RU2649951C2 - Электроформованные наклейки из pcda-phbv в качестве элементов аутентификации - Google Patents

Электроформованные наклейки из pcda-phbv в качестве элементов аутентификации Download PDF

Info

Publication number
RU2649951C2
RU2649951C2 RU2016106667A RU2016106667A RU2649951C2 RU 2649951 C2 RU2649951 C2 RU 2649951C2 RU 2016106667 A RU2016106667 A RU 2016106667A RU 2016106667 A RU2016106667 A RU 2016106667A RU 2649951 C2 RU2649951 C2 RU 2649951C2
Authority
RU
Russia
Prior art keywords
stickers
solution
phbv
electroformed
pcda
Prior art date
Application number
RU2016106667A
Other languages
English (en)
Other versions
RU2016106667A (ru
Inventor
Премнат ВЕНУГОПАЛАН
Джиоти Пракаш ДЖОГ
Сачин ДУБЕЙ
Усман КХАН
Original Assignee
Каунсил Оф Сайентифик Энд Индастриал Рисерч
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Каунсил Оф Сайентифик Энд Индастриал Рисерч filed Critical Каунсил Оф Сайентифик Энд Индастриал Рисерч
Publication of RU2016106667A publication Critical patent/RU2016106667A/ru
Application granted granted Critical
Publication of RU2649951C2 publication Critical patent/RU2649951C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/02Cigars; Cigarettes with special covers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/14Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using chemical means
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Paper (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Изобретение относится к электроформованным наклейкам из PCDA-PHBV на бумагу для использования в качестве элементов аутентификации. Электроформованные нановолоконные наклейки содержат от 60 до 90% сополимера гидроксибутирата и гидроксивалерата (PHBV) и от 10 до 40% 10,12-пентакозадииновой кислоты (PCDA) и нанесены на подложку, причем вышеупомянутые наклейки являются пригодными для использования в обнаружении фальсификации на подложке. Техническими результатами изобретения являются изготовление средств обнаружения фальсификации на сигаретах, которые позволяют проверять каждую сигарету, а не только пачку целиком, при этом предлагаемые элементы должны быть такими, чтобы они не воздействовали на сами изделия в процессе установки или применения, в том числе в отношении внешнего вида или в отношении способа применения, также элемент и способ аутентификации должны быть такими, чтобы они предпочтительно представляли собой простые визуальные средства обнаружения фальсификации. 4 н. и 6 з.п. ф-лы, 4 табл., 7 пр., 8 ил.

