RU2649519C2 - Способ непрерывного контроля уровня напряженного состояния человека - Google Patents
Способ непрерывного контроля уровня напряженного состояния человека Download PDFInfo
- Publication number
- RU2649519C2 RU2649519C2 RU2016110052A RU2016110052A RU2649519C2 RU 2649519 C2 RU2649519 C2 RU 2649519C2 RU 2016110052 A RU2016110052 A RU 2016110052A RU 2016110052 A RU2016110052 A RU 2016110052A RU 2649519 C2 RU2649519 C2 RU 2649519C2
- Authority
- RU
- Russia
- Prior art keywords
- stress
- level
- activity
- user
- person
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000012544 monitoring process Methods 0.000 title abstract description 10
- 230000000694 effects Effects 0.000 claims abstract description 58
- 230000037081 physical activity Effects 0.000 claims abstract description 33
- 230000008859 change Effects 0.000 claims abstract description 15
- 230000033001 locomotion Effects 0.000 claims abstract description 14
- 230000003993 interaction Effects 0.000 claims abstract description 11
- 238000007667 floating Methods 0.000 claims abstract description 9
- 230000037023 motor activity Effects 0.000 claims abstract description 8
- 230000001133 acceleration Effects 0.000 claims abstract description 7
- 210000000653 nervous system Anatomy 0.000 claims abstract description 5
- 230000000737 periodic effect Effects 0.000 claims description 6
- 230000000739 chaotic effect Effects 0.000 claims description 4
- 230000008602 contraction Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 4
- 238000012937 correction Methods 0.000 abstract description 4
- 230000010247 heart contraction Effects 0.000 abstract description 4
- 239000003814 drug Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 134
- 230000002996 emotional effect Effects 0.000 description 30
- 238000004364 calculation method Methods 0.000 description 11
- 230000033764 rhythmic process Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 230000002354 daily effect Effects 0.000 description 7
- 230000008451 emotion Effects 0.000 description 7
- 230000003304 psychophysiological effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000008447 perception Effects 0.000 description 5
- 230000006461 physiological response Effects 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000011514 reflex Effects 0.000 description 4
- 210000000707 wrist Anatomy 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000037007 arousal Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000003340 mental effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 206010048909 Boredom Diseases 0.000 description 1
- 208000030814 Eating disease Diseases 0.000 description 1
- 208000019454 Feeding and Eating disease Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000037326 chronic stress Effects 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 235000014632 disordered eating Nutrition 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000009532 heart rate measurement Methods 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 208000020685 sleep-wake disease Diseases 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Educational Technology (AREA)
- Developmental Disabilities (AREA)
- Child & Adolescent Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Telephone Function (AREA)
Abstract
Изобретение относится к способам непрерывного контроля функционального состояния и функциональной диагностики. Способ включает использование биометрического детектора в виде наручных часов или браслета, данные с которого используют для буферизации значений интервалов между соседними ударами сердца в течение заданного временного окна, а также для создания гистограммы распределения этих интервалов и вычисления уровня стресса, основанного на вариабельности сердечного ритма. Данные биометрического детектора передают проводным или беспроводным способом на мобильное приложение на базе платформы Android или iOS и исходя из данных графика гистограммы. По концентрации максимального количества интервалов Y между соседними сокращениями сердца в определенном диапазоне X мс определяют уровень стресса по формуле: уровень стресс = (Квозраст*(Y/размер плавающего окна))*К шкалы. Где Y - число интервалов между соседними ударами сердца с заданным отклонением друг о друга - 10, 20 или 50 мс. Квозраст – коэффициент, учитывающий поправку на возраст в диапазоне 0,7…1. Кшкалы - принимает два значения: 10 - для шкал на носимых устройствах и 1000 - для шкал на мобильных устройствах экспертных систем. Размер плавающего окна - 128, 256 или 512 отсчетов пульса. Полученное значение уровня стресса указывает на уровень напряженности нервной системы. На максимуме гистограммы распределения получают зону максимального количества интервалов Y между соседними интервалами сердца, которая служит показателем для выбора события, определяющего причину стресса. Регистрируют показатели интенсивности движений пользователя с помощью встроенного в биометрический детектор электрического акселерометра, причем физическую активность оценивают либо посредством измерения количества шагов, сделанных человеком в заданном интервале времени, либо посредством измерения амплитуды вектора ускорений части тела, к которому присоединен биометрический детектор, по трем осям, где амплитуду движений измеряют в процентах от - максимальной шкалы акселерометра. Затем по распределению полученных данных во времени делают выводы о суточной двигательной активности и образе жизни человека. Вычисленный уровень стресса связывают с физической активностью человека и его взаимодействием с окружающими людьми и объектами по данным, которые собирают автоматически путем сбора сведений из приложений, установленных на электронном устройстве пользователя. Причем по собранным сведениям делают вывод о том, что именно послужило источником изменения уровня стресса, и предлагают пользователю исключить указанный источник. Изобретение позволяет повысить надежность и безопасность работы, улучшение методов психоэмоционального самоконтроля человека, повышение качества и информативности при общении людей в социальных сетях и прямом общении. 5 з.п. ф-лы, 7 ил.
Description
Изобретение относится к способам непрерывного контроля функционального состояния и функциональной диагностики и может найти применение в биомедицинских, информационных системах, индустрии развлечений, системах обучения и других системах и сферах человеческой деятельности, в которых информация о психическом, физическом и эмоциональном состоянии человека повышает надежность и безопасность их работы, поможет улучшить методы психоэмоционального самоконтроля человека, поможет повысить качество и информативность при общении людей в социальных сетях и прямом общении.
Увеличение качества жизни современного человека позволяет сосредоточить его внимание не только на удовлетворении простых потребностей, но большее время уделять физическому и эмоциональному здоровью, развитию так называемого эмоционального интеллекта. Для контроля физического здоровья существует довольно большое количество технических средств от весов до измерителей давления и уровня сахара в крови. Однако психоэмоциональное здоровье часто остается вне рамок контроля, что связано с отсутствием доступных технических средств. Важность контроля функционального состояния проявляется при принятии решений, борьбе со стрессом, необходимости делиться с окружающими своими эмоциями.
Когда уровень напряжения психических и физиологических систем человека высок, он не может полноценно общаться с друзьями или родственниками, не может наслаждаться жизнью и принимать правильные решения. Также высокий стресс часто сопровождается расстройством сна и нарушением пищевого поведения. Хронический стресс может вызвать нервный срыв, при котором разрушается адекватность восприятия окружающего мира, и даже перейти в соматические заболевания. Поэтому для контроля физического состояния человека важно контролировать уровень стресса.
Напряженные состояния связаны со стрессовыми воздействиями, которые действуют на человека изнутри и снаружи. При стрессовых воздействиях происходят регулятороно-адаптационные изменения в работе физиологических систем. Данные изменения можно фиксировать техническими средствами по некоторому количеству физиологических сигналов и извлечь из них информацию об уровне напряжения системы регуляции. Известен ряд технических решений, предназначенных для оценки психоэмоциональных и напряженных состояний человека с использованием технических средств и различных биосенсоров с последующим анализом данных с использованием вычислительных устройств.
Известен способ оценки уровню напряжения регуляторных систем человека по стресс-индексу, который определяют по анализу гистограмм как отношение высоты гистограммы к ее ширине (Лившиц М.Е. Статистические исследования показателей регуляции сердечного ритма. // Физиология человека. - 1987. - Т. 13, №6. - С. 965). Невысокая достоверность этого показателя основана на его недостатках: ненормированность (значения могут меняться в произвольном диапазоне), нелинейный характер изменения и гиперчувствительность.
