RU2652429C1 - Биорезорбируемый материал и способ его получения - Google Patents

Биорезорбируемый материал и способ его получения Download PDF

Info

Publication number
RU2652429C1
RU2652429C1 RU2017111971A RU2017111971A RU2652429C1 RU 2652429 C1 RU2652429 C1 RU 2652429C1 RU 2017111971 A RU2017111971 A RU 2017111971A RU 2017111971 A RU2017111971 A RU 2017111971A RU 2652429 C1 RU2652429 C1 RU 2652429C1
Authority
RU
Russia
Prior art keywords
minutes
hydroxyapatite
bioresorbable material
powder
amount
Prior art date
Application number
RU2017111971A
Other languages
English (en)
Inventor
Светлана Васильевна Ремпель
Альбина Ахметовна Валеева
Екатерина Анатольевна Богданова
Хартмут Хартмут Шретнер
Наиль Аделевич Сабирзянов
Андрей Андреевич Ремпель
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2017111971A priority Critical patent/RU2652429C1/ru
Application granted granted Critical
Publication of RU2652429C1 publication Critical patent/RU2652429C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси компонентов, сушку, прессование и последующий отжиг, при этом исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460-480 мин с реверсом направления через каждые 15 мин и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а обжиг осуществляют при температуре 580-600°С в течение 350 – 360 мин со скоростью нагрева 100 – 110°С/ч. Биорезорбируемый материал имеет высокую микротвердость и может быть использован для реконструкции и замещения участков костной ткани. 2 н.п. ф-лы, 1 табл., 4 ил., 4 пр.

