RU2650597C2 - Устройство для генерации второй гармоники оптического излучения - Google Patents

Устройство для генерации второй гармоники оптического излучения Download PDF

Info

Publication number
RU2650597C2
RU2650597C2 RU2015153900A RU2015153900A RU2650597C2 RU 2650597 C2 RU2650597 C2 RU 2650597C2 RU 2015153900 A RU2015153900 A RU 2015153900A RU 2015153900 A RU2015153900 A RU 2015153900A RU 2650597 C2 RU2650597 C2 RU 2650597C2
Authority
RU
Russia
Prior art keywords
harmonic
optical radiation
generating
aluminum nitride
active element
Prior art date
Application number
RU2015153900A
Other languages
English (en)
Other versions
RU2015153900A (ru
Inventor
Григорий Семенович Соколовский
Григорий Михайлович Савченко
Владислав Викторович Дюделев
Всеволод Владимирович Лундин
Никита Сергеевич Аверкиев
Алексей Валентинович Сахаров
Original Assignee
Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Priority to RU2015153900A priority Critical patent/RU2650597C2/ru
Publication of RU2015153900A publication Critical patent/RU2015153900A/ru
Application granted granted Critical
Publication of RU2650597C2 publication Critical patent/RU2650597C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Изобретение относится к квантовой электронике, а именно к устройствам удвоения частоты оптического излучения. Устройство для генерации второй гармоники оптического излучения содержит активный элемент на основе нитрида алюминия. Активный элемент выполнен по меньшей мере из одной пары чередующихся слоев: слоя (1) из нитрида алюминия собственной проводимости толщиной 100-900 нм и слоя (2) из материала с металлической проводимостью толщиной 1-5 нм. Изобретение обеспечивает повышение эффективности генерации второй гармоники оптического излучения. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к квантовой электронике, а именно к устройствам удвоения частоты оптического излучения.
Известно устройство для генерации второй гармоники оптического излучения (см. заявка WO 9950709, МПК H01S 03/16, опубликована 07.10.1999), содержащее двулучепреломляющий нелинейный кристалл GdxY1-xCa4O(BO3)3, где 0.01<=х<=0.35.
Недостатком данного подхода является малая нелинейная восприимчивость таких кристаллов, что снижает эффективность генерации второй гармоники.
Известно устройство для генерации второй гармоники оптического излучения (см. авт. свид. RU 784550, МПК G02F 1/37, опубликовано 20.05.2000), состоящее из волноводного слоя, нанесенного на подложку, гребенчатого электрода, нанесенного на волноводный слой, отличающееся тем, что с целью генерации второй гармоники в материалах, не обладающих нелинейной восприимчивостью второго порядка, подложка выполнена из полупроводникового материала, а период структуры гребенчатого электрода, выбрав равным
Figure 00000001
где λ - длина волны излучения накачки;
nω и n - эффективные показатели преломления волноводных мод основой частоты и второй гармоники соответственно.
Устройство обеспечивает достижение так называемого «квазисинхронизма» за счет поворота поляризации кристалла в противоположном направлении по достижении длины синхронизма. Это позволяет использовать для нелинейного преобразования одноосные нелинейные кристаллы с высоким значением квадратичной нелинейной восприимчивости. Недостатком известного устройства является снижение эффективности преобразования по сравнению с истинным синхронизмом.
Известно устройство для генерации второй гармоники оптического излучения (см. заявка JPH 06347848, МПК G02F 01/37, H01S 05/00, опубликована 22.12.1994), содержащее нелинейный кристалл с наведенной периодической поляризацией. В данном устройстве доменная структура направления поляризации уже закреплена при изготовлении кристалла, что существенно упрощает устройство в использовании.
Недостатком устройства является применение квазисинхронизма, снижающего эффективность нелинейного преобразования.
Известно устройство для генерации второй гармоники оптического излучения (см. заявка WO 2009075363, МПК G02F 01/35, G02F 01/35, G02F 01/37, G02F 01/37, опубликована 18.06.2009), совпадающее с настоящим решением по наибольшему числу существенных признаков и принятое за прототип. Устройство-прототип содержит активный элемент из нитрида алюминия AIN, имеющего структуру с периодически меняющимся на противоположное направлением поляризации кристалла. Устройство может осуществлять удвоение или утроение частоты оптического излучения за счет квазисинхронизма.