Известен способ определения эмоциональных состояний по физиологическим реакциям (Патент США US 20080221401 А1), который основан на способ идентификации эмоциональных состояний человека в реальном времени путем воздействия на человека раздражителя, измерение соответствующую физиологическую реакцию по данным регистраций электрофизиологических сигналов с большого количества биодатчиков, включая датчики пульса, встроенных в специальный жилет и последующим сравнением измеренного физиологического ответа с некоторым базовым уровнем. Отклонение измеренного физиологического ответа от базовой физиологической реакции является определяющим фактором эмоционального состояния.
Известен «Способ психофизиологического исследования человека» (РФ патент №2125649), в соответствии с которым регистрируют силу, вызванную проявлениями жизнедеятельности организма человека, выделяют сигналы, соответствующие сердечному толчку, дыхательным экскурсиям грудной клетки и двигательной активности, сравнивают фоновые характеристики с измеряемыми и диагностируют стрессовую ситуацию. Способ позволяет фиксировать только стрессовую ситуацию.
Известен «Способ определения эмоционального напряжения» (РФ патент №2098013) в котором реализуется возможность определения эмоционального напряжения у лиц с сохранной и нарушенной психической адаптацией путем регистрации КГР с правой руки по Тараханову в модификации Соколова в состоянии покоя и при одновременном перемножении в уме двузначных чисел и поочередном сжимании и разжимании пальцев левой руки, с последующим сравнением количества одно- и полифазных КГР в состоянии покоя и во время нагрузки.
Известен «Способ определения функционального состояния человека» (патент RU 2289301), в котором регистрируют ритм сердечной деятельности и измеряют длительность кардиоинтервалов, при этом одновременно с регистрацией ритма сердечной деятельности измеряют значения систолического и диастолического артериального давления. Значение показателя функционального состояния человека рассчитывают по специальной формуле.
Известен «Способ определения эмоционального стресса и устройство для его осуществления» (патент RU 2073484) основанный на регистрации вегетативных показателей человека: частоты сердечных сокращений, частоты дыхания и кожно-гальванического сопротивления и на расчете кросскорреляционных коэффициентов, по значениям которых определяют степень развития стресса. Устройство представляет собой портативный переносной прибор с автономным питанием для индивидуального пользования, в котором осуществляют персональное программирование предельно допустимого уровня стресса и получают сигнал оповещения в случае возрастаний стресса до опасной для здоровья и жизни черты.
Известен способ определения уровня стресса RU 2147831 включающий измерение частоты сердечных сокращений и пульсового артериального давления, отличающийся тем, что дополнительно измеряют массу тела, после чего определяют уровень стресса по формуле S=f ПАД М1/3 К, где S - уровень испытываемого стресса, усл. ед.; f - частота сердечных сокращений, мин - 1; ПАД - пульсовое артериальное давление, мм рт. ст.; М - масса тела, кг; К - нормирующий коэффициент.
Известен способ оценки психофизиологического состояния человека по сердечному ритму RU №2246251, заключающегося в том, что измеряют мощность низкочастотной (LF) и высокочастотной (HF) составляющих спектра динамического ряда кардиоинтервалов, предварительно измеряют нормы низкочастотной (LFs), высокочастотной (HFs) и суммарной мощности в низкочастотной и высокочастотной областях спектра динамического ряда кардиоинтервалов, дополнительно измеряют текущую суммарную мощность в низкочастотной и высокочастотной областях спектра динамического ряда кардиоинтервалов, а оценку состояния психофизиологического состояния человека проводят по индексу стресса S, определяемому по специальной формуле.
Известен Способ оценки и мониторинга психофизиологического состояния оператора по ритму сердца в процессе его профессиональной деятельности RU 2358647. Измеряют частоту сердечных сокращений во время выполнения операторской деятельности и определяют рабочий среднестатистический показатель (ЧCCi ср), а также рассчитывают первую производную кардиоинтервалограммы (ЧCCt). По полученным показателям определяют уровень психофизиологического напряжения по формуле: ЧССI ср/ЧССф. Сравнивают ЧCCt с ЧССI ср и, если ЧCCt укладывается в диапазон ЧССI ср±σ, состояние оценивают нормальным, если ЧCCt выходит за диапазон ЧССI ср±σ, состояние оценивают как перенапряженное, а если ЧCCt выходит за рамки диапазона ЧССI ср±3σ, то состояние оператора оценивают как предельно напряженное.
Известен способ Biosensor device and method.
US 8679008 B2 Одним из аспектов настоящего изобретения относится к портативному, портативное устройство, которое биосенсора проводится между двумя пальцами той же руки или иным контакты двумя точками на коже пользователя. Сенсорное устройство содержит пару электропроводных или полупроводниковых электродов и соответствующими схемами, предназначенных для смысла усиления и оцифровки электрическую проводимость кожи между электродами. Устройство измеряет КГР между двух пальцев. Стресс определяется путем вычисления значение тренда сигнала КГР. Положительный наклон, указывает на потенциально стрессовое событие Уровень положительного и отрицательного наклона задается с помощью пороговых показателе. Известен способ оценки вариабельности сердечного ритма, основанный на геометрическом анализе динамического ряда кардиоинтервалов. Данный показатель называется стресс-индекс SI и вычисляется как отношение амплитуды моды гистограммы к ее ширине с учетом корректирующих констант в числителе и знаменателе. В результате оценивают уровень симатического воздействия на управление сердечным ритмом организма (Баевский P.M. Анализ вариабельности сердечного ритма в космической медицине. // Физиология человека. - 2002. - Т. 28, №2. - С. 70-82).
Также среди группы параметров, описывающих вариабельность сердечного ритма, с уровнем стресса часто связывают индекс TINN (треугольная интерполяция интервалов NN). Значения этого индекса также сильно зависят от шума во время измерения и выбросам по краям гистограммы, в присутствии которых индекс может мгновенно вырасти, не отражая реального физиологического состояния. Кроме того, данный индекс зависит от размера окна обнаружения, его значения ограничены от 1 до NN (собственно числа анализируемых интервалов). Т.е. верхний диапазон привязан к конкретному значению NN., при при изменении размера окна весь диапазон принимаемых индексом значений меняется. Это делает невозможным непрерывное изменение стресса при наличии артефактов от движения человека во время его повседневной деятельности. Известные технические решения позволяют определить эмоциональное и психофизиологическое состояние человека и предназначены в основном для выявления физиологического отклика организма человека при различных стрессовых ситуациях. Психофизиологическое состояние оценивают по одному или, по крайней мере, по двум-трем параметрам, таким как, сердечный ритм, индекс биоэлектромагнитной реактивности, информации об интонации голоса, а также используя методы самоопроса, популярные в области психологии.
Известные технические решения являются аналогами по отношению к заявленному техническому решению и определяют лишь общий уровень техники и принципиальную возможность использования биоэлектрических сигналов для определения эмоционального состояния.
Недостатком приведенных способов является:
• Невозможность реализации методов непрерывного контроля из-за громоздкости технических решений по регистрации входных данных, например ношение манжеты при измерении давления, необходимость ношения микрофона, необходимость ношения нескольких биодатчиков;
• Отсутствует учет внешних факторов, влияющих на эмоциональное состояния человека, т.е. контекст в котором происходит регистрация и анализ входных данных для получения количественной оценки;
• Отсутствует учет уровня физической активности;
• Способы предназначены для решения научно-исследовательских задач предназначенных для узкого круга специалистов.
