RU2653063C1 - Спутниковая система связи и наблюдения приэкваториальных широт - Google Patents
Спутниковая система связи и наблюдения приэкваториальных широт Download PDFInfo
- Publication number
- RU2653063C1 RU2653063C1 RU2017123338A RU2017123338A RU2653063C1 RU 2653063 C1 RU2653063 C1 RU 2653063C1 RU 2017123338 A RU2017123338 A RU 2017123338A RU 2017123338 A RU2017123338 A RU 2017123338A RU 2653063 C1 RU2653063 C1 RU 2653063C1
- Authority
- RU
- Russia
- Prior art keywords
- satellites
- communication
- satellite
- equatorial
- orbital planes
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 68
- 230000001174 ascending effect Effects 0.000 claims abstract description 11
- 238000009827 uniform distribution Methods 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims description 2
- 238000012552 review Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000010276 construction Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Remote Sensing (AREA)
- Radio Relay Systems (AREA)
Abstract
Изобретение относится к спутниковым системам (СС) связи и наблюдения, использующим легкие спутники, которые функционируют на низких и средних околоземных орбитах и обеспечивают непрерывное региональное покрытие поверхности Земли. Технический результат состоит в обеспечении непрерывного покрытия приэкваториальных широт с заданной кратностью обзора при минимальной высоте и числе орбитальных плоскостей, спутников в них, а также количестве запусков для развертывания СС. Для этого спутниковая система связи содержит множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построена на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них. СС построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора. Технический результат от изобретения заключается в обеспечении непрерывного покрытия приэкваториальных широт с заданной кратностью обзора при минимальной высоте и числе орбитальных плоскостей, спутников в них, а также количестве запусков для развертывания СС. 2 з.п. ф-лы, 2 ил., 3 табл.
Description
Область техники
Изобретение относится к спутниковым системам (СС) связи и наблюдения, использующим легкие спутники, которые функционируют на низких и средних околоземных орбитах и обеспечивают непрерывное региональное покрытие поверхности Земли.
Предшествующий уровень техники
Известно, что в различных системах спутниковой связи используются искусственные спутники Земли, летающие на геостационарной, высокоэллиптических и низких околоземных орбитах (см. например В. Кириллов, П. Михеев. Расстояния на миг сократив (Обзор зарубежных низкоорбитальных спутниковых систем связи). ТЕЛЕ-Спутник N8(22), август 1997).
Выбор схемы орбитального построения спутниковых систем связи и наблюдения зависит от назначения данных СС и обеспечения требуемых технических и функциональных характеристики системы в том или ином районе Земли при минимальных затратах. При этом, от выбранных орбит и их характеристик существенно зависят возможности в принципах организации связи, например:
- наиболее используемая в настоящее время для связи геостационарная орбита при многих положительных качествах имеет существенные недостатки. В частности, из-за ограничений по радиовидимости не обеспечивает связь для арктических и антарктических районов Земли с широтами более 65-70° северной и южной широты; из-за большой высоты орбиты возникает значительная задержка радиосигнала (до 0,5-0,6 сек), существенно снижающая качество связи в реальном масштабе времени. Кроме того, требуется значительная мощность ретрансляторов и электрогенерирующих систем спутников;
- высокоэллиптические орбиты вместе со значительным изменением по времени высоты полета спутника имеют ограниченное время радиовидимости (как правило, не более 8 часов в сутки) и для обеспечения непрерывной связи требуют создания системы из нескольких спутников, при этом создание на этих орбитах глобальной связи по всему земному шару является технически и экономически сложной задачей;
- низкоорбитальная система спутниковой связи, вместе с необходимостью значительного количества спутников для организации связи и обеспечением маршрутизации радиосигналов между абонентами, имеет ряд преимуществ: близость спутников к Земле и, следовательно, к абонентам; минимальные задержки сигналов, что улучшает качество голосовой связи, Internet и интерактивного телевидения (видеопереговоры, видеоконференции); снижается потребная мощность и вес бортовой приемо-передающей аппаратуры и систем электропитания спутников, а также аппаратуры абонентов. Расположение орбит системы спутниковой связи ниже радиационных поясов Земли (ниже 1400-1500 км) обеспечивает защиту спутников и радиоэлектронной аппаратуры от жесткого ионизирующего солнечного излучения, что увеличивает их срок активного существования (САС), спутники доставляются на низкую более «дешевую» орбиту, требующую меньших затрат на их выведение в космос.