Недостатком прототипа является применение квазисинхронизма для согласования фаз, что снижает эффективность генерации второй гармоники.
Задачей настоящего изобретения является разработка такого устройства для генерации второй гармоники оптического излучения, которое бы обеспечивало повышение эффективности генерации второй гармоники оптического излучения.
Поставленная задача решается тем, что устройство для генерации второй гармоники оптического излучения содержит активный элемент на основе нитрида алюминия, выполненный из одной или нескольких пар чередующихся слоев нитрида алюминия собственной проводимости толщиной 100-900 нм и материала с металлической проводимостью толщиной 1-5 нм.
Новым в устройстве является выполнение активного элемента в виде по меньшей мере из одной пары чередующихся слоев нитрида алюминия собственной проводимости толщиной 100-900 нм и материала с металлической проводимостью толщиной 1-5 нм.
В устройстве материал с металлической проводимостью может быть выполнен из нитрида алюминия, легированного до концентрации от 1⋅1012 см-2 до 1⋅1014 см-2 или из металла.
Настоящее устройство может быть выращено на подложке, например, из Si, или GaAs, или AlN, или InP, или AlGaN, или Аl2O3, или β-Ga2O3. После чего подложка может быть удалена.
Настоящее устройство поясняется чертежом, где
на фиг. 1 схематически показано в разрезе настоящее устройство;
на фиг. 2 приведен расчет зависимости длины когерентности в предлагаемом устройстве от угла распространения при генерации второй гармоники для волны второй гармоники 545 нм;
на фиг. 3 приведен расчет зависимости длины когерентности в настоящем устройстве от угла распространения при генерации второй гармоники для волны второй гармоники 550 нм;
на фиг. 3 приведен расчет зависимости длины когерентности в настоящем устройстве от угла распространения при генерации второй гармоники для волны второй гармоники 555 нм.
Устройство для генерации второй гармоники оптического излучения (фиг. 1) содержит активный элемент на основе нитрида алюминия в виде одной или нескольких пар чередующихся слоев - слоя 1, состоящего из нитрида алюминия собственной проводимости толщиной 100-900 нм, и слоя 2, обладающего металлической проводимостью и состоящего из нитрида алюминия, легированного до концентрации от 1⋅1012 см-2 до 1⋅1014 см-2 или из металла толщиной 1-5 нм.
Диапазон толщин слоя 1 и слоя 2 определяют из следующих условий. Свет, распространяясь в подобных структурах, имеет характерный закон дисперсии, определяемый свойствами используемых материалов и соотношением между толщинами слоев полупроводника и металла. Толщина полупроводника должна быть порядка длины волны распространяющегося в материале света, чтобы свет испытывал воздействие возмущения показателя преломления в подобной периодической структуре. Выбор толщины слоя 2 с металлической проводимостью определяется тем, что он должен быть более чем на порядок тоньше слоя полупроводника, чтобы уменьшить поглощение в нем, но при этом иметь достаточную толщину, обеспечивающую дисперсионное изменение показателя преломления, удовлетворяющее условию согласования фаз 2k1= k2, где k1 - волновой вектор фундаментальной гармоники, а k2 - волновой вектор второй гармоники. Таким образом, нижняя граница толщины нитрида алюминия собственной проводимости 100 нм определяется краем поглощения нитрида алюминия для излучения второй гармоники. Верхняя граница толщины слоя нитрида алюминия 900 нм определяется тем, что с практической точки зрения генерации второй гармоники является важной для получения света в видимом - ультрафиолетовом спектральном диапазоне (250-700 нм). Нижняя граница слоя с металлической проводимостью 1 нм определяется технологической достижимостью, а верхняя граница 5 нм обусловлена требованием малого поглощения в этих слоях. Границы уровня концентрации задаются тем, что при достижении нижнего уровня концентрации легирования 1⋅1012 см-2 нитрид алюминия приобретает металлическую проводимость, верхняя граница 1⋅1014 см-2 определяется технологически достижимым уровнем.