Description

Область техники
Настоящее изобретение описывает электроформованные наклейки из PCDA-PHBV на бумагу для использования в качестве элементов аутентификации. В частности, настоящее изобретение описывает изготовление электроформованных наклеек из PHBV-PCDA и использование вышеупомянутых изделий для аутентификации сигарет.
Уровень техники
Аутентификация документов, банкнот, удостоверений и обнаружение фальсификации с использованием простых средств без необходимости значительного вмешательства представляет собой проблему, которая привлекает интерес многих технологов и исследователей. В некоторых изделиях элементы аутентификации присутствуют, но все же не решают проблему фальсификации, например, в случае сигарет эти элементы присутствуют на пачке, но не представляют собой обязательные элементы каждой сигареты.
Фальсифицированные сигареты представляют собой основную проблему для производителей сигарет во всем мире, потому что фальсификация сигарет является чрезвычайно прибыльной, и здесь прибыли легко конкурируют с прибылями от торговли наркотиками. Проблема торговли фальсифицированными сигаретами существует много лет и представляет собой растущую всемирную проблему, которая наносит табачным производителям ущерб, составляющий сотни миллионов долларов ежегодно. Помимо обмана курильщиков, которые покупают фальсифицированные сигареты, торговля фальсифицированными сигаретами поддерживает организованную преступность. Кроме того, качество фальсифицированных сигарет часто оказывается низким и не соответствует государственным и отраслевым стандартам. Поскольку эти сигареты производятся с применением загрязненных табачных листьев, в результате их использования возрастает риск для здоровья, связанный с курением. Таким образом, фальсифицированные сигареты очень часто производят на значительно повышенных уровнях такие загрязняющие примеси, как смола, никотин, монооксид углерода, свинец, кадмий и мышьяк, по сравнению с подлинными фирменными сигаретами. Кроме того, потребители покупают фальсифицированные сигареты, которые транспортируются и хранятся в негигиеничных условиях.
Фальсифицированные сигареты составляют измеряемую миллиардами долларов всемирную отрасль, которая активно развивается с ростом акцизов на табачные изделия табачных налогов, а также растет популярность фальсифицированных сигарет, поскольку они оказываются доступными по сниженной цене. Поскольку курильщики стремятся сэкономить несколько долларов на своем курении, они не обращают внимания на фальсификацию сигарет, и цена становится для них более актуальной, чем вредные примеси, которые обычно содержатся в фальсифицированных сигаретах, такие как фекалии и опилки, и которые наносят значительно больший вред, чем нормальные сигареты.
Таким образом, фальсифицированные сигареты превращаются во всемирную проблему не только для производителей, но также для государственных учреждений вследствие значительного повышения риска для здоровья.
Обнаружение нелегальных сигарет с использованием портативных электронных детекторов, работающих на основе различных запахов фальсифицированных и подлинных сигарет, описывает Dehan Luo в статье под заголовком "Идентификация фирменных сигарет с использованием интеллектуальных электронных детекторов запахов". Однако этот способ является трудоемким и ненадежным.
В свете изложенного выше, в технике требуется эффективное решение, которое позволяет определять фальсификацию отдельных сигарет, а не сигаретных пачек.
Кроме того, для высококачественных сигарет требуются элементы аутентификации, которые позволяют конечному пользователю лично определять их подлинность. Кроме того, имеющиеся в настоящее время элементы аутентификации позволяют проверять подлинность не отдельных сигарет, а только содержащих сигареты упаковок.
Таким образом, требуются элементы обнаружения фальсификации и аутентификации, которые можно наблюдать визуально. Большинство существующих в настоящее время элементов аутентификации содержат пачки, а не отдельные сигареты. Существующие в настоящее время решения проблемы фальсификации и аутентификации представляют собой голографические наклейки, флуоресцентные краски, трафаретную печать, офсетную печать, флексографическую печать и бескрасочное тиснение. Во всех этих случаях элементы аутентификации также маркируют сигаретные пачки, но не отдельные сигареты. Кроме того, эти элементы аутентификации являются более дорогостоящими и затруднительными в применении, а также усугубляют такие проблемы, как способность биологического разложения и безопасность.
Таким образом, требуется изготовление средств обнаружения фальсификации на сигаретах, которые позволяют проверять каждую сигарету, а не только пачку целиком. Кроме того, предлагаемые элементы должны быть такими, чтобы они не воздействовали на сами изделия в процессе установки или применения, в том числе в отношении внешнего вида или в отношении способа применения. Данный элемент и способ аутентификации также должны быть такими, чтобы они предпочтительно представляли собой простые визуальные средства обнаружения фальсификации.
Задачи изобретения
Основная задача настоящего изобретения заключается в том, чтобы предложить электроформованные наклейки из PCDA-PHBV на подложки для использования в качестве элементов аутентификации.
Следующая задача настоящего изобретения заключается в том, чтобы предложить электроформованные наклейки из PCDA-PHBV на бумагу для использования в качестве элементов аутентификации отдельных сигарет, которые могут легко обнаруживаться.