Известны реализованные в мире низкоорбитальные системы спутниковой связи:
- «Iridium» и «Globalstar» (N. Panagiotarakis, I. Maglogiannis, G. Kormentzasan. Overview of Major Satellite Systems. University of the Aegean Dept. of Information and Communication Systems, GR-83200, Karlovassi, GREECE (Electronically available information in the URL: http://www.iridium.com), (Electronically available information in the URL: http://www.globalstar.com));
- «ORBCOMM» (Низкоорбитальная спутниковая система связи ORBCOMM: реальные и перспективные возможности для Европейского региона (http://kunegin.narod.ru/ref3/niz/leo16.htm));
- «Гонец» (Низкоорбитальная космическая система персональной спутниковой связи и передачи данных / Под ред. Генерального конструктора многофункциональной космической системы персональной спутниковой связи и передачи данных, президента ОАО «Спутниковая система «Гонец» А.И. Галькевича - Тамбов: ООО «Издательство Юлис», 2011. - 169 с., ил.).
Сравнительные характеристики рассмотренных низкоорбитальных СС связи (согласно: А. Крылов. «Анализ создания и развития низкоорбитальных систем спутниковой связи». Журнал «Спутниковая связь и вещание-2011», с. 46-49) приведены в таблице 1. В ней приняты следующие обозначения: h - высота орбиты; i - наклонение орбиты; N - количество спутников в системе; Р - количество орбитальных плоскостей.
Из приведенных в таблице 1 данных по низкоорбитальным СС связи видно, что система «Иридиум» обеспечивает глобальную подвижную связь по всему земному шару. Однако эта система обладает существенным недостатком - в высокоширотных областях, в околополярных зонах Земли, где плотность абонентов связи мала, одновременно находится избыточное количество спутников связи (например, над каждым из полюсов единовременно находится от 7 до 14 спутников).
Система Globalstar при большом количестве спутников (48+8 резервных) обеспечивает непрерывную подвижную связь только в зоне земного шара между 70° северной и 70° южной широтами. Связь в околополярных зонах отсутствует.
Системы ORBCOMM и «Гонец» используется только для периодической связи и пакетной передачи данных. Кроме того, система «Гонец» в полной конфигурации содержит 6 орбитальных плоскостей и с учетом приполярного наклонения, также будет иметь избыточность в количестве единовременных находящихся в приполярной области спутников.
Известна комбинированная СС связи (патент РФ №2496233 опубл. 20.06.2013), состоящая из двух группировок (сегментов), одна из которых содержит N спутников связи, где N - целое число, и расположена на n околоземных орбитах высотой менее 2000 км с наклоном 0°…30°, по N/n спутников на каждой орбите, другая группировка состоит из М спутников связи, где М - целое число, и расположена на m околоземных орбитах высотой менее 2000 км с наклоном 50°…90°. В таблице 2 представлены характеристики предпочтительного варианта исполнения указанной СС.
При этом угол места в точке расположения абонента (угол между лучом на спутник и местным горизонтом) составляет 5-15 градусов; диаметр зоны радиовидимости со спутника, находящегося на орбите высотой 1500 км - 5÷6 тыс. км.
Сегмент №1 данной СС, обслуживающий приэкваториальную область обзора, является наиболее близким к заявляемому изобретению вариантом построения СС регионального покрытия и взят в качестве прототипа.
Основным из недостатков прототипа является баллистическое построение, требующее 3 орбитальных плоскости для обеспечения регионального покрытия приэкваториальных широт ниже 40°, что приводит к необходимости осуществлять минимум три групповых запуска в каждую плоскость для развертывания СС на орбите.
Вторым недостатком являются ограниченная эффективность применения таких систем, поскольку при двух и более кратном покрытии заданной области, они оказываются хуже по критерию минимизации высоты полета, особенно в малых СС с числом спутников менее 24.
Предлагаемая СС связи и наблюдения приэкваториальных широт позволяет, при использовании всего двух орбитальных плоскостей, решить задачу обеспечения непрерывной связью абонентов и наблюдение в заданном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора. Согласование движения спутников в первой и второй орбитальных плоскостях - фазирование, примененное в предлагаемом изобретении, дает возможность увеличить наклонение орбит и уменьшить высоту полета.
Решение поставленной задачи достигается тем, что спутниковая система связи и наблюдения приэкваториальных широт, содержащая множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построенная на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них, отличается, согласно изобретению тем, что она построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора.
Указанная новая совокупность существенных признаков, отраженных в первом независимом пункте формулы, позволяет достичь следующего технического результата. Благодаря использованию всего двух орбитальных плоскостей при построении СС многократной связи и наблюдения, удается минимизировать количество запусков и стоимость развертывания такой системы на орбите. Тем самым устраняется первый недостаток прототипа. Сфазированное расположение спутников в первой и второй орбитальных плоскостях позволяет увеличить наклонение и минимизировать высоту полета, обеспечивая заданную кратность непрерывного покрытия при минимальном числе спутников в системе. Таким образом, устраняется второй недостаток прототипа.