Настоящее устройство работает следующим образом. Свет фундаментальной гармоники вводят в активный элемент под некоторым углом к его поверхности. Свет распространяется по активному элементу, возбуждает нелинейное взаимодействие со средой активного элемента, в результате чего возникает генерация второй гармоники, излучающейся из поверхности, противолежащей поверхности ввода фундаментальной гармоники. Величина угла φ распространения света в активном элементе зависит от выбора толщин слоев 1 и 2 и длины волны фундаментальной гармоники, и лежит в диапазоне 0°<φ<90° так, чтобы волновой вектор света имел ненулевую проекцию как на направление вдоль слоев 1 и 2, так и на направление чередования слоев 1 и 2. Соотношение между этими проекциями задает тангенс угла распространения, который становится еще одним управляемым параметром задачи (помимо толщин слоев 1 и 2 и закона дисперсии света в металлическом и полупроводниковом материале слое 1 и 2). Управляя толщинами слоев 1 и 2, а также углом распространения света φ, можно добиться нулевой дисперсии показателя преломления для фундаментальной и второй гармоник, то есть достичь истинного фазового синхронизма и высокой эффективности генерации второй гармоники оптического излучения.
Были проведены теоретические расчеты, подтверждающие достижимость истинного согласования фаз, обеспечивающего максимальную эффективность генерации второй гармоники в настоящем устройстве для генерации второй гармоники оптического излучения. Обычно расчет дисперсии света в метаматериалах производят с помощью разложения по плоским волнам. Этот метод эффективен для структур с соотносимыми значениями толщин слоев. Для структуры настоящего устройства для генерации второй гармоники оптического излучения метод плоских волн применить не удается, поэтому для теоретических расчетов используют метод блоховских амплитуд. Для света, распространяющегося в плоскости слоев 1 и 2, такая структура представляет собой обыкновенный пленарный волновод. Модификация закона дисперсии происходит при распространении света поперек чередующихся слоев 1 и 2, как показано на фиг. 1. Диэлектрическая проницаемость εb в слое 2, обладающем металлической проводимостью, определяется как проницаемость плазмы с характерной плазменной частотой ωр:
Figure 00000002
где ω - частота оптического излучения, Гц;
а для полупроводникового материала слоя 1 формально учитывается хроматическая дисперсия (J. Pastrňák and L. Roskovcová. Refraction index measurements on AIN single crystals, Phys. Stat. Sol. 14, K5-K8, 1966) с помощью коэффициентов Селлмайера. Результаты расчета показывают, что для каждого направления распространения света внутри рассматриваемой многослойной системы существует свой закон дисперсии и свои области разрешенных и запрещенных значений длин волн. Задача генерации второй гармоники сводится к подбору таких значений параметров, при которых одновременно осуществляются два условия: свет на основной и удвоенной частотах распространяется в одном направлении; на основной и удвоенной частотах выполняется условие фазового синхронизма, которое в терминах длины L когерентности формулируется следующим образом:
Figure 00000003
Из расчета следует, что при достаточно точном задании угла ϕ распространения излучения длина L когерентности может достигать нескольких сантиметров, и даже нескольких десятков сантиметров, что более чем на два порядка выше значений, достигаемых в известных устройствах. Возникает задача исследования чувствительности предложенной системы к возможным неточностям в задании угла распространения и длины волны падающего света. Результаты проведенных теоретических расчетов показаны на фигурах 2, 3, 4. Показаны зависимости длины когерентности от угла распространения для трех значений длин волн (550±5 нм). Приведенные зависимости показывают, что для структуры с толщинами слоев 1 и 2, лежащих в заданных интервалах, можно достичь истинного синхронизма для различных длин волн второй гармоники за счет изменения угла распространения света через предлагаемое устройство для генерации второй гармоники оптического излучения. Кроме того, из представленных фигур видно, что для весьма существенной длины когерентности L=10 мм, обеспечивающей высокую степень фазового синхронизма и высокий коэффициент эффективности генерации второй гармоники оптического излучения, ширина пика составляет порядка 20", что является достижимым с практической точки зрения.