Наиболее близким по технической сущности является способ и устройство для восприятия (Apparatus and method for perceiving physical and emotional state) физических и эмоциональных состояний (Патент US 6656116, опубл. 24.04.2003), которые основаны на регистрации электрофизиологических сигналов с нескольких биодатчиков, включая датчики пульса, КГР, температуры, давления и пульсовых колебаний объема крови, встроенных в мобильное носимое устройство с последующим распознаванием дискретных эмоций типа "гнев", "скука", "счастье", "печаль" и "стресс" с помощью групповой оценки одиннадцати физиологических параметров.
Прототип основан на использовании биометрического детектора в виде наручных часов или браслета, данные с которого используют для буферизации значений интервалов между соседними ударами сердца в течение заданного временного окна, а также для создания гистограммы распределения этих интервалов и вычисление уровня стресса, основанного на вариабельности сердечного ритма.
Основными достоинствами данного способа является обеспечение мобильности ношения регистрирующего модуля, использование беспроводного канала передачи данных с датчиков в вычислительное устройство, распознавание дискретных эмоций, использование апробированных спектральных параметров ритма сердца для оценки эмоциональных состояний, использование апробированных параметров КГР, использование группового анализа для получения итоговой оценки эмоционального состояния.
Значимыми недостатками способа является:
• Необходимость контроля сигнала КГР, что приводит к наличию электрического контакта с кожей и введению узлов электрического развязки, увеличивающих габариты;
• Отсутствие учета контекста (внешних факторов), в котором происходит регистрация и анализ входных данных для получения количественной оценки;
• Отсутствие учета уровня физической активности;
• Отсутствие шкалы состояния, упрощающего восприятие итоговой информации пользователем;
• Потребность в использовании компьютера для обработки данных с целью получения выводов, что не позволяет получать результаты в оперативном режиме времени.
Наличие данных недостатков, а также наличие технической возможности их устранения, в соответствии с общим уровнем техники, является побудительным мотивом к реализации более совершенного способа непрерывного контроля уровня напряженного состояния.
Технический результат позволяет обеспечить:
- возможность учета контекста внешних факторов среды, в которой находится человек в процессе своей жизнедеятельности, учет физиологических реакций на действие данных факторов, учет уровня физической активности и периодов сна,
- упрощение восприятия итоговой информации пользователем;
- возможность получать результаты влияния среды на человека в оперативном режиме времени;
- повышение осведомленности пользователя о его собственном психоэмоциональном состоянии и источниках стресса с целью их последующего исключения или устранения факторов, их вызывающих.
Указанный технический результат достигается за счет того, что заявлен способ выявления источников стрессового состояния пользователя, включающий использование биометрического детектора в виде наручных часов или браслета, данные с которого используют для буферизации значений интервалов между соседними ударами сердца в течение заданного временного окна, а также для создания гистограммы распределения этих интервалов и вычисления уровня стресса, основанного на вариабельности сердечного ритма, отличающийся тем, что данные биометрического детектора передают проводным или беспроводным способом на мобильное приложение на базе платформы Android или iOS и исходя из данных графика гистограммы, по концентрации максимального количества интервалов Y между соседними сокращениями сердца в определенном диапазоне X мс определяют уровень стресса ПО формуле:
уровень стресса=(Квозраст*(Y/размер плавающего окна))*К шкалы, где Y - число интервалов между соседними ударами сердца с заданным отклонением друг о друга - 10, 20 или 50 мс; Квозраст – коэффициент, учитывающий поправку на возраст в диапазоне 0,7…1; Кшкалы - принимает два значения: 10 - для шкал на носимых устройствах и 1000 - для шкал на мобильных устройствах экспертных систем; размер плавающего окна - 128, 256 или 512 отсчетов пульса; полученное значение уровня стресса указывает на уровень напряженности нервной системы;
на максимуме гистограммы распределения получают зону максимального количества интервалов Y между соседними интервалами сердца, которая служит показателем для выбора события, определяющего причину стресса,
регистрируют показатели интенсивности движений пользователя с помощью встроенного в биометрический детектор электрического акселерометра, причем физическую активность оценивают либо посредством измерения количества шагов, сделанных человеком в заданном интервале времени, либо посредством измерения амплитуды вектора ускорений части тела, к которому присоединен биометрический детектор, по трем осям, где амплитуду движений измеряют в процентах от максимальной шкалы акселерометра, затем по распределению полученных данных во времени делают выводы о суточной двигательной активности и образе жизни человека;
вычисленный уровень стресса связывают с физической активностью человека и его взаимодействием с окружающими людьми и объектами по данным, которые собирают автоматически путем сбора сведений из приложений, установленных на электронном устройстве пользователя, причем по собранным сведениям делают вывод о том, что именно послужило источником изменения уровня стресса и предлагают пользователю исключить указанный источник.
Предпочтительно, уровень стресса связывают с деятельностью человека и его взаимодействия с окружающими людьми и объектами путем формирования временной задержки между произошедшим событием и всплеском уровня стресса, по которой делают вывод о том, что именно послужило источником изменения уровня стресса и предлагают пользователю исключить указанный источник.
Предпочтительно, из баз данных приложений, установленных на электронном устройстве пользователя, осуществляют сбор сведений: из журнала звонков телефонной книги пользователя, а также текстовых сообщений, которые он просмотрел или какие страницы социальных сетей пользователь посещал.
Предпочтительно, сбор сведений из приложений, установленных на электронном устройстве пользователя, осуществляют с использованием микрофона и динамика, в которых регистрируют уровни всплеска амплитуды громкости поступающего звука в микрофон и исходящего звука из динамика, а уровень стресса связывают с разговором пользователя с другим абонентом при условии наличия всплеска амплитуды громкости поступающего звука в микрофон и/или исходящего звука из динамика при одновременной фиксации всплесков уровня стресса пользователя, причем источником изменения уровня стресса в этом случае определяют разговор пользователя с этим абонентом и предлагают пользователю включить указанного абонента в черный или серый списки телефонной книги.
Предпочтительно, физическую активность оценивают посредством сбора данных амплитуды колебания акселерометра, где отсутствием активности считают 0%, низкий уровень активности - от 1% до 30%, средний - от 30% до 60%, высокий - более 60%».
Предпочтительно, по уровню стресса и физической активности делают вывод о текущем образе жизни человека:
- нормальная физическая нагрузка - средний уровень активности и периодический характер кривой активности во времени, нормальные значения пульса, низкий уровень стресса
- физическая нагрузка, связанная с бегом - высокий уровень активности и периодический характер кривой активности во времени, высокие значения пульса, низкий уровень стресса,
- предельный уровень физической нагрузки - высокий уровень активности и периодический характер кривой активности во времени, высокие значения пульса, высокий уровень стресса,
- повседневная деятельность - средний уровень активности и хаотический характер кривой активности во времени, среднее значения пульса, средний уровень стресса,
- напряженная деятельность - низкий уровень активности и хаотический характер кривой активности во времени, высокое значения пульса, высокий уровень стресса,
- отдых - низкий уровень активности, низкое значения пульса, низкий уровень стресса,
- переутомление - низкий уровень активности, низкое значения пульса, высокий уровень стресса.