Одним из вариантов изобретения является построение СС многократной связи и наблюдения для приэкваториальных широт с максимальной границей выше 20°. В этом случае предлагаемый вариант построения двухплоскостной СС оказывается лучшим по критерию минимизации высоты полета, чем даже спутниковая система на экваториальной орбите.
В некоторых случаях, изобретение позволяет сформировать СС многократного покрытия, когда в зоне связи с абонентами одновременно находится несколько спутников из системы, что позволяет резервировать канал связи или увеличить пропускную способность при наличии большого количества абонентов в указанной области (например, крупные города) посредством распределения абонентов по разным спутникам.
Краткое описание чертежей
На фиг. 1 изображен вид с экватора на СС связи в форме развертки с указанием черными цифрами угловой сетки по долготе, отсчитываемой по экваториальной дуге. Синими цифрами обозначены номера орбитальных плоскостей (1, 2). Стрелками - направления движения спутников. Синими линиями показаны трассы орбит. Двумя верхними окружностями обозначены мгновенные зоны обзора двух смежных спутников в плоскости 1, разнесенными по аргументу широты на угол Δϕ. Третьей окружностью в орбитальной плоскости 2 показана соответствующая мгновенная зона обзора третьего спутника, сфазированного с первыми двумя. Пунктирными линиями показаны следы полос непрерывного обзора. Штриховкой обозначена область непрерывного обзора (связи), ограниченная минимальной и максимальной широтами.
На фиг. 2 изображен вид с полюса, обозначаемого точкой «Р», на СС связи и наблюдения, соответствующий предпочтительному варианту изобретения, когда максимальная широта непрерывного определяется точками пересечения полос непрерывного обзора соседних орбитальных плоскостей (точки Б и В) и соответствует пунктирной зеленой линии.
На чертежах приняты следующие обозначения:
Сj - ширина полосы j-кратного обзора;
θ - угол поля обзора спутника на поверхности Земли;
i - наклонение орбиты;
Δϕ - сдвиг по аргументу широты между спутниками в одной плоскости;
dϕ - угловой размер дуги между проекциями на поверхность Земли точки пересечения орбитальных плоскостей и точки пересечения их полос непрерывного обзора;
Ω12 - сдвиг по долготе между восходящими узлами первой и второй орбитальной плоскости;
ϕmax - максимальная широта непрерывного покрытия СС.
Осуществление изобретения
Спутниковая система связи и наблюдения приэкваториальных широт содержит множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построена на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них, при этом, она построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора.
Разнесение орбитальных плоскостей по долготе восходящего узла на угол 180°, согласно фиг. 1 и фиг. 2, позволяет обеспечить непрерывное покрытие региона, ограниченного требуемой минимальной и максимальной широтой. При этом количество спутников в каждой плоскости одинаково и определяется с учетом обеспечения заданной кратности непрерывного покрытия.
Пример. СС связи и наблюдения для приэкваториальных широт.
Предпочтительным вариантом изобретения является построение СС связи и наблюдения для приэкваториальных широт от 0° до 45°, согласно фиг. 1 и фиг. 2, позволяющее обеспечить непрерывную связь на обширной территории с населением порядка 70% от общей численности на Земле. Наклонение орбит для такой системы, согласно фиг. 1, может быть определено из соотношения:
Алгоритм решения для определения основных проектных параметров СС заключается в разрешении системы уравнений:
Порядок решения состоит в следующем. Задается кратность полосы непрерывного обзора j, максимальная широта покрытия ϕmax и количество спутников в системе N. Определяется число спутников S в орбитальной плоскости:
Фазовый сдвиг между положениями спутников в одной плоскости определяется в виде:
Рассогласование по фазе между спутниками смежных сонаправленных орбитальных плоскостей:
Задается первое приближение по величине полосы j - кратного обзора Сj, и методом последовательных приближений разрешается система уравнений (2), определяя само значение полосы j - кратного обзора Сj, угол поля обзора θ и наклонение i.
Аргумент широты спутника «S» в плоскости «Р», считая, что положения первых спутников в соседних плоскостях близки и идут по нарастанию аргумента широты, определим как:
Сдвиг по долготе между восходящими узлами орбитальных плоскостей составляет Ω12=180°.