Следующая задача настоящего изобретения заключается в том, чтобы предложить способ изготовления электроформованных наклеек из PCDA-PHBV на подложки.
Следующая задача настоящего изобретения заключается в том, чтобы предложить способ обнаружения фальсифицированных сигарет.
Сущность изобретения
Соответственно, настоящее изобретение предлагает электроформованные нановолоконные наклейки, содержащие от 60 до 90% сополимера гидроксибутирата и гидроксивалерата (PHBV) и от 10 до 40% 10,12-пентакозадииновой кислоты (PCDA) и нанесенные на подложку, причем вышеупомянутые наклейки являются пригодными для использования в обнаружении фальсификации на подложке.
Согласно варианту осуществления настоящего изобретения наклейки могут необязательно содержать от 0,25 до 2% наночастиц оксида металла, предпочтительно оксида цинка.
Согласно варианту осуществления настоящего изобретения предлагается способ изготовления электроформованных нановолоконных наклеек, включающий следующие стадии:
a. ультразвуковая обработка перенасыщенного раствора 10,12-пентакозадииновой кислоты (PCDA) в хлороформе в течение периода, составляющего от 25 до 30 минут, и последующая экструзия раствора с использованием политетрафторэтиленового (PTFE) шприцевого фильтра для получения раствора;
b. перемешивание раствора сополимера гидроксибутирата и гидроксивалерата (PHBV) в дихлорбензоле в течение периода, составляющего от 5 до 6 часов;
c. смешивание раствора, полученного на стадии (a), с раствором сополимера гидроксибутирата и гидроксивалерата (PHBV), полученного на стадии (b), в соотношении, составляющем от 1:9 до 4:6, и последующее перемешивание в течение периода, составляющего от 50 до 60 минут, для получения раствора;
d. нанесение смеси на подложку посредством приложения потенциала 15 кВ на расстоянии от 10 до 15 см, разделяющем шприц и коллектор, причем шприц содержит раствор, полученный на стадии (c), для получения электроформованных нановолоконных наклеек.
Согласно следующему варианту осуществления настоящего изобретения способ необязательно включает стадию смешивания обработанного ультразвуком гомогенного раствора оксида металла, предпочтительно оксида цинка, в хлороформе с раствором PCDA, полученным на стадии (a), перед смешиванием с раствором PHBV.
Согласно следующему варианту осуществления настоящего изобретения подложка наклеивается на коллектор, и подложка выбирается из группы, которую составляют бумага, металл, этикетка и стекло, и коллектор представляет собой алюминиевый лист.
Согласно следующему варианту осуществления настоящего изобретения предлагается способ обнаружения фальсификации на подложке, включающий:
a) нанесение электроформованных нановолоконных наклеек по п. 1 на подложку; и
b) наблюдение изменения цвета электроформованной нановолоконной наклейки, вызванного стимулирующим воздействием, для обнаружения фальсификации.
Согласно следующему варианту осуществления настоящего изобретения стимулирующее воздействие выбирается из группы, которую составляют температура, растворитель, давление или ультрафиолетовое излучение.
Согласно следующему варианту осуществления настоящего изобретения изменение цвета наклеек является необратимым или обратимым.
Согласно следующему варианту осуществления настоящего изобретения изменение цвета наклеек, содержащих наночастицы оксида цинка, является обратимым.
Согласно следующему варианту осуществления настоящего изобретения предлагается способ обнаружения чистоты органических растворителей, включающий воздействие растворителя на электроформованные нановолоконные наклейки, содержащие сополимер гидроксибутирата и гидроксивалерата (PHBV) и 10,12-пентакозадииновую кислоту (PCDA), и оценку чистоты на основании наблюдаемого изменения цветового контраста и различной интенсивности красного компонента.
Краткое описание чертежей
Фиг. 1 представляет классическую фирменную сигарету ITC, которая продается на рынке и на которой присутствуют электроформованные нановолокна PHBV-PCDA в мономерной форме. Они имеют белый цвет и являются невидимыми.
Фиг. 2 представляет сигарету с синей нановолоконной полоской после полимеризации и воздействия коротковолнового (254 нм) ультрафиолетового излучения в течение 30 секунд. Волокна прочно прикрепляются к сигаретной бумаге и не отслаиваются даже при грубом обращении.
Фиг. 3 представляет, как электроформованная полоска нановолокон PHBV-PCDA на сигарете становится красной после нагревания огнем спички с расстояния 10 см. Устойчивость нановолокон является очевидной.
Фиг. 4a-4c представляют полученные методом сканирующей электронной микроскопии (SEM) изображения волокон на сигаретной бумаге, имеющей шероховатую поверхность, соединительной ленте, имеющей матовую поверхность, и упаковочной коричневой ленте, имеющей глянцевую поверхность, соответственно.
Фиг. 5a-5c представляют полученные методом SEM изображения после отслаивания волокон на сигаретной бумаге, имеющей шероховатую поверхность, соединительной ленте, имеющей матовую поверхность, и упаковочной коричневой ленте, имеющей глянцевую поверхность, соответственно с использованием липкой ленты марки 3M.
Фиг. 6a-6c представляет измерение адгезии по способности изменения цвета при воздействии температуры после отслаивания волокон на сигаретной бумаге, имеющей шероховатую поверхность, соединительной ленте, имеющей матовую поверхность, и упаковочной коричневой ленте, имеющей глянцевую поверхность, соответственно, с использованием липкой ленты в течение одного цикла.