Краткое описание чертежей
На Фиг. 1 показана диаграмма алгоритма формирования максимума гистограммы и шаблонов по данным пульса.
На Фиг. 2 показаны примеры определения максимума по разным наборам интервалов.
На Фиг. 3 показан пример того, как уровень стресса связывают с деятельностью человека и его взаимодействия с окружающими людьми и объектами путем формирования временной задержки между произошедшим событием и всплеском уровня стресса, по которой делают вывод о том, что именно послужило источником изменения уровня стресса и предлагают пользователю исключить указанный источник.
На Фиг. 4 показан пример формирования кривой стресса на основе сформированных кривых пульса и активности.
На Фиг. 5 показан пример того, как уровень стресса связывают с деятельностью человека и окружающими людьми.
Осуществление изобретения
Настоящее изобретение относится к способу контроля уровня напряженного состояния человека при помощи биометрического детектора, носимого человеком на запястье. Биометрический детектор может быть, например, реализован в виде наручных часов или браслета. В этом случае детектор считывает биометрические данные, такие как частота сердечных сокращений, и уровень двигательной активности пользователя (например, шаги). Детектор обрабатывает считанные данные и передает их на смартфон, на экране которого они отображаются пользователю. Детектор может работать в автономном режиме и имеет свою собственную энергонезависимую память. Детектор также включает в себя модуль анализа считанных данных и средства визуализации.
Данные детектора подают на мобильное приложение, загруженное на мобильном устройстве (т.е., смартфон, КПК, планшет или аналогичное). Мобильное приложение получает данные от биометрическим детектора и показывает их пользователю в более удобном формате. Мобильное приложение взаимодействует с серверным программным обеспечением через Интернет. Сервер хранит данные от пользователя (от нескольких пользователей) для дальнейшего вывода и статистического анализа.
Другим способом реализации биометрического детектора является использование его уже встроенным в мобильном устройстве. Пример такого устройства известен в качестве смартфона Samsung Galaxy S6 (см. http://4pda.ru/2015/05/13/219473/). В этом смартфоне уже есть встроенный датчик пульса, посредством которого можно измерять пульс.
Таким образом, при использовании встроенного в мобильное устройство датчика пульса иметь отдельные браслет или наручные часы с ним не требуется.
Следовательно, в настоящем изобретении конкретное расположение датчика пульса не имеет принципиального значения для достижения технического результата.
Поясним принципы, на которых строится предлагаемый способ, доступные для технической реализации с учетом современного состояния уровня техники.
Первый принцип - это учет контекста. Оценка эмоционального состояния человека в процессе своей обычной жизнедеятельности не может быть осуществлена в полной мере без учета четырех важных факторов:
• Уровня эмоционального возбуждения;
• Физической активности с учетом фактора сна;
• Интенсивностью взаимодействия с окружающим миром;
• Контекста, более точно: маркирование контекста событий;
• Погодой.
Измерение уровня эмоционального возбуждения часто является более важным, чем распознавание дискретных эмоций, т.к. он ближе по интерпретации связан со стрессом или чувством глубокого удовольствия. Определение динамики развития эмоционального возбуждения имеет высокую информативность для самого человека, так и для окружающих. Наиболее апробированные методы регистрации такой активности связаны с анализом ритма сердца, т.е. интервалами между соседними пульсовыми ударами. На работу сердца завязаны основные контуры регуляции организма, среди основных методов анализа ритма сердца них можно выделить метод вариабельности, фрактального анализа, анализа дыхательных составляющих. Современный уровень техники позволяет вычислять необходимые параметры сердечного ритма в режиме реального времени.
Известно взаимное влияние эмоций на физическую активность, причем эмоции могут, как угнетать ее, так и побуждать к ее увеличению. Также известен и обратный эффект повышения эмоционального фона после выполнения физических упражнений, пешей прогулки, активного отдыха. Известным техническим способом регистрации физической активности является использование микроэлектронных акселерометров.
В процессе своей жизнедеятельности современный человек активно взаимодействуете окружающими его людьми с использованием мобильного телефона, который из средства связи превратился в индивидуального ассистента. Звонки коллег по работе и учебе, знакомых, друзей и родственников могут вносить изменения в эмоциональное состояние. Важным фактором является их интенсивность.
Использование социальных сетей является одним из распространенных способов взаимодействия посредством мобильных телефонов, комментарии, фото и видеоинформация также влияют на эмоциональное состояние. Важным фактором тоже является их интенсивность.
Информация о взаимодействия человека со своим мобильным телефоном может быть получена с помощью специального программного обеспечения и является технически реализуемой задачей.
В процессе свое жизнедеятельности современный человек оказывается в различных жизненных ситуациях и состояниях: работа, совещания, учеба, экзамен, отдых, свидание, поход в кино, театр или парк развлечений, все эти события меняют эмоциональное состояние и часто человека не может выстроить соответствие между последовательными событиями его жизни к краткосрочной (дни, неделя) перспективе и текущим эмоциональным состояниям. Использование дневников для записи неудобно и требует концентрации внимания. Наиболее правильным путем является маркирование событий с помощью предварительно подготовленных односложных текстовых меток с помощью средств носимой электроники или мобильного телефона. Выполняется помощью специального программного обеспечения и является технически реализуемой задачей. Погодные условия оказывают сильное влияние на эмоциональное состояние современного человека. Естественно это влияние не линейно, а идет совместно с общим контекстом повседневной жизни, усиливая или ослабления эмоции. Погодный фактор необходимо учитывать в качестве корректирующего элемента в цепях оценки эмоционального состояния. Задача получения данных об актуальной погоде выполняется помощью специального программного обеспечения и является технически реализуемой задачей.
Таким образом, задача, реализация фиксации контекста является технически реализуемой.
Технический эффект данной функции заключается в том, что в результате учета факторов внешней среды, в которой находится человек в процессе своей жизнедеятельности и физиологических реакций на действие данных факторов различных удается произвести определить причину возникновения напряженных состояний.
Второй принцип - это расчет уровня напряжения и формирование конченой ранговой шкалы напряжений.
ЧСС человека постоянно меняется в связи совершаемой физической нагрузкой и регулированием жизнедеятельности, основанном на вегетативной и гуморальной регуляции. ЧСС отражает состояние всего организма. Вариабельность сердечного ритма (ВСР) отражает изменения в частоте сердечных сокращений, вызванных физическим или эмоциональным стрессом. Ряд рекомендуемых параметров ВСР были определены стандартами измерения, физиологической интерпретации и клинического использования: Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (European Heart Journal, 1996, vol. 17, 354-381). Описываемый вариант реализации системы для расчета уровня напряженного состояния использует параметры, которые не входят в вышеупомянутые рекомендации, но выведенные на их основе.
ЧСС отражает темп сердечных сокращений. Измерение ЧСС биометрическим детектором осуществляется с помощью метода оптической или импедансной плетизмографии. Каждое сокращение сердца приводит у увеличению кровенаполнения сосудов, что можно регистрировать по изменению светоотражения или электрического сопротивления кожного покрова, наполненного капиллярами. ЧСС рассчитывается графику пульсовой волны - то есть, интервал между соседними максимумами оптической или импедансной петизмограммы. Расчеты длительностей интервалов производятся в миллисекундах. Для большего удобства для пользователя ЧСС выражают в ударах в минуту (Beats per minute, ВРМ):
ВРМ=60*1000/Ti,
где Ti - продолжительность интервала между сокращениями сердца в миллисекундах.
