RU2649070C1 - Способ селекции эхо-сигналов в эхолоте - Google Patents

Способ селекции эхо-сигналов в эхолоте Download PDF

Info

Publication number
RU2649070C1
RU2649070C1 RU2017102862A RU2017102862A RU2649070C1 RU 2649070 C1 RU2649070 C1 RU 2649070C1 RU 2017102862 A RU2017102862 A RU 2017102862A RU 2017102862 A RU2017102862 A RU 2017102862A RU 2649070 C1 RU2649070 C1 RU 2649070C1
Authority
RU
Russia
Prior art keywords
echo
sounder
signals
antenna
tgr
Prior art date
Application number
RU2017102862A
Other languages
English (en)
Inventor
Анатолий Михайлович Бородин
Original Assignee
Акционерное Общество "Концерн "Океанприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Концерн "Океанприбор" filed Critical Акционерное Общество "Концерн "Океанприбор"
Priority to RU2017102862A priority Critical patent/RU2649070C1/ru
Application granted granted Critical
Publication of RU2649070C1 publication Critical patent/RU2649070C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Abstract

Способ относится к активным гидроакустическим системам обнаружения дна и оценки его глубины и может быть использован в эхолотах для селекции мешающих эхо-сигналов. Техническим результатом изобретения является повышение достоверности оценки глубины эхолотом в каждом цикле зондирования путем селекции мешающих эхо-сигналов, принятых эхолотом по боковым лепесткам диаграммы направленности антенны. Для обеспечения указанного технического результата осуществляется селекция мешающих эхо-сигналов, принятых по боковым лепесткам диаграммы направленности путем временной селекции эхо-сигналов, из массива амплитуд эхо-сигналов, прошедших пороговую обработку исходного массива амплитуд эхо-сигналов. 1 ил.

Description

Настоящее изобретение относится к области гидроакустики, а также к области гидрографии, и может быть использовано в активных гидроакустических системах (эхолотах) при измерении глубины дна для селекции мешающих эхо-сигналов.
Для измерения глубины места под движущимся судном используют эхолоты. Известно, что наличие боковых лепестков диаграммы направленности (ДН) антенны в режиме приема ухудшает помехоустойчивость эхолота. В процессе работы эхолота вблизи причальных стенок, береговой линии с сильно расчлененном рельефом дна, узкостях, судоходных каналах возможна ситуация, когда амплитуды эхо-сигналов, принятых по боковым лепесткам ДН, могут быть соизмеримы или даже больше амплитуды эхо-сигнала, принятого главным лепестком ДН антенны эхолота. Такая маскировка эхо-сигнала от дна увеличивает вероятность его пропуска и является недопустимой с точки зрения навигационной безопасности плавания. Достоверность оценки глубины эхолотом зависит от ширины главного лепестка ДН антенны эхолота и уровня ее боковых лепестков (Богородский А.В., Островский Д.Б.. Гидроакустические навигационные и поисково-обследовательские средства». - СПб.: Изд. СПБГЭТУ «ЛЭТИ», 2009. С. 90-116, Хребтов А.А. и др. Судовые эхолоты. - Л.: Судостроение,1982, с. 57-84).
Известно, что наибольшая интенсивность мешающих эхо-сигналов в работе эхолота будет иметь место при приеме по первому боковому лепестку ДН антенны. Известно также, что теоретический уровень первого бокового лепестка ДН для плоских антенн с равномерным амплитудным распределением, применение которых распространено в эхолотах, достигает около 22% от уровня основного лепестка, имеющего ширину α, и имеет направление ϕ под углом к оси главного максимума (Орлов Л.В. и др. Гидроакустическая аппаратура рыбопромыслового флота, - Л.: Судостроение, 1987, с. 65-76; Евтютов А.П., Митько В.Б. Инженерные расчеты в гидроакустике. - Л.: Судостроение, 1981, с. 17-24):
ϕ=k0α,
где k0=1.5…1.6.