Description

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов и к способам их получения, которые могут применяться для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата, а также в качестве покрытия имплантатов для улучшения связи с костной тканью.
Известен биорезорбируемый материал, включающий размещенные в органической матрице наночастицы аморфного гидроксиапатита кальция, частично изоморфно замещенного ионами металлов II группы (МII) общей формулы Ca10-xMIIx(PO4)6(OH)2, где МII – Mg2+ и/или Zn2+; 0,01≤ x ≤2 (патент RU 2510740; МПК C01B 25/12, C08L 99/00, A61K 6/033, A61K 47/48, B82B 3/00; 2014 год).
Однако наночастицы известного материала включены в органическую матрицу биополимера и обладают сферической формой, что затрудняет непосредственный доступ к ним клеток – остеобластов, а следовательно, снижает эффективность закрепления клеток на наночастицах и скорость формирования собственной костной ткани. Кроме того, итоговое соотношение Ca/P отличается от соотношения в костной ткани человека (Ca/P=1,67).
Известен остеогенный биорезорбируемый материал для замещения дефектов костной ткани, выполненный из композиции, включающей в качестве наполнителя порошок биологического гидроксиапатита с размером частиц 1-40 мкм, полученного из деминерализованных костей крупного рогатого скота, фосфорно-кислый кальций, аминокислоту-аргинин, раствор казеина в 5%-ном водном растворе аммиака (патент RU 2504405; МПК A61L 27/12, A61K 31/198, A61K 38/16, A61P 41/00; 2014 год).
Однако известный биорезорбируемый материал используется как инъекционный материал. Таким образом, он может быть использован только для заполнения незначительных объемов при замещении дефектов костных тканей. Кроме того, использование биологического гидроксиапатита, полученного из деминерализованных костей крупного рогатого скота, обусловливает наличие дополнительного технологического процесса его получения.
Наиболее близким техническим решением к предлагаемому является материал на основе гидроксиапатита общей формулы Ca10(PO4)6(OH)2 (патент RU 2104924, МПК C01B 25/32, 1998 год), который может быть использован в качестве биорезорбирумого материала.
Однако известный материал характеризуется высокой удельной поверхностью (~ 100 м2/г) и, как следствие, недостаточно высокой микротвердостью (~ 140 МПа), что ухудшает его механические свойства при использовании в качестве имплантата.
Известен также способ получения гидроксиапатита, содержащего оксид цинка, включающий взаимодействие растворимых солей кальция и цинка с растворимыми фосфатами, формование изделий и обжиг в засыпке, представляющей собой смесь карбоната кальция и брушита (патент RU 2372313; МПК C04 B 35/447, A61L 27/12; 2009 год).
Однако известный способ включает высокотемпературный обжиг (1100 – 1200оС) и обеспечивает возможность получения достаточно крупных частиц размером 0.3 – 0.4 мкм, что обусловливает высокую удельную поверхность материала.
Таким образом, перед авторами была поставлена задача разработать биорезорбируемый материал на основе гидроксиапатита, обладающий высокой микротвердостью за счет снижения его удельной поверхности и повышения плотности. Кроме того, была поставлена задача разработать способ получения биорезорбируемого материала, включающий его низкотемпературный обжиг.
Поставленная задача решена в предлагаемом биорезорбируемом материале на основе гидроксиапатитата (ГАП) состава Ca10(PO4)6(OH)2, который дополнительно содержит монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего.
Поставленная задача также решена в предлагаемом способе получения биорезорбируемого материала на основе гидроксиапатитата (ГАП), включающего получение исходной смеси компонентов, сушку, прессование и последующий отжиг, в котором исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460 - 480 минут с реверсом направления через каждые 15 минут и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а отжиг осуществляют при температуре 580-600оС в течение 350 – 360 минут со скоростью нагрева 100 – 110оС/ч.
В настоящее время из патентной и научно-технической литературы неизвестен биорезорбируемый материал на основе гидроксиапатитата (ГАП), который дополнительно содержит монооксид титана достехиометрического или сверхстехиометрического. Неизвестен также способ получения биорезорбируемого материала на основе гидроксиапатитата (ГАП), в котором исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460 - 480 минут с реверсом направления через 15 минут и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а обжиг осуществляют при температуре 580-600оС в течение 350 – 360 минут.
Исследования, проведенные авторами предлагаемого технического решения, позволили сделать вывод, что использование нестехиометрического монооксида титана для армирования ГАП позволяет существенно снизить температуру полного упрочнения и получить материал с высокой плотностью без проведения высокотемпературного отжига. Монооксид титана содержит вакансии как в подрешётке титана, так и в подрешётке кислорода, что способствует спеканию по твердофазному механизму при более низкой температуре, а возможность варьировать стехиометрию добавок позволяет влиять на фазовый состав и механические свойства нанокомпозита. Изменение стехиометрии и варьирования содержания монооксида титана позволяет улучшить рабочие характеристики материала, в частности микротвердость, за счет возможности управлять процессами фазообразования. При этом при содержании монооксида титана менее 10 мас.% не наблюдается повышения микротвердости. При содержании монооксида титана более 20 мас.% возможно изменение скорости биорезорбируемости по сравнению со скоростью регенерации костной ткани.
Механосинтез исходных компонентов в предлагаемых условиях позволяет получить уже промежуточный продукт высокой плотности слоистой структуры, которая облегчает холодное прессование и обеспечивает возможность проведения отжига при более низких температурах. Как известно, при производстве керамики из ГАП уплотнение начинается после 800°С. Максимальная плотность, а следовательно, и прочность керамики на основе ГАП достигается при температуре 1250-1300°С. Анализ морфологии поверхности получаемого материала показал присутствие спёкшихся либо частично спёкшихся частиц и агломератов размером от 50 нм до 1 мкм уже после отжига при 400°С. При этом наблюдается вторичная кристаллизация ГАП в виде стержневидных образований в порах и промежутках между агломератами. После отжига при 600°С уменьшается количество пор, микроструктура становится более плотной. При этом агломераты состоят из спекшихся частиц с размерами от 20-40 нм, поскольку спекание в предлагаемом температурном интервале не приводит к росту наночастиц, то есть наносостояние конечного продукта после отжига сохраняется. (фиг.1). Таким образом, выбранный интервал температур отжига позволяет избежать разложения ГАП, то есть сохранить его биологическую активность и создать условия для процессов диффузии и упрочнения керамики.