Биометрический детектор содержит фотометрическую ячейку (свето- и фотодиод), которая использует модулированное излучение и может работать при сильной боковой засветке фотодиода. Это необходимо из-за перемещений устройства на запястье, которое происходит при ходьбе или движениях рукой. Сила света светодиода должна быть такой, чтобы не вызывать перегрузки фотоприемной части. Соответственно светодиод должен управляться таким образом, чтобы фотоприемник мог детектировать модулированный изменением кровотока отраженный от кожи световой поток, не уходя в насыщение. Для этого используется цепь автоматической регулировки усиления. Для максимального увеличения времени автономной работы устройства цепь автоматического регулировки усиления должна поддерживать минимальный уровень выходного сигнала фотодиода, необходимый для работы аналого-цифрового преобразователя микропроцессорного блока внутри биометрического детектора.
Биометрический детектор включает в себя микроконтроллер, который получает данные от датчика оптических импульсов (например, оптический датчик или другие) и от акселерометра. Эти данные позволяют определить частоту сердечных сокращений и уровень физической активности, которые в свою очередь используются для вычисления уровня стресса человека.
волна, выделенная модулем регистрации пульсовой волны путем обработки сигнала от фотодиода, подается на модуль вычисления интервалов. Далее данные об интервалах очищаются от артефактов движения при помощи модуля компенсации артефактов, после этого подаются на модуль расчета ЧСС и модуль расчета уровня стресса. Выходные данные о величине ЧСС и уровне стресса сохраняются в запоминающем устройстве. Параллельно в запоминающее устройство попадают данные об уровне физической активности, вычисленные в модуле расчета среднего вектора движения по данным от осей X, Y и Z акселерометра. А также данные со счетчика числа шагов. Все данные при помощи модуля беспроводной связи передаются на мобильное устройство, а с него через сеть Интернет на сервер.
Работа модуля, фиксирующего движения, основана на удалении интервалов между сокращениями сердца, которые оказались искажены от воздействия артефактов движения. Поскольку пульс человека не может резко измениться, каждое следующее значение интервала прогнозируется путем интерполяции примерно 20 предшествующих и последующих примерно 9 значений. Размер обоих окон интерполяции подбираются эмпирически из диапазона от 1 до 20. Коридор возможных значений интервала определяется порогом Т симметрично в обе стороны от текущего значения интервала Xi от 20 до 9. Если очередное значение интервала, поступившее из модуля вычисления интервалов, находится в пределах диапазона, определенного порогом Т, это значение остается неизменным. В противном случае, это значение замещается на интерполированное значения.
Следует отметить, что числа 20 и 9 выбраны как компромисс между глубиной прогнозирования (т.е. стабильностью) и возможной задержкой вариаций сердечного ритма. Интервалы не должны быть сильно сглажены, иначе станет невозможным определить уровень стресса. Вместе с тем, возможность измерения ЧСС в течение коротких физических упражнений также должна быть сохранена, поскольку пользователю важно видеть, как изменяется его ЧСС во время занятий спортом. Если во время измерений присутствует интенсивный шум от артефактов, на устройство управления посылается двоичный сигнал, предупреждающий о наличии или отсутствии влияния шума на результат вычисления устройством ЧСС и уровня стресса.
Уровень стресса вычисляется на основе гистограммы, построенной по собранным значениям пульса в плавающем окне регистрации:
где Y - число интервалов с заданным отклонением друг о друга (10, 20 и 50 мс) представляют собой интервалы между ударами сердца. Отклонения 10, 20 и 50 мс выбирают в зависимости от задач исследования. Чем меньше диапазон, тем точнее измерения. Полученное таким образом значение уровня стресса указывает на уровень напряженности нервной системы.
Квозраст – коэффициент, учитывающий поправку на возраст в диапазоне [0,7…1].
Минимальный коэффициент берется при молодом возрасте, например, до 20 лет.
Максимальный при возрасте свыше 50 лет. Диапазон поправок Квозраст формируют в зависимости от задач исследования и могут менять, если исследуемые возрастные группы относятся к определенным профессиям, связанным со стрессами.
Кшкалы - принимает два значения: 10 - для шкал на носимых устройствах и 1000 - для шкал на мобильных устройствах экспертных систем; полученное значение уровня стресса указывает на уровень напряженности нервной системы; размер плавающего окна - 128, 256 и 512 отсчетов пульса.
Формула (I) для расчета стресса получена на основе расчета триангулярного индекса ВСР (HRV index) [Вестник Аритмологии, 11, 1999], где данный индекс вычисляется согласно алгоритму, показанному на диаграмме (см. Фиг. 1), как отношение интеграла под кривой гистограммы RR интервалов (1) и максимума гистограммы (4).
RR интервал (1) - промежуток времени между соседними зубцами R электрокардиограммы, равный продолжительности сердечного цикла; используется при определении частоты сердечных сокращений, в диагностике аритмий.
Размер плавающего окна - 128, 256 и 512 отсчетов пульса. Данные используют для формирование в буфере обмена (2) информации для предварительного построения диаграммы (3) с шириной лага Y, например, равной 50 мс. На ее основе получают максимум гистограммы (4).
Количество интервалов для определения из них максимума, может быть разным, например, как показано на Фиг. 2.
Уровень стресса (5) определяют с использованием гистограммы. Концентрация максимального количества интервалов между соседними сокращениями сердца в определенном диапазоне (например, 50 мс) определяет уровень стресса. Чем больше интервалов попадают в 50 мс коридор, тем выше уровень стресса. Следует отметить, что абсолютные значения ЧСС не важны, они не используются в предложенной формуле. Иными словами, человек может иметь высокий стресс, в то время как его ЧСС находится в норме, составляя 60-90 ударов в минуту. Важен именно разброс значений вокруг максимума. Для формируемой шкалы стресса (6) выбирают вариабельность сердечного ритма.
Вычисленный таким образом уровень стресса связан с деятельностью человека и его взаимодействия с окружающими людьми и объектами. Зная, что именно происходите человеком в данный момент из его органайзера, сделанных им звонков, текстовых сообщений, которые он просмотрел или новостей из Интернета или социальных сетей мы можем понять, что именно послужило источником изменения уровня стресса.
На Фиг. 3 можно видеть пример того, как уровень стресса связывают с деятельностью человека и его взаимодействия с окружающими людьми и объектами путем формирования временной задержки между произошедшим событием и всплеском уровня стресса, по которой делают вывод о том, что именно послужило источником изменения уровня стресса и предлагают пользователю исключить указанный источник. Пример формирования кривой стресса на основе сформированных кривых пульса и активности показан на Фиг. 4.
События делятся на три уровня:
Высокий уровень - мероприятия из органайзера и уровень двигательной активности, синхронизированы в режиме реального времени с кривой уровня стресса;
Средний уровень - события, которые происходят с пользователем во время его повседневной жизни. Это ограниченные по времени события, такие как поход в кино, встречи, совещания, даты и т.д. Пользователь сам активирует эти события, например, нажатием двух кнопок на его биометрическом детекторе одновременно или с помощью приложения на смартфоне.