В результате, в случае сильно расчлененного рельефа дна, первым по времени будет принят эхо-сигнал не от точки прямо под антенной эхолота, а от точки дна, расположенной в направлении первого бокового лепестка ДН, амплитуда которого зависит от крутизны (ориентации) наклона дна в направлении первого бокового лепестка ДН. Если донный рельеф меняется очень быстро, то подобные ситуации встречаются часто и одна из возможных представлена на фиг. 1.
В силу отмеченных обстоятельств для обеспечения достоверного измерения глубин с помощь эхолота практический интерес представляет разработка способа селекции мешающих эхо-сигналов, обусловленных боковыми лепестками ДН антенны, в условиях, когда дно имеет сильно расчлененный рельеф.
Известен способ обработки эхо-сигналов в эхолотах (Кобяков Ю.С. и др. Конструирование гидроакустической рыбопоисковой аппаратуры. - Л.: Судостроение, 1986. С. 234-240), в котором: излучают зондирующие сигналы в воду, принимают отраженные эхо-сигналы, выполняют обнаружение и идентификацию донных эхо-сигналов с применением временной селекции с учетом информации за несколько последовательно выполненных циклов зондирования. Указанный способ позволяет производить в автоматическом режиме селекцию донных эхо-сигналов в узком диапазоне глубин (стробе), охватывающим предполагаемое местоположение донного эхо-сигнала.
Недостатком указанного способа-аналога является то, что для выработки временного положения строба селекции эхо-сигналов от дна используется информация о временном положении дна, получаемой в течение нескольких последовательных циклов зондирования и в случае не попадания эхо-сигнала от дна в строб селекции происходит пропуск измерения глубины, что весьма вероятно в условиях сильно расчлененного рельефа дна. Также недостатком является вероятность захвата стробом селекции мешающего эхо-сигнала, принятого по боковым лепесткам ДН антенны, то есть потеря эхо-сигнала от дна при больших флюктуациях амплитуды донного эхо-сигнала в условиях сильно расчлененного рельефа дна, что приводит к снижению достоверности измеренных глубин.
Известен способ селекции эхо-сигналов в эхолотах (эхолоты серии NaviSound 100, 110, 205, 210, 215, 420 фирмы RESON, www.reson.com) в котором: излучают зондирующие сигналу в воду, принимают отраженные эхо-сигналы, задают порог по минимальной измеряемой глубине (начальная блокировка), с помощью которого селектируют мешающие эхо-сигналы, которые слишком близки по дистанции к антенне эхолота и могут быть обусловлены турбулентностью водных масс и отражениями от кильватерной струи судна, выполняют временную селекцию принятых эхо-сигналов с помощью временного строба, размер которого определяется временем, в течение которого эхолот ожидает эхо-сигнал от дна, положение строба определяется на основании предыдущей измеренной глубины. Попадание эхо-сигнала в установленный временной строб является индикатором достоверности измеренной глубины, в противном случае измеренная глубина в текущем цикле зондирования считается мало достоверной. Размер временного строба выбирается в процентах от шкалы глубины и вводится пользователем эхолота.
Недостатками этого способа являются увеличенная минимальная измеряемая глубина - «мертвая зона» за счет использования начальной блокировки и возможность пропуска измеряемой глубины при больших флюктуациях амплитуды донного эхо-сигнала в условиях сильно расчлененного рельефа дна и при не попадании донного эхо-сигнала во временной строб.