Для указанного способа построения СС связи и наблюдения приэкваториальных широт в таблице 3 представлено сравнение с вариантами построения экваториальной системы и трехплоскостной СС согласно прототипу. Для всех вариантов систем, высота орбиты определяется из условия обеспечения минимальных углов возвышения спутника над местным горизонтом α=5°.
Как видно из таблицы 3, предлагаемый вариант построения двухплоскостной спутниковой системы связи и наблюдения приэкваториальных широт требует наименьшей высоты орбиты для обеспечения заданной кратности покрытия. Наиболее эффективно использование предлагаемого способа построения для СС однократного обзора с числом спутников не более 20, а также многократного обзора с числом спутников не более 50 при максимальной широте зоны покрытия свыше 30°. Еще одним отличительным преимуществом предлагаемого варианта построения СС связи и наблюдения приэкваториальных широт являются наибольшие значения наклонения орбит, что требует меньших энергетических затрат на выведение и развертывание системы при запуске с Российских космодромов, расположенных выше 50° с.ш.
Групповое выведение спутников в одну орбитальную плоскость осуществляется ракетой-носителем. На орбите выведения спутники отделяются и самостоятельно переводятся в рабочие фазовые положения, разнесенные по аргументу широты с шагом 360°/S, где S - количество спутников в одной орбитальной плоскости. Для запуска в каждую орбитальную плоскость используется минимум одна РН.
Современные возможности средств выведения и небольшие габариты самих спутников позволяют осуществить групповое выведение нескольких аппаратов на рабочую орбиту. С учетом использования для СС связи и наблюдения низких круговых орбит, за один запуск можно вывести 20-30 спутников массой до 300 кг. Это значительно удешевляет стоимость развертывания СС, которая наиболее существенно зависит от количества требуемых РН для доставки аппаратов на орбиту.
Claims (3)
1. Спутниковая система связи и наблюдения приэкваториальных широт, содержащая множество искусственных спутников Земли, оснащенных бортовыми ретрансляторами с межспутниковой связью, и построенная на нескольких орбитальных плоскостях, разнесенных по долготе восходящего узла на одинаковый угол, с равномерным распределением спутников в них, отличающаяся тем, что она построена всего на двух орбитальных плоскостях, развернутых по долготе восходящего узла на 180°, при этом спутники в первой орбитальной плоскости сфазированы со спутниками во второй и обеспечивают непрерывной связью абонентов и наблюдение в заданном приэкваториальном регионе покрытия, ограниченном максимальной широтой, с требуемой кратностью обзора.
2. Спутниковая система связи и наблюдения по п. 1, построенная с максимальной широтой непрерывного покрытия выше 20°, что позволяет получить лучшую по критерию минимизации высоты полета спутниковую систему, чем система на экваториальной орбите.
3. Спутниковая система связи и наблюдения по п. 1, построенная таким образом, что при кратности обзора заданного региона два и более, когда в зоне связи с абонентами находится несколько спутников из системы, происходит распределение абонентов по разным спутникам.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017123338A RU2653063C1 (ru) | 2017-07-03 | 2017-07-03 | Спутниковая система связи и наблюдения приэкваториальных широт |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017123338A RU2653063C1 (ru) | 2017-07-03 | 2017-07-03 | Спутниковая система связи и наблюдения приэкваториальных широт |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2653063C1 true RU2653063C1 (ru) | 2018-05-07 |
Family
ID=62105387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017123338A RU2653063C1 (ru) | 2017-07-03 | 2017-07-03 | Спутниковая система связи и наблюдения приэкваториальных широт |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2653063C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2689792C1 (ru) * | 2018-07-20 | 2019-05-29 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Спутниковая система связи и наблюдения в заданном диапазоне широт |
CN116155344A (zh) * | 2022-12-07 | 2023-05-23 | 鹏城实验室 | 一种连续覆盖中低纬度的圆轨道星座构型 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2149507C1 (ru) * | 1999-06-29 | 2000-05-20 | Закрытое акционерное общество "Зонд-Холдинг" | Спутниковая система региональной связи с использованием эллиптических орбит |
RU2168865C1 (ru) * | 2000-06-01 | 2001-06-10 | Закрытое акционерное общество "Зонд-Холдинг" | Спутниковая система региональной связи с использованием эллиптических орбит |
US6333924B1 (en) * | 1997-05-02 | 2001-12-25 | Uscx | High latitude geostationary satellite system |