Фиг. 7a-7c представляет необратимое изменение цвета при воздействии температуры при отсутствии наночастиц ZnO на сигаретной бумаге, имеющей шероховатую поверхность, соединительной ленте, имеющей матовую поверхность, и упаковочной коричневой ленте, имеющей глянцевую поверхность, соответственно.
Фиг. 8a-8c представляет обратимое изменение цвета в течение почти 5 циклов нагревания и охлаждения до 100°C для волокон PCDA-PHBV, содержащих наночастицы ZnO размером 45 нм, на сигаретной бумаге, имеющей шероховатую поверхность, соединительной ленте, имеющей матовую поверхность, и упаковочной коричневой ленте, имеющей глянцевую поверхность, соответственно.
Подробное описание изобретения
Соответственно настоящее изобретение предлагает электроформованные нановолоконные наклейки, состоящие из полимеров, в качестве которых выбираются сополимер гидроксибутирата и гидроксивалерата (PHBV) (88% полигидроксибутирата и 12% полигидроксивалерата) и 10,12-пентакозадииновая кислота (PCDA), для обнаружения фальсификации на подложке. Кроме того, электроформованные нановолоконные наклейки необязательно содержат наночастицы оксида металла, который предпочтительно представляет собой оксид цинка. Электроформованные нановолоконные наклейки согласно настоящему изобретению можно наносить непосредственно на подложку в качестве элементов аутентификации для обнаружения фальсифицированных сигарет, причем их можно наносить непосредственно на сигаретную бумагу и другие различные поверхности, создавая элемент аутентификации/индикатор, который может изменять цвет в ответ на стимулирующее воздействие. В качестве подложки согласно настоящему изобретению могут выбираться бумага, металл, этикетка, пластмасса и т.д. Настоящее изобретение предлагает элемент аутентификации для обнаружения фальсифицированных сигарет, причем каждая сигарета содержит вышеупомянутый элемент аутентификации.
Электроформованные нановолоконные наклейки имеют два измерения и ограниченный размер (толщину) в третьем измерении, причем эта ограниченная толщина составляет от микрометров до нанометров, и изготовление осуществляется способом электроформования. Размер электроформованных нановолоконных наклеек согласно настоящему изобретению зависит от их конкретного применения.
Наклейки включают нановолокна, из которых образуется волоконная "сетка", и, таким образом, они имеют значительную структурную целостность и упругость, и в результате этого их можно обратимо растягивать, сжимать, изгибать или складывать.
Настоящее изобретение описывает электроформованные нановолоконные наклейки из полимеров, которые изменяют цвет вследствие изменений температуры, когда область волокон нагревается огнем спички, таким образом, что наклейки можно наносить на матрицу для обнаружения фальсификации визуальным способом. Изменение цвета может быть обратимым или необратимым.
Настоящее изобретение предлагает способ изготовления электроформованных нановолоконных наклеек, содержащих сополимер гидроксибутирата и гидроксивалерата (PHBV) и 10,12-пентакозадииновую кислоту (PCDA) и наносимых на подложки в качестве элементов аутентификации, который включает:
a) изготовление раствора мономерной 10,12-пентакозадииновой кислоты посредством ультразвуковой обработки 10,12-пентакозадииновой кислоты (PCDA) в хлороформе и последующая экструзия раствора с использованием политетрафторэтиленового (PTFE) шприцевого фильтра;
b) необязательное смешивание обработанного ультразвуком гомогенного раствора оксида цинка в хлороформе с раствором PCDA, полученным на стадии (a);
c) смешивание раствора, полученного на стадии (b), с раствором сополимера гидроксибутирата и гидроксивалерата (PHBV); и
d) электроформование смеси и последующее нанесение смеси на подложку для получения электроформованных нановолоконных наклеек.
Настоящее изобретение предлагает способ нанесения электроформованных нановолоконных наклеек, изготовленных из сополимера гидроксибутирата и гидроксивалерата (PHBV) и 10,12-пентакозадииновой кислоты (PCDA), на подложку, который включает:
i. приложение потенциала 15 кВ на расстоянии от 10 до 15 см, разделяющем шприц и коллектор, причем шприц содержит раствор смеси, содержащей PHBV-PCDA и необязательно оксид цинка, и наклеивание подложки на алюминиевый коллектор для получения электроформованных наклеек из PHBV-PCDA, нанесенных на подложку.
В качестве подложки, наклеенной на коллектор, могут выбираться бумага, используемая как сигаретная бумага, металл, этикетка и пластмасса.
Настоящее изобретение предлагает способ обнаружения фальсификации на подложке, включающий:
a) нанесение электроформованных нановолоконых наклеек, содержащих сополимер гидроксибутирата и гидроксивалерата (PHBV) и 10,12-пентакозадииновую кислоту (PCDA), на подложку; и
b) наблюдение изменения цвета электроформованной нановолоконной наклейки, вызванного стимулирующим воздействием, для обнаружения фальсификации.
Стимулирующее воздействие выбирается из группы, которую составляют температура, растворитель, давление или ультрафиолетовое излучение, и изменение цвета наклеек может быть необратимым или обратимым.
Изменение цвета наклеек, содержащих наночастицы оксида цинка (45 нм), является обратимым.
Настоящее изобретение предлагает способ обнаружения фальсифицированных сигарет, причем вышеупомянутый способ включает:
a. нанесение электроформованных нановолоконых наклеек, содержащих сополимер гидроксибутирата и гидроксивалерата (PHBV) и 10,12-пентакозадииновую кислоту (PCDA), на сигаретную бумагу; и