Из описания известного устройства («Эхолот», патент РФ №2241242, кл. G01S 15/08, 7/52, опубл. 27.11.2004 г.), следует, что оно реализует способ селекции эхо-сигналов, наиболее близкий по количеству общих признаков с предлагаемым способом. В соответствии с этим способом в каждом цикле «излучение-прием» излучают зондирующие сигналы в водную среду в направлении дна, принимают отраженные эхо-сигналы, формируют исходный цифровой массив отсчетов амплитуд эхо-сигналов, обрабатывают исходный цифровой массив отсчетов амплитуд эхо-сигналов, выделяют на всем времени приема из него путем пороговой обработки по амплитуде, по длительности, на кратность времени прихода эхо-сигналов для выявления переотраженных от дна, ряд отсчетов амплитуд эхо-сигнала с максимальной амплитудой, принимаемого за эхо-сигнал от дна, определяют, по времени, его начало для повышения точности измерения глубины, производят регулировку коэффициента усиления приемного тракта и излучаемой мощности усилителя мощности для удержания максимальной амплитуды эхо-сигнала в диапазоне от минимального до максимального допустимого уровня, отображают выделенный ряд отчетов амплитуд эхо-сигнала с максимальной амплитудой на индикаторе, получают значение скорости звука в воде, определяют время для выбранного эхо-сигнала от дна и вычисляют глубину дна. Пороговая обработка по амплитуде эхо-сигналов удаляет из дальнейшей обработки эхо-сигналы ниже установленного порога для обеспечения минимально допустимого соотношения сигнал/помеха, что снижает погрешность измерения глубины эхолотом. Пороговая обработка эхо-сигналов по длительности удаляет из дальнейшей обработки эхо-сигналы - импульсные помехи, которые по длительности меньше зондирующего импульса и тем самым повышает достоверность измеренных глубин эхолотом. Пороговая обработка эхо-сигналов на кратность времени прихода эхо-сигналов удаляет из дальнейшей обработки эхо-сигналы, являющиеся переотраженными от дна, что также повышает достоверность измеренных глубин эхолотом.
Существенным недостатком данного способа-прототипа является отсутствие селекции мешающих эхо-сигналов, принятых по боковым лепесткам диаграммы направленности антенны эхолота, и влияние эхо-сигналов, принятых по боковым лепесткам диаграммы направленности антенны эхолота на достоверность измеренных эхолотом глубин, что ухудшает помехоустойчивость эхолота и снижает достоверность измеренных глубин в районах плавания с сильно расчлененным рельефом дна. Также в случае сильно расчлененного рельефа дна, небольших глубин и дна с большим коэффициентом обратного рассеяния не все кратные эхо-сигналы будут удалены из дальнейшей обработки, что приводит к снижению достоверности измеренных глубин. Эффект влияния эхо-сигналов, принятых по боковым лепесткам диаграммы направленности антенны на результат измерения глубины, тем больше, чем шире основной лепесток диаграммы направленности используемой в эхолоте антенны и чем сильнее расчленен рельеф дна.
Задачей настоящего изобретения является повышение достоверности оценки глубины в эхолоте при измерениях в районах плавания с сильно расчлененным рельефом дна, в узкостях, вблизи причальных стенок.
Технический результат заключается в селекции мешающих эхо-сигналов, принятых эхолотом по боковым лепесткам диаграммы направленности антенны.
Для обеспечения указанного технического результата в известный способ селекции эхо-сигналов в эхолоте, в котором: в каждом цикле «излучение-прием» излучают зондирующие сигналы в водную среду в направлении дна, принимают отраженные эхо-сигналы, формируют исходный цифровой массив отсчетов амплитуд эхо-сигналов, обрабатывают исходный цифровой массив отсчетов амплитуд эхо-сигналов, выделяют из него путем пороговой обработки по амплитуде и по длительности ряд отсчетов амплитуд эхо-сигнала с максимальной амплитудой, отображают выделенный ряд отчетов амплитуд эхо-сигнала с максимальной амплитудой на индикаторе, получают значения скорости звука в воде, определяют время для выбранного эхо-сигнала, вычисляют глубину, введены новые признаки, а именно: дополнительно введена селекция эхо-сигналов по двум смежным интервалам времени от 0 до Тгр и от Тгр до Тш, где Тш - временя распространения зондирующего сигнала от антенны эхолота на всю шкалу зондирования и обратно, границу между интервалами Тгр определяют по известным величинам шкалы зондирования эхолота Н, уровню первого бокового лепестка диаграммы направленности антенны эхолота G, значению коэффициента обратного рассеяния от дна в направлении главного лепестка диаграммы направленности антенны эхолота Q0 и значению коэффициента обратного рассеяния в направлении первого бокового лепестка диаграммы направленности антенны эхолота от объектов создающих мешающие эхо-сигналы Q1, по формуле
Figure 00000001
где
Figure 00000002
, с - скорость звука в воде,
на интервале времени от ТГР до ТШ выделяют эхо-сигнал с максимальной амплитудой и принимают его за эхо-сигнал от дна, в случае отсутствия эхо-сигналов в интервале времени от ТГР до ТШ выделяют эхо-сигнал с максимальной амплитудой на интервале времени от 0 до Тгр и принимают его за эхо-сигнал от дна, в случае отсутствия эхо-сигналов в интервале времени от 0 до Тгр, не производят вычисление глубины дна.