Предлагаемый биорезорбируемый материал на основе гидроксиапатита может быть получен следующим образом. Исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего, помещают в планетарную шаровую мельницу. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 - 480 минут с реверсом направления через каждые 15 минут и скоростью вращения 530-540 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в таблетки. После чего отжигают в вакуумной печи при температуре 580-600оС в течение 350 – 360 минут. Полученный продукт был исследован с использованием рентгеновского фазового анализа (РФА), растровой электронной микроскопии (РЭМ), метода Брунауэра, Эммета и Теллера (БЭТ), пикнометрии, измерения микротвердости.
В таблице приведены рабочие характеристики известного материала-прототипа и предлагаемого материала (при t-25оС).
На фиг. 1 приведена микрофотография порошка биорезорбируемого материала состава ГАП-10 масс. %TiO0,99.
На фиг. 2 приведен график изменения микротвердости предлагаемого материала в зависимости от состава и температуры отжига.
На фиг. 3 приведен график изменения плотности предлагаемого материала в зависимости от состава и температуры отжига.
Одним из требований, предъявляемых к современным материалам биомедицинского назначения, является высокая биоактивность, учитывающая наряду с биологическими процессами роста и дифференциации клеток скорость растворения материала в средах близких к физиологической среде организма.
Для исследования биоактивности предлагаемого материала состава ГАП/TiOх была изучена растворимость ГАП/TiO1.23 10 мас.% в модельном растворе (изотонический раствор 0,9% NaCl с pH 7) по сравнению с известным материалом (см. фиг. 4). На фиг.4 приведен график кинетики растворения предлагаемого материала и известного в изотоническом растворе на начальном этапе: красный-Ca, ГАП-20 мас.% TiO1,23; черный- Ca, ГАП; голубой-Ti, ГАП-20 мас.% TiO1,2,3. Из приведенных графиков следует, что растворимость предлагаемого материала по сравнению с растворимостью неармированного ГАП не изменяется. Следовательно, предлагаемый материал соответствует по своим свойствам используемым биорезорбируемым материалам.
Получение предлагаемого биорезорбируемого материала и его свойства иллюстрируются следующими примерами конкретного исполнения.
Пример 1
Берут исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 в количестве 4,5 г и монооксид титана состава TiО0,99 в количестве 0,5 г, что составляет 10 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 минут с реверсом направления через каждые 15 минут и скоростью вращения 530 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 580°С в течение 350 минут, при этом скорость нагрева составляет 100°С/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.
Получают биорезорбируемы материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO0,99 -10; с размером зерна 20-40 нм, микротвердостью 202,80±15,18 МПа, плотностью 3.07 г/см3, удельной поверхностью 21,26±0,07 м2/г.
Пример 2
Берут исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 в количестве 2,0 г и монооксид титана состава TiO0,99 в количестве 0,5 г, что составляет 20 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 480 минут с реверсом направления через каждые 15 минут и скоростью вращения 540 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 600°С в течение 360 минут, при этом скорость нагрева составляет 110°С/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.
Получают биорезорбируемый материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO0,99 -20; с размером зерна 20-40 нм, микротвердостью 192,50±13,62 МПа, плотностью 3.28 г/см3, удельной поверхностью10,05±0,17 м2/г.
Пример 3
Берут исходные компоненты гидроксиапатит (ГАП) состава Ca10(PO4)6(OH)2 в количестве 4,5 г и монооксид титана состава TiО1,23 в количестве 0,5 г, что составляет 10 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 минут с реверсом направления через каждые 15 минут и скоростью вращения 530 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 580оС в течение 350 минут, при этом скорость нагрева составляет 100оС/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.
Получают биорезорбируемы материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO1.23 -10; с размером зерна 20-40 нм, микротвердостью 189,50±8,38 МПа, плотностью 3.1 г/см3, удельной поверхностью 16,71±0,06 м2/г.
Пример 4
Берут исходные компоненты гидроксиапатит (ГАП)состава Ca10(PO4)6(OH)2 в количестве 2,0 г и монооксид титана состава TiO1,23 в количестве 0,5 г, что составляет 20 мас.% от общего, помещают в планетарную шаровую мельницу Retsch PM 200. В смесь добавляют изопропиловый спирт, взятый в количестве 5-10 мл. Осуществляют фрагментацию смеси порошка гидроксиапатита и порошка монооксида титана в течение 460 минут с реверсом направления через каждые 15 минут и скоростью вращения 530 об/мин в среде изопропилового спирта. Полученный порошок сушат и прессуют в пресс-форме в таблетки диаметром 10 мм и массой 0,44-1,0 г без выдержки с максимальным давлением 20 МПа. После чего отжигают в вакуумной печи при температуре 580°С в течение 350 минут, при этом скорость нагрева составляет 100°С/ч. Полученный продукт охлаждают вместе с печью до комнатной температуры.
Получают биорезорбируемый материал состава, мас.%: Ca10(PO4)6(OH)2 - 90; TiO1.23-20; с размером зерна 20-40 нм, микротвердостью 210,50±10,76 МПа, плотностью 3.22 г/см3, удельной поверхностью 10,09±0,18 м2/г.
Таким образом, авторами предлагается плотный биорезорбируемый материал, имеющий высокую микротвердость, и способ его получения, который может быть использован в медицине для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата, а также в качестве покрытия имплантов для улучшения связи с костной тканью решена.
Таблица
Соединение
Плотность,
г/см3