Низкий уровень - события, автоматически генерируемые биометрическим детектором в соответствии с заданными пороговыми значениями, которые помогают пользователю контролировать рост стресса. Каждое из этих событий могут быть впоследствии помечены пользователем из списка событий. Все события активируют выдачу push сообщений на мобильного устройстве пользователя в сопровождении звукового сигнала или вибрации. На мобильном устройстве может быть отражен уровень стресса и активность в течение периода времени от 5 минут до суток и в течение недели. Уровень стресса может отображаться во взаимосвязи с активным или пассивным физическим поведением пользователя, выраженным в процентах, и/или сделанных шагах. Уровень стресса может отображаться как по шкале, например от 0 до 10, так и в виде различных графических представлений, например, смайликов, изображений, градиента цвета и т.д. Пользователь может просматривать график изменения стресса во времени. Динамику уровня стресса можно рассматривать в соотношении с событиями, различными временами дня и так далее. Текущий уровень стресса выделяется указателем.
Пример того, как уровень стресса связывают с деятельностью человека и окружающими людьми показан на Фиг. 5, где отражена диаграмма событий, привязанная к шкале временной зависимости.
На максимуме гистограммы (4) получают зону временного интервала (7), которая служит показателем для выбора событий действий пользователя или его реакции на действия других лиц по полученной пользователем от них информации. Из примера на Фиг. 5 видно, что в стрессовую зону (7) попадает событие, связанное с входящим звонком (8), который и определяет причину стресса. Иные события: сообщения мессенджера (9), CMC (10), комментарии пользователя (11) не попадают в зону стресса (7) и потому не считаются факторами, повлиявшими на стресс.
Если пользователь имеет высокий уровень стресса, приложение на мобильном устройстве предлагает ему различные советы для снижения стресса, например, такие как погладить свою собаку, погулять, провести время с супругой, отдохнуть, ходить в спортзал, и т.д. При этом биометрический детектор сможет измерить эффект от предложенного совета в следующий интервал времени, например, от 5 до 120 минут. После истечения временного интервала биометрический детектор измеряет уровень стресса и информирует пользователя о результатах. Успехом является снижение уровня стресса, о котором пользователь информируется. Таким образом, приложение на мобильном устройстве может даже строить рейтинги советов по степени их позитивного воздействия на пользователя.
Текущее эмоциональное состояние пользователя можно представить как образ, который может быть размещен пользователем в социальной сети. График стресса может быть использован для генерации растрового изображения.
Пользователь может делиться своим состоянием и уровнем стресса различными способами, например, с помощью социальных сетей, путем отображения статуса, размещением растрового изображения или графика с указанием события, которое вызвало стресс (определенная новость, событие из его жизни и т.п.). Данные о стрессе в первую очередь передаются на сервер системы, описываемой в данном изобретении, а затем на сервер социальной сети. Пользователь может поделиться:
1. Текущим значением стресса.
2. Фотографией или изображением, связанными с эмоционально важным моментом в его жизни, с наложенной кривой стресса.
3. Растровым изображением, созданным автоматически на основе кривой стресса Текущее состояние стресса может передано другим пользователям социальной сети (например, Facebook, Skype, WhatsApp, Twitter, Live360, Instagramm и т.п.), с помощью смайликов, аватара или текстовые сообщения (например, "расслаблен", "на взводе", "эмоционально истощен", и т.д.). Пользователь может также видеть состояние других людей, например, членов семьи, родственников/детей и т.д.
Уровень стресса может сопровождаться изображением, как это принято в социальных сетях, поверх которого накладывается кривая стресса пользователя (см. пример на Фиг.). Текущий уровень стресса отмечен на кривой, и помещен в центр изображения.
Пользователь с помощью приложения на смартфоне может создать синтетический образ своего состояния, который использует данные о стрессе. Например, умирающее растение или цветок, чтобы показать усталость, разряд молнии, чтобы показать высокий уровень стресса, и т.п.
Способ может быть реализован, например, с использованием смартфона или iPhone, а также с использованием планшета.
Третий принцип - это учет физической активности.
Уровень двигательной активности отражает интенсивность движений пользователя.
Данный параметр регистрируется с помощью встроенного в биометрический детектор электрического акселерометра. Физическая активность может быть оценена по числу сделанных пользователем шагов или по величине ускорений конечности, на которой размещен биометрический детектор. Современные электронные акселерометры, регистрируют ускорения потрем осям X, Y, Z. Сигналы регистрируются по каждой из осей и усредняются в течение некотрого временного интервала. Физическая активность человека может быть оценена с использованием двух возможных подходов:
1. Измерение амплитуды вектора ускорений части тела (руки, ноги, бедра и т.д.), к которому присоединен биометрический детектор, по трем осям (т.е. регистрируется амплитуда вектора ускорений в 3D пространстве). Амплитуда движений может быть измерена в процентах от максимальной шкалы акселерометра. Данная величина может быть усреднена в любом временном интервале - секундном, минутном, часовом, суточном и т.д. По распределению полученных данных во времени можно сделать выводы о суточной двигательной активности и образе жизни человека.
2. Измерение количества шагов, сделанных человеком в заданном интервале времени, например, в течение дня. Это более распространенный в настоящее время подход, и дает достаточно объективную меру активности при ходьбе и беге. Когда человек наступает на ногу при очередном шаге во время ходьбы или бега, на одном или нескольких каналах акселерометра наблюдается резкий всплеск сигнала. Подсчитывая такие всплески можно считать шаги, а зная среднюю длину шага и пройденное расстояние. Большинство носимых устройств, таких как смартфоны, реализуют именно такой подхода. Вычисление шагов позволяет стимулировать человека к более активному образу жизни, и ставить дневные цели (например, 5000 шагов в день).
При интенсивной физической активности напряженные состояния могут снижаться. Поэтому уровни физической активности тоже являются контекстом для значений напряженных состояний.
Четвертый принцип - это отображение уровня напряжения.
Технически мобильные приложения на базе платформы Android или iOS, которые позволяют реализовать функцию регистрации двигательной активности посредством встроенного в смартфон электронного акселерометра, доступны и широко известны:
[https://play.google.com/store/apps/details?id=com.lul.accelerometer;
https://play.google.com/store/apps/details?id=com.innoventions.sensorkinetics;
https://play.google.com/store/apps/details?
id=com.chrystianvieyra.android.physicstoolboxaccelerometer;
https://play.google.com/store/apps/details?id=com.intomethod.accelerometer].
На мобильном устройстве может быть отражен уровень напряжения и активность в течение периода времени от 5 минут до суток и в течение недели. Уровень напряжения может отображаться во взаимосвязи с активным или пассивным физическим поведением пользователя, выраженным в процентах, и/или сделанных шагах. Уровень стресса может отображаться как по шкале, например от 0 до 10 и от 0 до 1000, так и в виде различных графических представлений, например, смайликов, изображений, градиента цвета и т.д. Пользователь может просматривать график изменения стресса во времени, динамику уровня напряжения можно рассматривать в соотношении с событиями, различными временами дня и так далее. Текущий уровень напряжения выделяется указателем. Если пользователь имеет высокий уровень напряжения, приложение на мобильном устройстве предлагает ему различные советы для снижения стресса, например, такие как погладить свою собаку, погулять, провести время с супругой, отдохнуть, ходить в спортзал, и т.д. При этом биометрический детектор сможет измерить эффект от предложенного совета в следующий интервал времени, например, от 5 до 120 минут. После истечении временного интервала биометрический детектор измеряет уровень стресса и информирует пользователя о результатах. Успехом является снижение уровня стресса, о котором пользователь информируется. Таким образом, приложение на мобильном устройстве может даже строить рейтинги советов по степени их позитивного воздействия на пользователя.