b. наблюдение изменения цвета электроформованной нановолоконной наклейки, вызванного стимулирующим воздействием, для обнаружения фальсификации.
Стимулирующее воздействие для изменения цвета электроформованных нановолоконных наклеек может выбираться из группы, которую составляют температура, растворитель, давление или ультрафиолетовое излучение. Однако воздействие ультрафиолетового излучения не может вызывать превращение синего цвета в красный и вызывает только образование сополимера PCDA из бесцветных мономеров, причем этот сополимер имеет синий цвет.
Изменение цвета наклеек может быть необратимым.
Наклейки дополнительно содержат наночастицы оксида цинка. Изменение цвета наклеек, содержащих наночастицы ZnO, является обратимым, независимо от стимулирующего воздействия.
Электроформованные нановолоконные наклейки, изготовленные из PCDA-PHBV, можно использовать для определения чистоты растворителей на основе изменения цветового контраста и различной интенсивности красного компонента при воздействии растворителей на наклейки.
Примеры
Следующие примеры представлены в качестве иллюстрации и, таким образом, не следует считать, что они ограничивают объем настоящего изобретения.
Пример 1
Изготовление электроформованных нановолокон, содержащих сополимер гидроксибутирата и гидроксивалерата (PHBV) и 10,12-пентакозадииновую кислоту (PCDA), и их непосредственное нанесение на сигаретную бумагу и ободковую бумагу.
A. Синтез мономерной 10,12-пентакозадииновой кислоты
В пробирку для культуры объемом 15 мл помещали 0,5 г 10,12-пентакозадииновой кислоты, полученной от компании Aldrich (США). В эту пробирку добавляли 3 мл хлороформа, полученного от компании Rankem. Реакционную смесь обрабатывали ультразвуком в течение 30 минут для гомогенизации. Эта смесь имела красный цвет. Используя шприцевой фильтр из PTFE, имеющий размер ячеек 0,45 мкм, раствор экструдировали, получая прозрачный раствор. Таким способом отделяли полимеризованную часть. Этот прозрачный раствор помещали в круглодонную колбу объемом 100 мл и хлороформ удаляли на роторном испарителе, получая 0,42 г чистой белой мономерной 10,12-пентакозадииновой кислоты.
B. Электроформование PHBV-PCDA-ZnO и нанесение нановолокон на бумагу
В пробирку для культуры объемом 15 мл помещали 1,76 г сополимера, содержащего 88% гидроксибутирата и 12% гидроксивалерата, и 5 мл дихлорбензола и перемешивали в течение 6 часов. В пробирку для культуры объемом 10 мл помещали 2 мл хлороформа и 0,02 г наночастиц ZnO, имеющих средний размер 45 нм и полученных от компании Sigma-Aldrich (США). Этот раствор обрабатывали ультразвуком в течение одного часа, получая гомогенный раствор. Одновременно 0,20 г мономерной 10,12-пентакозадииновой кислоты добавляли в 3 мл хлороформа в пробирке для культуры, которую закрывали алюминиевой фольгой. Раствор перемешивали в течение 30 минут. Вскоре после этого раствор ZnO добавляли в раствор PCDA, получая суммарный объем 5 мл. Смесь продолжали перемешивать в течение еще одного часа. Через 6 часов раствор PHBV добавляли в смешанный раствор PCDA и ZnO, получая 20 мас.% раствор, имеющий суммарный объем 10 мл. Эту содержащую PHBV, PCDA и ZnO смесь в пробирке для культуры объемом 15 мл перемешивали в течение одного часа. Через 1 час этот раствор помещали в одноразовый шприц объемом 12 мл от компании Dispovan. Иглу затупляли трением о грубую наждачную бумагу до тех пор, пока не исчезал острый кончик. Содержащий этот смешанный раствор шприц затем вставляли в шприцевой насос модели 11 Plus от компании Harvard Apparatus. Коллектор для электроформования представлял собой алюминиевую пластину, имеющую размеры листа бумаги формата A4. Сигарету наклеивали на этот алюминиевый коллектор, используя липкую ленту. Между шприцем и коллектором прилагали потенциал 15 кВ. Расстояние от шприца до коллектора составляло 15 см, и скорость потока составляла 1 мл/ч. Через 5 часов на исследуемую сигаретную бумагу наносили электроформованные волокна. Волокна имели белый цвет и хорошо перемешивались с сигаретной бумагой, как представлено на фиг. 1.
C. Электроформование PHBV-PCDA без ZnO и нанесение нановолокон на бумагу
В пробирку для культуры объемом 15 мл помещали 1,76 г сополимера, содержащего 88% гидроксибутирата и 12% гидроксивалерата, и 5 мл дихлорбензола и перемешивали в течение 6 часов. Одновременно 0,24 г мономерной 10,12-пентакозадииновой кислоты в 5 мл хлороформ помещали в пробирку для культуры, которую закрывали алюминиевой фольгой. Раствор перемешивали в течение 30 минут. Через 6 часов раствор PHBV добавляли в раствор PCDA, получая 20 мас.% раствор, имеющий суммарный объем 10 мл. Эту содержащую PHBV и PCDA в пробирке для культуры объемом 15 мл перемешивали в течение одного часа. Через 1 час этот раствор помещали в одноразовый шприц объемом 12 мл от компании Dispovan. Иглу затупляли трением о грубую наждачную бумагу до тех пор, пока не исчезал острый кончик. Содержащий этот смешанный раствор шприц затем вставляли в шприцевой насос модели 11 Plus от компании Harvard Apparatus. Коллектор для электроформования представлял собой алюминиевую пластину, имеющую размеры листа бумаги формата A4. Сигарету наклеивали на этот алюминиевый коллектор, используя липкую ленту. Между шприцем и коллектором прилагали потенциал 15 кВ. Расстояние от шприца до коллектора составляло 15 см, и скорость потока составляла 1 мл/ч. Через 5 часов на исследуемую сигаретную бумагу наносили электроформованные волокна. Волокна имели белый цвет и хорошо перемешивались с сигаретной бумагой, как представлено на фиг. 1.