Микротвердость исходных образцов, MПа
Удельная поверхность, м2
Ca10(PO4)6(OH)2 (ГАП) 2,93 138,43±12,65 98,80±0,65
10% TiO0,99 +ГАП 3,07 202,80±15,18 21,26±0,07
20% TiO0,99 +ГАП 3,28 192,50±13,62 10,05±0,17
10% TiO1,23+ГАП 3,10 189,50±8,38 16,71±0,06
20% TiO1,23+ГАП 3,22 210,50±10,76 10,09±0,18
10% TiO1,09 +ГАП 3,09 188,90±9,57 18,98±0,07
20% TiO1,09 +ГАП 3,25 203,65±9,81 10,02±0,09

Claims (2)

1. Биорезорбируемый материал на основе гидроксиапатита, отличающийся тем, что он дополнительно содержит монооксид титана состава TiOx, где х=0.99, 1.09, 1.23, в количестве 10-20 мас.% от общего.
2. Способ получения биорезорбируемого материала на основе гидроксиапатитата по п. 1, включающий получение исходной смеси компонентов, сушку, прессование и последующий отжиг, отличающийся тем, что исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460-480 минут с реверсом направления через каждые 15 мин и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а обжиг осуществляют при температуре 580-600°C в течение 350-360 минут со скоростью нагрева 100-110°C/ч.
RU2017111971A 2017-04-10 2017-04-10 Биорезорбируемый материал и способ его получения RU2652429C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017111971A RU2652429C1 (ru) 2017-04-10 2017-04-10 Биорезорбируемый материал и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111971A RU2652429C1 (ru) 2017-04-10 2017-04-10 Биорезорбируемый материал и способ его получения

Publications (1)

Publication Number Publication Date
RU2652429C1 true RU2652429C1 (ru) 2018-04-26

Family

ID=62045568

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111971A RU2652429C1 (ru) 2017-04-10 2017-04-10 Биорезорбируемый материал и способ его получения

Country Status (1)