US6868316B1 (en) * | 2002-03-21 | 2005-03-15 | Lockheed Martin Corporation | Satellite constellation system |
RU47600U1 (ru) * | 2005-03-24 | 2005-08-27 | Закрытое акционерное общество "НПО Космического Приборостроения" | Космическая система глобальной служебной спутниковой связи |
RU2412547C2 (ru) * | 2009-05-13 | 2011-02-20 | Открытое акционерное общество "Информационные спутниковые системы" им. академика М.Ф. Решетнева" | Способ построения глобальной спутниковой системы ретрансляции информации между низкоорбитальными космическими аппаратами и наземными приемопередающими станциями с использованием спутников-ретрансляторов на геостационарной орбите |
-
2017
- 2017-07-03 RU RU2017123338A patent/RU2653063C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6333924B1 (en) * | 1997-05-02 | 2001-12-25 | Uscx | High latitude geostationary satellite system |
RU2149507C1 (ru) * | 1999-06-29 | 2000-05-20 | Закрытое акционерное общество "Зонд-Холдинг" | Спутниковая система региональной связи с использованием эллиптических орбит |
RU2168865C1 (ru) * | 2000-06-01 | 2001-06-10 | Закрытое акционерное общество "Зонд-Холдинг" | Спутниковая система региональной связи с использованием эллиптических орбит |
US6868316B1 (en) * | 2002-03-21 | 2005-03-15 | Lockheed Martin Corporation | Satellite constellation system |
RU47600U1 (ru) * | 2005-03-24 | 2005-08-27 | Закрытое акционерное общество "НПО Космического Приборостроения" | Космическая система глобальной служебной спутниковой связи |
RU2412547C2 (ru) * | 2009-05-13 | 2011-02-20 | Открытое акционерное общество "Информационные спутниковые системы" им. академика М.Ф. Решетнева" | Способ построения глобальной спутниковой системы ретрансляции информации между низкоорбитальными космическими аппаратами и наземными приемопередающими станциями с использованием спутников-ретрансляторов на геостационарной орбите |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2689792C1 (ru) * | 2018-07-20 | 2019-05-29 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Спутниковая система связи и наблюдения в заданном диапазоне широт |
CN116155344A (zh) * | 2022-12-07 | 2023-05-23 | 鹏城实验室 | 一种连续覆盖中低纬度的圆轨道星座构型 |
CN116155344B (zh) * | 2022-12-07 | 2024-04-12 | 鹏城实验室 | 一种连续覆盖中低纬度的圆轨道星座构型 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6954613B1 (en) | Fixed satellite constellation system employing non-geostationary satellites in sub-geosynchronous elliptical orbits with common ground tracks | |
RU2278472C2 (ru) | Усовершенствованные система и способ организации системы негеостационарных спутников, не создающих помех в работе спутников, находящихся на геостационарном кольце | |
US6577864B2 (en) | Elliptical satellite system which emulates the characteristics of geosynchronous satellites | |
US6011951A (en) | Technique for sharing radio frequency spectrum in multiple satellite communication systems | |
EP1347916B1 (en) | A system and method for implementing a constellation of non-geostationary satellites that provides simplified satellite tracking | |
US7480506B2 (en) | Satellite communication system | |
Wood et al. | Revisiting elliptical satellite orbits to enhance the O3b constellation | |
RU2653063C1 (ru) | Спутниковая система связи и наблюдения приэкваториальных широт | |
US6678519B2 (en) | Elliptical satellite system which emulates the characteristics of geosynchronous satellites | |
US6795687B1 (en) | Elliptical satellite system emulating characteristics of geosynchronous satellites during the apogee portion of an elliptical orbit | |
CN111585635B (zh) | 一种基于空频混合多址方式的卫星互联网系统设计方法 | |
RU2322760C2 (ru) | Региональная система мобильной спутниковой связи и обслуживания транспортных коридоров | |
RU2749165C2 (ru) | Космическая система | |
RU2659564C1 (ru) | Система спутниковой связи с гибридным орбитальным построением | |
RU2689792C1 (ru) | Спутниковая система связи и наблюдения в заданном диапазоне широт | |
US9998206B2 (en) | Ring constellations for decreased data latency and increased download rates | |
RU2223205C2 (ru) | Система спутников на эллиптических орбитах, эмулирующая характеристики системы спутников на геостационарной орбите | |
Mitra | Satellite communication | |
RU2496233C2 (ru) | Низкоорбитальная система спутниковой связи | |
Cheruku | Satellite communication | |
RU2660113C1 (ru) | Глобальная многофункциональная инфокоммуникационная спутниковая система | |
Draim et al. | Reducing extra-high frequency attenuation by using COBRA elliptical orbit systems | |
RU2695540C2 (ru) | Глобальная система спутниковой связи на средних круговых орбитах | |
SUZUKI | Continuous ISL and satellite diversity in a satellite constellation | |
WO2001024383A2 (en) | Satellite constellation system employing sub-geosynchronous elliptical orbits |