Пример 2. Изменение цвета при воздействии ультрафиолетового излучения для обнаружения фальсификации
На сигаретную бумагу, содержащую прикрепленные электроформованные нановолокна, изготовленные в примере 1, в течение 30 секунд воздействовало коротковолновое ультрафиолетовое излучение (254 нм). Белые волокна приобретали синий цвет вследствие полимеризации под действием коротковолнового ультрафиолетового излучения, как представлено на фиг. 2.
Пример 3
Изменение цвета под действием нагревания для обнаружения фальсификации
Сигареты, изготовленные в примере 1, подвергали нагреванию огнем спички с расстояния, составляющего от 5 до 10 см. На белые волокна, полученные в примере 1, в течение 30 секунд воздействовало ультрафиолетовое излучение с длиной волны 254 нм, и они приобретали синий цвет. Синие волокна на поверхности сигареты приобретали красный цвет при воздействии тепла и возвращали свой исходный синий цвет после удаления спички, как проиллюстрировано на фиг. 3. Этот взаимный переход синего и красного цветов воспроизводимо осуществлялся в течение пяти циклов.
Пример 4
Нанесение на поверхность, определение сродства и измерение адгезии
В качестве трех различных поверхностей были выбраны сигаретная бумага, имеющая шероховатую поверхность; соединительная лента, имеющая матовую поверхность, и упаковочная коричневая лента, имеющая глянцевую поверхность, и на них были нанесены волокна. После нанесения волокон снимали фотографии методом SEM и считали число волокон на площади 25 мкм, чтобы определить плотность и сродство определенных поверхностей, которые прикрепляют больше волокон по сравнению с другими, как представлено ниже в таблице 1 и на фиг. 4a-4c.
Таблица 1
Поверхность Плотность, число волокон на 25 мкм
Шероховатая поверхность/сигаретная бумага (фиг. 4a) 0,44
Матовая поверхность/соединительная лента (фиг. 4b) 0,24
Глянцевая поверхность/упаковочная коричневая лента (фиг. 4c) 0,08
Параметр плотности четко демонстрирует, что к шероховатой поверхности прикрепляется большее число волокон по сравнению с глянцевой поверхностью, причем матовая поверхность занимает промежуточное положение. Все эти поверхности обрабатывали в одинаковых условиях электроформования (продолжительность нанесения, скорость потока, расстояние и электрическое напряжение). Кроме того, чтобы продемонстрировать адгезию волокон, авторы настоящего изобретения осуществляли отслаивание, используя липкую ленту марки 3M, чтобы удалить волокна с этих поверхностей. На эти поверхности, содержащие волокна, прочно приклеивали липкую ленту, которую затем медленно удаляли. Чтобы количественно определить адгезию, снова получали изображения методом SEM и измеряли плотность, как проиллюстрировано в таблице 2 и на фиг. 5a-5c.
Таблица 2
Поверхность Плотность после отслаивания Степень отслаивания (%)
Сигаретная бумага/шероховатая поверхность 0,32 27,27
Матовая поверхность 0,08 66,6
Глянцевая поверхность 0,006 92,5
Настоящее изобретение предлагает измерение адгезии по способности изменения цвета этих поверхностей после отслаивания с использованием липкой ленты в течение одного цикла. Интенсивность красного компонента измеряли, используя инструмент восприятия цвета программы Paintbrush в операционной системе Windows 7. Значение по шкале RGB (красный-зеленый-синий) показывает интенсивность красного компонента как значение R, причем значение R определяли, используя инструмент восприятия цвета программы Paintbrush цвета. Результаты представлены ниже в таблице 3 и на фиг. 6a-6c.
Таблица 3
Поверхность Потеря
1. Сигаретная бумага/шероховатая поверхность Потеря интенсивности красного компонента при воздействии температуры только на 3-5%
2. Соединительная лента/матовая поверхность Потеря интенсивности красного компонента при воздействии температуры только на 5%
3. Упаковочная коричневая лента/глянцевая поверхность Потеря интенсивности красного компонента при воздействии температуры на 15% после одного цикла отслаивания
Пример 5
Необратимое изменение цвета при воздействии температуры
Электроформованные наклейки из PCDA-PHBV, в которых не содержались наночастицы ZnO, имеющие размер 45 мкм, не проявляли обратимости цвета даже после одного цикла нагревания и охлаждения, как представлено на фиг. 7a-7c.
Пример 6
Обратимое изменение цвета при воздействии температуры
Обратимое изменение цвета для почти пяти циклов нагревания и охлаждения до 100°C наблюдалось, когда волокна PCDA-PHBV изготавливали с добавлением наночастиц ZnO, имеющих размер 45 нм, которые поставляет компания Sigma-Aldrich. Результаты проиллюстрированы на фиг. 8a-8c.
Пример 7
Необратимое изменение цвета при воздействии растворителей
Волокна PCDA-PHBV наносили на шероховатую поверхность бумаги (фильтровальная бумага Whatmann № 1) и добавляли 0,1 мл растворителя из списка в таблице 4. Наблюдали изменения цветового контраста и цвета и различные интенсивности красного компонента, которые можно было использовать для целей обнаружения.
Растворители, полученные от компании Merck, имели квалификацию «чистый для ВЭЖХ» (высокоэффективная жидкостная хроматография) и «чистый для анализа». Используемый этанол, полученный от компании Changsu Yangyuan Chemicals (Китай), был абсолютным и имел квалификацию «чистый для анализа».
Таблица 4
Растворитель До воздействия После воздействия
Хлороформ
Figure 00000001