Claims (3)

1. Устройство для генерации второй гармоники оптического излучения, содержащее активный элемент на основе нитрида алюминия, отличающееся тем, что активный элемент выполнен по меньшей мере из одной пары чередующихся слоев нитрида алюминия собственной проводимости толщиной 100-900 нм и материала с металлической проводимостью толщиной 1-5 нм.
2. Устройство по п. 1, отличающееся тем, что материал с металлической проводимостью выполнен из нитрида алюминия, легированного до концентрации от 1⋅1012 см-2 до 1⋅1014 см-2.
3. Устройство по п. 1, отличающееся тем, что материал с металлической проводимостью выполнен из металла.
RU2015153900A 2015-12-16 2015-12-16 Устройство для генерации второй гармоники оптического излучения RU2650597C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015153900A RU2650597C2 (ru) 2015-12-16 2015-12-16 Устройство для генерации второй гармоники оптического излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015153900A RU2650597C2 (ru) 2015-12-16 2015-12-16 Устройство для генерации второй гармоники оптического излучения

Publications (2)

Publication Number Publication Date
RU2015153900A RU2015153900A (ru) 2017-06-21
RU2650597C2 true RU2650597C2 (ru) 2018-04-16

Family

ID=59240236

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015153900A RU2650597C2 (ru) 2015-12-16 2015-12-16 Устройство для генерации второй гармоники оптического излучения

Country Status (1)

Country Link
RU (1) RU2650597C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158823A (en) * 1990-06-22 1992-10-27 Ibide Co., Ltd. Second harmonic wave generating device
US5313543A (en) * 1992-01-22 1994-05-17 Matsushita Electric Industrial Co., Inc. Second-harmonic generation device and method of producing the same and second-harmonic generation apparatus and method of producing the same
EP1843437A1 (en) * 2006-04-04 2007-10-10 Samsung Electronics Co., Ltd. DFB laser with monolithically integrated MMI and second harmonic generation
WO2009075363A1 (ja) * 2007-12-12 2009-06-18 National Institute For Materials Science 波長変換素子
EP2224284A1 (en) * 2007-12-12 2010-09-01 Osaka Prefecture University Public Corporation Composite photonic structure element, surface emitting laser using the composite photonic structure element, wavelength conversion element, and laser processing device using the wavelength conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158823A (en) * 1990-06-22 1992-10-27 Ibide Co., Ltd. Second harmonic wave generating device
US5313543A (en) * 1992-01-22 1994-05-17 Matsushita Electric Industrial Co., Inc. Second-harmonic generation device and method of producing the same and second-harmonic generation apparatus and method of producing the same
EP1843437A1 (en) * 2006-04-04 2007-10-10 Samsung Electronics Co., Ltd. DFB laser with monolithically integrated MMI and second harmonic generation
WO2009075363A1 (ja) * 2007-12-12 2009-06-18 National Institute For Materials Science 波長変換素子
EP2224284A1 (en) * 2007-12-12 2010-09-01 Osaka Prefecture University Public Corporation Composite photonic structure element, surface emitting laser using the composite photonic structure element, wavelength conversion element, and laser processing device using the wavelength conversion element

Also Published As

Publication number Publication date
RU2015153900A (ru) 2017-06-21

Similar Documents

Publication Publication Date Title
Lee et al. Tunable narrow-band terahertz generation from periodically poled lithium niobate
US11105979B2 (en) Graphene microcavity frequency combs and related methods of manufacturing
JP2015222414A (ja) テラヘルツ波発生装置、及びこれを用いた測定装置
Li et al. Photonic crystal waveguide electro-optic modulator with a wide bandwidth
Wu et al. Tunable multilayer Fabry-Perot resonator using electro-optical defect layer
WO2007088336A1 (en) Coating for optimising output coupling of em radiation
Nasari et al. Nonlinear terahertz frequency conversion via graphene microribbon array
US9455548B2 (en) Methods and apparatus for generating terahertz radiation
Trabelsi et al. Photonic band gap properties of one-dimensional photonic quasicrystals containing Nematic liquid crystals
US9261647B1 (en) Methods of producing strain in a semiconductor waveguide and related devices
Halpin et al. Enhanced terahertz detection efficiency via grating-assisted noncollinear electro-optic sampling
Biswal et al. Photonic transmission spectra in an extrinsic semiconductor based Gaussian random multilayer
Shin et al. Enhanced Pockels effect in AlN microring resonator modulators based on AlGaN/AlN multiple quantum wells
He et al. The working characteristics of electric field measurement based on the Pockels effect for AC–DC hybrid fields
Djukic et al. Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate
Ilyakov et al. Highly sensitive electro-optic detection of terahertz waves in a prism-coupled thin LiNbO3 layer
RU2650597C2 (ru) Устройство для генерации второй гармоники оптического излучения
RU2642472C1 (ru) Устройство для генерации второй гармоники оптического излучения
Novikov et al. Laue diffraction in one-dimensional photonic crystals: The way for phase-matched second-harmonic generation
RU2650352C1 (ru) Устройство для генерации второй гармоники оптического излучения
Hu et al. An integrated quasi-collinear coupled acoustooptical mode converter
Dutta et al. Low frequency piezoresonance defined dynamic control of terahertz wave propagation
JPH06110095A (ja) ミリ波・サブミリ波発生方法ならびにその装置
Mei et al. Efficient terahertz generation via GaAs hybrid ridge waveguides
JP2002510809A (ja) フォトニックバンドギャップ構造を用いたフォトニック信号の周波数変換

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20190607

Effective date: 20190607