Пользователь может делиться своим состоянием и уровнем стресса различными способами, например, с помощью социальных сетей, путем отображения статуса, размещением растрового изображения или графика с указанием события, которое вызвало стресс (определенная новость, событие из его жизни и т.п.). Данные о стрессе в первую очередь передаются на сервер системы, описываемой в данном изобретении, а затем на сервер социальной сети.
Пользователь может поделиться:
1. Текущим значением напряжения.
2. Фотографией или изображением, связанными с эмоционально важным моментом в его жизни, с наложенной кривой стресса.
Технически мобильные приложения на базе платформы Android или iOS, которые позволяют реализовать функцию сбора статистики работы пользователя по коммуникациям, широко известны и доступны:
[https://play.google.com/store/apps/details?id=com.msd.am.pub;
https://play.google.com/store/apps/details?id=cz.mobilesoft.callistics;
https://play.google.com/store/apps/details?id=com.partneringcorp.callinspector]
Известны также приложения, собирающие всю информацию о взаимодействии пользователя со смартфоном:
[https://play.google.com/store/apps/details?id=rs.pedjaapps.eventlogger].
Текущее состояние стресса может передано другим пользователям социальной сети (например, Facebook, Skype, WhatsApp, Twitter, Live360, Instagramm и т.п.), с помощью смайликов, аватара или текстовые сообщения (например, "расслаблен", "на взводе", "эмоционально истощен", и т.д.). Пользователь может также видеть состояние других людей, например, членов семьи, родственников/детей и т.д.
Уровень напряжения может сопровождаться изображением, как это принято в социальных сетях, поверх которого накладывается кривая стресса пользователя. Текущий уровень стресса отмечен на кривой, и помещен в центр изображения.
Пользователь с помощью приложения на смартфоне может создать синтетический образ своего состояния, который использует данные о стрессе. Например, умирающее растение или цветок, чтобы показать усталость, разряд молнии, чтобы показать высокий уровень стресса, и т.п.
По существу предлагаемый способ непрерывного контроля напряженного состояния человека включает в себя следующие операции:
1. Синхронная регистрация с запястья человека биосигналов в виде пульса, физической активности и температуры с помощью автономных биометрических детекторов;
2. Цифровая обработка сигналов с биометрических детекторов и их преобразование в беспроводный сигнал для дальнейшей обработки в мобильном вычислительном устройства;
3. Вычисление и синхронная регистрация интенсивности и количества телефонных звонков, приема и оправки коротких текстовых сообщений (SMS), интенсивность размещения комментариев в социальных сетях, получают данные по погодным условиям, включая температуру, сведения об осадках, солнце, ветре, магнитных бурях, общей электромагнитной обстановки;
4. Расчет уровня напряженного состояния человека по формуле:
5. Отображение на дисплее мобильного вычислительного устройства информации о регистрируемых параметрах, в виде ранговой шкалы напряженных состояний от 0 до 1000 для экспертных систем и от 0 до 10 для визуализации на дисплеях носимых устрой. Причем 0 это отсутствие напряженного состояния, а 1000 или 10 это состояние максимальной напряженности.
6. Отображение на дисплее мобильного вычислительного устройства информации о выходе уровня напряженного состояния за пределы установленного порога и формирования сообщения в виде звука, тактильной вибрации, изображения.
7. Отображение на дисплее мобильного вычислительного устройства привязки уровня напряженных состояний к события, зафиксированным мобильным вычислительным устройством и созданным пользователем самостоятельно.
Способ подразумевает непрерывное неоднократное повторение пунктов 1-6 при условии постоянного ношения человеком на запястье автономных биометрических детекторов.
Достоинством способа непрерывного контроля напряженного состояния человека является учета контекста (внешних факторов) среды, в которой находится человек в процессе своей жизнедеятельности, учет физиологических реакций на действие данных факторов, учет уровня физической активности и периодов сна, наличие шкалы эмоционального состояния, упрощающего восприятие итоговой информации пользователем.
Claims (16)
1. Способ выявления источников стрессового состояния пользователя, включающий использование биометрического детектора в виде наручных часов или браслета, данные с которого используют для буферизации значений интервалов между соседними ударами сердца в течение заданного временного окна, а также для создания гистограммы распределения этих интервалов и вычисления уровня стресса, основанного на вариабельности сердечного ритма, отличающийся тем, что данные биометрического детектора передают проводным или беспроводным способом на мобильное приложение на базе платформы Android или iOS и исходя из данных графика гистограммы, по концентрации максимального количества интервалов Y между соседними сокращениями сердца в определенном диапазоне X мс определяют уровень стресса по формуле:
уровень стресса=(Квозраст*(Y/размер плавающего окна))*К шкалы, где Y - число интервалов между соседними ударами сердца с заданным отклонением друг о друга - 10, 20 или 50 мс; Квозраст – коэффициент, учитывающий поправку на возраст в диапазоне 0,7…1; Кшкалы - принимает два значения: 10 - для шкал на носимых устройствах, и 1000 - для шкал на мобильных устройствах экспертных систем; размер плавающего окна - 128, 256 или 512 отсчетов пульса; полученное значение уровня стресса указывает на уровень напряженности нервной системы;
на максимуме гистограммы распределения получают зону максимального количества интервалов Y между соседними интервалами сердца, которая служит показателем для выбора события, определяющего причину стресса,
регистрируют показатели интенсивности движений пользователя с помощью встроенного в биометрический детектор электрического акселерометра, причем физическую активность оценивают либо посредством измерения количества шагов, сделанных человеком в заданном интервале времени, либо посредством измерения амплитуды вектора ускорений части тела, к которому присоединен биометрический детектор, по трем осям, где амплитуду движений измеряют в процентах от максимальной шкалы акселерометра, затем по распределению полученных данных во времени делают выводы о суточной двигательной активности и образе жизни человека; вычисленный уровень стресса связывают с физической активностью человека и его взаимодействием с окружающими людьми и объектами по данным, которые собирают автоматически путем сбора сведений из приложений, установленных на электронном устройстве пользователя, причем по собранным сведениям делают вывод о том, что именно послужило источником изменения уровня стресса и предлагают пользователю исключить указанный источник.
2. Способ по п. 1, отличающийся тем, что уровень стресса связывают с деятельностью человека и его взаимодействия с окружающими людьми и объектами путем формирования временной задержки между произошедшим событием и всплеском уровня стресса, по которой делают вывод о том, что именно послужило источником изменения уровня стресса и предлагают пользователю исключить указанный источник.
3. Способ по п. 1, отличающийся тем, что из баз данных приложений, установленных на электронном устройстве пользователя, осуществляют сбор сведений: из журнала звонков телефонной книги пользователя, а также текстовых сообщений, которые он просмотрел или какие страницы социальных сетей пользователь посещал.
4. Способ по п. 1, отличающийся тем, что сбор сведений из приложений, установленных на электронном устройстве пользователя, осуществляют с использованием микрофона и динамика, в которых регистрируют уровни всплеска амплитуды громкости поступающего звука в микрофон и исходящего звука из динамика, а уровень стресса связывают с разговором пользователя с другим абонентом при условии наличия всплеска амплитуды громкости поступающего звука в микрофон и/или исходящего звука из динамика при одновременной фиксации всплесков уровня стресса пользователя, причем источником изменения уровня стресса в этом случае определяют разговор пользователя с этим абонентом и предлагают пользователю включить указанного абонента в черный или серый списки телефонной книги.