Хлороформ
Значение R=60
Figure 00000002

Хлороформ
Среднее значение R=133
Дихлорметан
Figure 00000003

Дихлорметан
Значение R=60
Figure 00000004

Дихлорметан
Значение R=177
Ксилол
Figure 00000005

Ксилол
Значение R=60
Figure 00000006

Ксилол
Значение R=141
Тетрагидрофуран
Figure 00000007
Тетрагидрофуран
Значение R=60
Figure 00000008

Тетрагидрофуран
Значение R=191
Этанол
Figure 00000009

Этанол
Значение R=60
Figure 00000010

Этанол
Значение R=167
На рисунках этих волокон случайным образом выбирали по пять экспериментальных точек, чтобы оценить соответствующие интенсивности красного и синего компонентов, используя инструмент восприятия цвета. Полученные значения затем усредняли, чтобы вычислить среднее значение, которое здесь представлено как среднее значение R. В случае как синих, так и красных волокон, где упоминается значение R, оно представляет собой среднее значение по пяти измерениям интенсивности красного компонента.
Преимущества изобретения
Элемент аутентификации можно быть нанесен на каждую единицу исследуемых предметов.
Обнаружение осуществляется простым визуальным методом.
Для обнаружения не требуется дополнительная инфраструктура.
Процесс обнаружения является обратимым.

Claims (16)

1. Электроформованные нановолоконные наклейки, содержащие от 60 до 90% сополимера гидроксибутирата и гидроксивалерата (PHBV) и от 10 до 40% 10,12-пентакозадииновой кислоты (PCDA) и нанесенные на подложку, причем вышеупомянутые наклейки являются пригодными для использования в обнаружении фальсификации на подложке.
2. Электроформованные нановолоконные наклейки по п.1, причем вышеупомянутые наклейки могут необязательно содержать от 0,25 до 2% наночастиц оксида металла, предпочтительно оксида цинка.
3. Способ изготовления электроформованных нановолоконных наклеек, включающий следующие стадии, на которых осуществляют:
a. ультразвуковую обработку перенасыщенного раствора 10,12-пентакозадииновой кислоты (PCDA) в хлороформе в течение периода, составляющего от 25 до 30 минут, и последующую экструзию раствора с использованием политетрафторэтиленового (PTFE) шприцевого фильтра для получения раствора;
b. перемешивание раствора сополимера гидроксибутирата и гидроксивалерата (PHBV) в дихлорбензоле в течение периода, составляющего от 5 до 6 часов;
c. смешивание раствора, полученного на стадии (a), с раствором сополимера гидроксибутирата и гидроксивалерата (PHBV), полученного на стадии (b), в соотношении, составляющем от 1:9 до 4:6, и последующее перемешивание в течение периода, составляющего от 50 до 60 минут, для получения раствора;
d. нанесение смеси на подложку посредством приложения потенциала 15 кВ на расстоянии от 10 до 15 см, разделяющем шприц и коллектор, причем шприц содержит раствор, полученный на стадии (c), для получения электроформованных нановолоконных наклеек.
4. Способ по п. 3, в котором способ также включает стадию смешивания обработанного ультразвуком гомогенного раствора оксида металла, предпочтительно оксида цинка, в хлороформе с раствором PCDA, полученным на стадии (a), перед смешиванием с раствором PHBV.
5. Способ по п. 4, в котором подложку наклеивают на коллектор, причем подложку выбирают из группы, которую составляют бумага, металл, этикетка и стекло, при этом коллектор представляет собой алюминиевый лист.
6. Способ обнаружения фальсификации на подложке, в котором осуществляют:
a) нанесение электроформованных нановолоконных наклеек по п. 1 на подложку; и
b) наблюдение изменения цвета электроформованной нановолоконной наклейки, вызванного стимулирующим воздействием, для обнаружения фальсификации.
7. Способ по п. 6, в котором стимулирующее воздействие выбирается из группы, которую составляют температура, растворитель, давление или ультрафиолетовое излучение.
8. Способ по п.6, в котором изменение цвета наклеек является необратимым или обратимым.
9. Способ по п. 6, в котором изменение цвета наклеек, содержащих наночастицы оксида цинка, является обратимым.
10. Способ определения чистоты органических растворителей, в котором обеспечивают воздействие растворителя на электроформованные нановолоконные наклейки, содержащие сополимер гидроксибутирата и гидроксивалерата (PHBV) и 10,12-пентакозадииновую кислоту (PCDA), и осуществляют оценку чистоты на основании наблюдаемого изменения цветового контраста и различной интенсивности красного компонента.
RU2016106667A 2013-07-31 2014-07-31 Электроформованные наклейки из pcda-phbv в качестве элементов аутентификации RU2649951C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN2290DE2013 2013-07-31
IN2290/DEL/2013 2013-07-31
PCT/IN2014/000503 WO2015015515A2 (en) 2013-07-31 2014-07-31 Pcda-phbv electrospun adherent mats as authentication feature

Publications (2)

Publication Number Publication Date
RU2016106667A RU2016106667A (ru) 2017-09-01
RU2649951C2 true RU2649951C2 (ru) 2018-04-05

