с выходом компаратора, а вход S - с выходом тактового генератора, вторым входом счетчика влажности и входом счетчика номеров каналов, выход которого соединен с управляющим входом мультиплексора и входом индикатора номера канала; прямой выход триггера соединен с вторым входом первого элемента «И», первый вход которого соединен с выходом генератора контрольной частоты, а выход с первым входом счетчика влажности, выход которого соединен с первым входом второго элемента «И», выход которого через калибратор соединен с входом индикатора влажности.
RU2016152104A 2016-12-29 2016-12-29 Многоканальное устройство измерения влажности сыпучих материалов RU2653091C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016152104A RU2653091C1 (ru) 2016-12-29 2016-12-29 Многоканальное устройство измерения влажности сыпучих материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016152104A RU2653091C1 (ru) 2016-12-29 2016-12-29 Многоканальное устройство измерения влажности сыпучих материалов

Publications (1)

Publication Number Publication Date
RU2653091C1 true RU2653091C1 (ru) 2018-05-07

Family

ID=62105620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016152104A RU2653091C1 (ru) 2016-12-29 2016-12-29 Многоканальное устройство измерения влажности сыпучих материалов

Country Status (1)

Country Link
RU (1) RU2653091C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1163696A1 (ru) * 1981-07-17 1996-04-27 Краснодарский политехнический институт Установка для сушки сыпучих материалов в кипящем слое
UA34502C2 (ru) * 1995-05-29 2001-03-15 Бюлєр Аг Устройство для непрерывного определения влажности сыпучего материала
CN104833651A (zh) * 2015-04-15 2015-08-12 浙江大学 金银花浓缩过程在线实时放行检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1163696A1 (ru) * 1981-07-17 1996-04-27 Краснодарский политехнический институт Установка для сушки сыпучих материалов в кипящем слое
UA34502C2 (ru) * 1995-05-29 2001-03-15 Бюлєр Аг Устройство для непрерывного определения влажности сыпучего материала
CN104833651A (zh) * 2015-04-15 2015-08-12 浙江大学 金银花浓缩过程在线实时放行检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Диссертация: "Повышение эффективности процесса сушки зерна в многокамерной сушилке периодического действия за счет ее совершенствования и оперативного контроля", 2005. *

Similar Documents

Publication Publication Date Title
US7775125B2 (en) Low power ultrasonic flow measurement
RU2391677C1 (ru) Микроконтроллерный измерительный преобразователь емкости и сопротивления в двоичный код
SG192103A1 (en) Semiconductor temperature sensors
CN112534722A (zh) 具有可选择分辨率的基于时间、电流受控的成对振荡器模数转换器
Chujo et al. Experimental verification of timing measurement circuit with self-calibration
RU2653091C1 (ru) Многоканальное устройство измерения влажности сыпучих материалов
RU2395816C1 (ru) Микроконтроллерное устройство для исследования диэлектрических свойств биологических объектов и изоляционных материалов
CN114636484B (zh) 数字温度传感器、芯片温度检测系统和芯片温度检测方法
RU176710U1 (ru) Устройство для измерения физических параметров в скважине
CN106289043A (zh) 一种电容式距离测量方法、装置及其定标方法
EP3296709B1 (en) Temperature-to-digital converter
RU2653092C1 (ru) Устройство измерения влажности сыпучих материалов
CA2618595C (en) Low power ultrasonic flow measurement
US20170288439A1 (en) Signal processing circuit, coulomb counter circuit, and electronic device
CN208890769U (zh) 时钟占空比校准电路
US4287470A (en) Digital humidimeter
CN106647226A (zh) 一种时间数字转换器及其误差校准装置与方法
CN109188095B (zh) 一种电阻测量电路、方法及环境参数测量装置
Santo Zarnik et al. An LTCC-based capacitive pressure sensor with a digital output
Burton et al. Linear and nonlinear A/D, D/A, A/A conversions using the dual-slope principle
US9684022B2 (en) Sensor device and sensing method using the same
CN113341232B (zh) 一种量程自适应的高精度电容检测方法及检测电路
RU2774047C1 (ru) Устройство измерения емкости для встраиваемых систем управления
SU477358A1 (ru) Устройство дл измерени амплитуды импульсного напр жени
Bayo et al. A programmable sensor conditioning interface for low-power applications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181230