Country Link
RU (1) RU2652429C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724611C1 (ru) * 2020-03-12 2020-06-25 Федеральное государственное бюджетное учреждение науки Институт химиитвердого тела Уральского отделения Российской академии наук Биоактивный композиционный материал
RU2816008C1 (ru) * 2023-07-24 2024-03-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Композиционный биоматериал на основе гидроксиапатита и способ его получения

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2227011C2 (ru) * 1998-10-02 2004-04-20 Докса Актиеболаг Биологически активный композиционный материал и способ его получения
RU2320353C1 (ru) * 2006-07-31 2008-03-27 Институт машиноведения Уральского отделения Российской Академии наук (ИМАШ УрО РАН) Материал для медицинского применения
RU2372313C2 (ru) * 2007-07-11 2009-11-10 Государственное учебно-научное учреждение Химический факультет Московского государственного университета им. М.В. Ломоносова Способ получения керамики на основе гидроксиапатита, содержащего оксид цинка

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2227011C2 (ru) * 1998-10-02 2004-04-20 Докса Актиеболаг Биологически активный композиционный материал и способ его получения
RU2320353C1 (ru) * 2006-07-31 2008-03-27 Институт машиноведения Уральского отделения Российской Академии наук (ИМАШ УрО РАН) Материал для медицинского применения
RU2372313C2 (ru) * 2007-07-11 2009-11-10 Государственное учебно-научное учреждение Химический факультет Московского государственного университета им. М.В. Ломоносова Способ получения керамики на основе гидроксиапатита, содержащего оксид цинка

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724611C1 (ru) * 2020-03-12 2020-06-25 Федеральное государственное бюджетное учреждение науки Институт химиитвердого тела Уральского отделения Российской академии наук Биоактивный композиционный материал
RU2816008C1 (ru) * 2023-07-24 2024-03-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Композиционный биоматериал на основе гидроксиапатита и способ его получения

Similar Documents

Publication Publication Date Title
Kolanthai et al. Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application
Marques et al. Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine
Suchanek et al. Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature
Han et al. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method
Kalita et al. Nanocrystalline calcium phosphate ceramics in biomedical engineering
EP1465556B1 (en) Machinable preformed calcium phosphate bone substitute material implants
Hasegawa et al. Cell-mediated bioresorption of sintered carbonate apatite in rabbits
Gautam et al. Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material
Sánchez-Salcedo et al. Design and preparation of biocompatible zwitterionic hydroxyapatite
Tampieri et al. Heterogeneous chemistry in the 3-D state: an original approach to generate bioactive, mechanically-competent bone scaffolds
CA2611380C (en) Shaped article
JP2000500110A (ja) 低温リン酸カルシウムアパタイト及びその製造方法
KR100783587B1 (ko) 소결성이 우수한 β-트리칼슘포스페이트 분말 및 이의소결체의 제조방법
Deng et al. Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite
CN114452439B (zh) 一种仿生天然骨矿组成的羟基磷灰石/白磷钙石生物活性陶瓷支架及其制备方法
Kareem et al. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce
Saidi et al. Synthesis and characterization of bioactive glass coated forsterite scaffold for tissue engineering applications
Foroutan et al. Mesoporous strontium-doped phosphate-based sol-gel glasses for biomedical applications
El-Fiqi et al. Highly bioactive bone cement microspheres based on α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation, physico-chemical characterization and in vivo bone regeneration
Ahmadi et al. (BaCa) TiO3 nanopowder: Synthesis and their electrical and biological characteristics
RU2652429C1 (ru) Биорезорбируемый материал и способ его получения
US20090191111A1 (en) Preparation method of calcium phosphate-based ceramic powder and compact thereof
Farkas et al. The effect of chemical composition and morphology on the drug delivery properties of hydroxyapatite-based biomaterials
Kadhim et al. Investigation the bioactivity of cordierite/hydroxyapatite ceramic material used in bone regeneration
Gol’dberg et al. Hydroxyapatite-calcium carbonate ceramic composite materials

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200411