Family

ID=51842711

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016106667A RU2649951C2 (ru) 2013-07-31 2014-07-31 Электроформованные наклейки из pcda-phbv в качестве элементов аутентификации

Country Status (3)

Country Link
US (1) US9569906B2 (ru)
RU (1) RU2649951C2 (ru)
WO (1) WO2015015515A2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108547010B (zh) * 2018-05-18 2020-09-22 江南大学 一种光/热双致变色纤维的制备方法及其所得材料和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763080A1 (fr) * 1997-05-06 1998-11-13 Mauduit Papeteries Procede de marquage d'un papier a cigarette
WO2005035258A2 (en) * 2003-10-07 2005-04-21 Rock-Tenn Company Packaging material with embedded security mechanisms
WO2010112940A1 (en) * 2009-04-02 2010-10-07 Datalase Ltd. Laser imaging
US20120160255A1 (en) * 2011-09-04 2012-06-28 Iran Tobacco Company(Itc) Nanostructural filter for removing toxic compounds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468759B1 (en) * 1997-03-03 2002-10-22 Regents Of The University Of California Direct colorimetric detection of biocatalysts
US6787108B2 (en) * 2002-04-02 2004-09-07 Cmc Daymark Corporation Plural intrinsic expiration initiation application indicators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763080A1 (fr) * 1997-05-06 1998-11-13 Mauduit Papeteries Procede de marquage d'un papier a cigarette
WO2005035258A2 (en) * 2003-10-07 2005-04-21 Rock-Tenn Company Packaging material with embedded security mechanisms
WO2010112940A1 (en) * 2009-04-02 2010-10-07 Datalase Ltd. Laser imaging
US20120160255A1 (en) * 2011-09-04 2012-06-28 Iran Tobacco Company(Itc) Nanostructural filter for removing toxic compounds

Also Published As

Publication number Publication date
WO2015015515A2 (en) 2015-02-05
RU2016106667A (ru) 2017-09-01
WO2015015515A3 (en) 2015-07-23
WO2015015515A8 (en) 2015-04-09
US20160180625A1 (en) 2016-06-23
US9569906B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
Fritsche et al. Current availability of stem cell-based in vitro methods for developmental neurotoxicity (DNT) testing
Ton et al. A Versatile Fiber‐Optic Fluorescence Sensor Based on Molecularly Imprinted Microstructures Polymerized in Situ
Zou et al. Cross-linking induced emission of polymer micelles for high-contrast visualization level 3 details of latent fingerprints
Matarèse et al. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes
Koehler et al. Morphological skin ageing criteria by multiphoton laser scanning tomography: non‐invasive in vivo scoring of the dermal fibre network
Denning et al. Piezoelectric properties of aligned collagen membranes
WO2006044957A2 (en) Porous photonic crystal with light scattering domains and methods of synthesis and use thereof
Zhang et al. Fluorescent poly (vinyl alcohol) films containing chlorogenic acid carbon nanodots for food monitoring
RU2649951C2 (ru) Электроформованные наклейки из pcda-phbv в качестве элементов аутентификации
US8961727B2 (en) Apparatus and methods for the optical examination of birefringent specimens
Syu et al. Electrospun Fibers as a Solid‐State Real‐Time Zinc Ion Sensor with High Sensitivity and Cell Medium Compatibility
Morris et al. Study of water adsorption in poly (N-isopropylacrylamide) thin films using fluorescence emission of 3-hydroxyflavone probes
CN105796113B (zh) 一种基碳纳米粒子为荧光标记物的指纹检测方法
EP3083263A1 (fr) Procede de traitement de surface d'un document de securite et document de securite associe
Mazzini Junior et al. Fluorescent polymer nanofibers based on polycaprolactone and dansyl derivatives for development of latent fingerprints
Alatawi et al. Dual mode stimuli‐responsive color‐tunable transparent photoluminescent anticounterfeiting polycarbonate electrospun nanofibers embedded with lanthanide‐doped aluminate
KR20100075224A (ko) 지문 검출 또는 인식용 고분자 필름, 및 이를 이용한 지문검출 또는 인식방법
CN109023722A (zh) 高选择性检测tnt的低成本复合荧光纳米纤维薄膜及其制备方法与应用
De et al. Underlying mechanisms for the modulation of self-assembly and the intrinsic fluorescent properties of amino acid-functionalized gold nanoparticles
Chang et al. Dynamic covalent chemistry-based sensing: pyrenyl derivatives of phenylboronic acid for saccharide and formaldehyde
Lee et al. Label-free detection of dopamine based on photoluminescence of boronic acid-functionalized carbon dots in solid-state polyethylene glycol thin film
CN101281132A (zh) 鉴定红色印章印迹的拉曼光谱方法
Hou et al. A Versatile, Incubator‐Compatible, Monolithic GaN Photonic Chipscope for Label‐Free Monitoring of Live Cell Activities
Manos et al. Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays
KR101111186B1 (ko) 잠재지문 현출제의 현출효능 평가방법