5. Способ по п. 1, отличающийся тем, что физическую активность оценивают посредством сбора данных амплитуды колебания акселерометра, где отсутствием активности считают 0%, низкий уровень активности - от 1% до 30%, средний - от 30% до 60%, высокий - более 60%.
6. Способ по п. 1, отличающийся тем, что по уровню стресса и физической активности делают вывод о текущем образе жизни человека:
- нормальная физическая нагрузка - средний уровень активности и периодический характер кривой активности во времени, нормальные значения пульса, низкий уровень стресса
- физическая нагрузка, связанная с бегом - высокий уровень активности и периодический характер кривой активности во времени, высокие значения пульса, низкий уровень стресса,
- предельный уровень физической нагрузки - высокий уровень активности и периодический характер кривой активности во времени, высокие значения пульса, высокий уровень стресса,
- повседневная деятельность - средний уровень активности и хаотический характер кривой активности во времени, среднее значения пульса, средний уровень стресса,
- напряженная деятельность - низкий уровень активности и хаотический характер кривой активности во времени, высокое значения пульса, высокий уровень стресса,
- отдых - низкий уровень активности, низкое значения пульса, низкий уровень стресса,
- переутомление - низкий уровень активности, низкое значения пульса, высокий уровень стресса.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016110052A RU2649519C2 (ru) | 2016-03-18 | 2016-03-18 | Способ непрерывного контроля уровня напряженного состояния человека |
PCT/RU2017/000145 WO2017160186A1 (ru) | 2016-03-18 | 2017-03-17 | Способ непрерывного контроля уровня напряженного состояния человкеа |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016110052A RU2649519C2 (ru) | 2016-03-18 | 2016-03-18 | Способ непрерывного контроля уровня напряженного состояния человека |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016110052A RU2016110052A (ru) | 2017-09-22 |
RU2649519C2 true RU2649519C2 (ru) | 2018-04-03 |
Family
ID=59850759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016110052A RU2649519C2 (ru) | 2016-03-18 | 2016-03-18 | Способ непрерывного контроля уровня напряженного состояния человека |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2649519C2 (ru) |
WO (1) | WO2017160186A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019209142A1 (ru) * | 2018-04-24 | 2019-10-31 | Общество С Ограниченной Ответственностью "Центр Нейротехнологий Сна И Бодрствования" (Ооо "Цнсиб") | Способ и система физиотерапевтической коррекции и терапии сна человека |
RU2783147C1 (ru) * | 2021-12-09 | 2022-11-09 | Публичное акционерное общество энергетики и электрификации "Мосэнерго" (ПАО "Мосэнерго") | Способ автоматизированного определения чсс |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200103397A (ko) * | 2019-02-25 | 2020-09-02 | 주식회사 룩시드랩스 | 생체 신호 센서 탑재 hmd 기기를 활용한 사용자의 스트레스 분석 및 개인 정신건강 관리 시스템 및 방법 |
CN112826468B (zh) * | 2019-11-05 | 2023-12-01 | 深圳市大富智慧健康科技有限公司 | 血压检测装置、血压检测系统及血压监测方法 |
CN112826475A (zh) * | 2019-11-05 | 2021-05-25 | 深圳市大富智慧健康科技有限公司 | 血压检测装置、血压检测系统及血压监测方法 |
CN111184521B (zh) * | 2020-01-20 | 2023-01-06 | 北京津发科技股份有限公司 | 一种压力识别手环 |
CN112263252B (zh) * | 2020-09-28 | 2024-05-03 | 贵州大学 | 基于hrv特征和三层svr的pad情绪维度预测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6656116B2 (en) * | 2000-09-02 | 2003-12-02 | Samsung Electronics Co. Ltd. | Apparatus and method for perceiving physical and emotional state |
RU2015119473A (ru) * | 2012-10-23 | 2016-12-20 | Конинклейке Филипс Н.В. | Система измерения стресса |
-
2016
- 2016-03-18 RU RU2016110052A patent/RU2649519C2/ru not_active IP Right Cessation
-
2017
- 2017-03-17 WO PCT/RU2017/000145 patent/WO2017160186A1/ru active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6656116B2 (en) * | 2000-09-02 | 2003-12-02 | Samsung Electronics Co. Ltd. | Apparatus and method for perceiving physical and emotional state |
RU2015119473A (ru) * | 2012-10-23 | 2016-12-20 | Конинклейке Филипс Н.В. | Система измерения стресса |
Non-Patent Citations (5)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019209142A1 (ru) * | 2018-04-24 | 2019-10-31 | Общество С Ограниченной Ответственностью "Центр Нейротехнологий Сна И Бодрствования" (Ооо "Цнсиб") | Способ и система физиотерапевтической коррекции и терапии сна человека |
RU2783147C1 (ru) * | 2021-12-09 | 2022-11-09 | Публичное акционерное общество энергетики и электрификации "Мосэнерго" (ПАО "Мосэнерго") | Способ автоматизированного определения чсс |
Also Published As
Publication number | Publication date |
---|---|
RU2016110052A (ru) | 2017-09-22 |
WO2017160186A1 (ru) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2649519C2 (ru) | Способ непрерывного контроля уровня напряженного состояния человека | |
US12089914B2 (en) | Enhanced physiological monitoring devices and computer-implemented systems and methods of remote physiological monitoring of subjects | |
CN101198277B (zh) | 用于生理学和心理生理学监控的系统 | |
JP7031669B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP6268193B2 (ja) | 脈波測定装置、携帯機器、医療機器システム、及び生体情報コミュニケーションシステム | |
CN104951069B (zh) | 用于使用可穿戴传感器平台的生理测量的置信度指示 | |
US9107586B2 (en) | Fitness monitoring | |
CN104203088B (zh) | 利用惯性频率减少生理指标误差 | |
CN103596493B (zh) | 压力测量设备和方法 | |
US20160321403A1 (en) | Data collection method and apparatus | |
KR20210045467A (ko) | 딥 신경 네트워크들에 기초한 정신적 거동 속성들의 인식을 위한 전자 디바이스 | |
US20150366518A1 (en) | Apparatuses, Methods, Processes, and Systems Related to Significant Detrimental Changes in Health Parameters and Activating Lifesaving Measures | |
US20140085101A1 (en) | Devices and methods to facilitate affective feedback using wearable computing devices | |
CN111818850B (zh) | 压力评价装置、压力评价方法以及存储介质 | |
CN104168828A (zh) | 生理指标估值的上升和下降极限 | |
US10966662B2 (en) | Motion-dependent averaging for physiological metric estimating systems and methods | |
CN107077523A (zh) | 健康风险指标确定 | |
JP7531917B2 (ja) | 心拍数測定システム | |
US11699524B2 (en) | System for continuous detection and monitoring of symptoms of Parkinson's disease | |
Sukanesh et al. | Cellular phone based biomedical system for health care | |
US20240099639A1 (en) | System for measuring heart rate | |
Alafeef | Smartphone-based photoplethysmographic imaging for heart rate monitoring | |
JP2016129629A (ja) | 生体状態推定装置 | |
WO2020196093A1 (ja) | 情報処理装置、情報処理方法及びプログラム | |
US20230107691A1 (en) | Closed Loop System Using In-ear Infrasonic Hemodynography and Method Therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE9A | Changing address for correspondence with an applicant | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190319 |