Таким образом, временная селекция эхо-сигналов в эхолоте с учетом параметров диаграммы направленности антенны эхолота, коэффициента обратного рассеяния от дна в направлении главного лепестка диаграммы направленности антенны эхолота и коэффициента обратного рассеяния в направлении первого бокового лепестка диаграммы направленности антенны эхолота от объектов, создающих мешающие эхо-сигналы, позволяет повысить достоверность оценки глубины в эхолоте при измерениях глубины дна в районах плавания с сильно расчлененным рельефом дна, в узкостях, вблизи причальных стенок.
Поясним достижение технического результата.
Реализация данного способа поясняется на фиг. 1, на которой схематически представлен носитель с установленной антенной эхолота и часть вида ДН антенны эхолота, включающая главный и первый боковой лепестки ДН, где обозначены:
h - дистанция до дна в направлении главного лепестка ДН антенны,
причем h<=Н - шкалы зондирования,
r - дистанция до объекта (дна) в направлении первого бокового лепестка ДН антенны
Q1 - коэффициент обратного рассеяния от дна (объекта) в направлении первого бокового лепестка ДН антенны;
Q0 - коэффициент обратного рассеяния от дна в направлении главного лепестка ДН антенны.
Известно, что интенсивность эхо-сигнала при эхо-локации дна для главного лепестка ДН антенны находят по формуле 1 (Хребтов А.А. и др. Судовые эхолоты. - Л.: Судостроение, 1981, с. 70):
Figure 00000003
Интенсивность эхо-сигнала при эхолокации дна для бокового лепестка ДН антенны находят по формуле 2:
Figure 00000004
где W - уровень излучаемой акустической мощности;
γ - коэффициент концентрации антенны эхолота;
с - скорость звука в воде;
τ - длительность импульса;
Q0 - значение коэффициента обратного рассеяния от дна в направлении главного лепестка диаграммы направленности антенны эхолота;
Q1 - значение коэффициента обратного рассеяния от объектов в направлении первого бокового лепестка антенны эхолота, создающих мешающие эхосигналы;
Н - шкала зондирования эхолота;
β - коэффициент пространственного затухания на частоте работы эхолота;
G - уровень первого бокового лепестка диаграммы направленности антенны эхолота;
r - дистанция до объекта создающего мешающие эхо-сигналы работе эхолота в направлении первого бокового лепестка ДН;
При выполнении условия: Iб≥Iэ (3), то есть, если интенсивность эхо-сигнала, принятого по боковому лепестку ДН антенны, будет больше интенсивности эхо-сигнала, принятого по главному лепестку ДН антенны, то эхо-сигнал, принятый по боковому лепестку ДН антенны, будет воспринят системой обработки как эхо-сигнал от дна.
Для малых глубин, для которых актуальна навигационная безопасность плавания, и, учитывая кубичную зависимость r, множителями 100.2*β*H и 100.2*β*r можно пренебречь, тогда после преобразования неравенства (3) относительно r, с учетом формул (1) и (2), получим:
Figure 00000005
и при известной скорости звука в воде с перейдем от дистанции r (4) к граничному времени Тгр, которое принадлежит интервалу времени Тш - времени распространения зондирующего импульса от антенны эхолота на всю шкалу зондирования Н и обратно.
Figure 00000006
где
Figure 00000007
В формуле (5) значения параметров Н и с известны, также известен уровень первого бокового лепестка диаграммы направленности G для конкретной антенны, используемой в эхолоте, значения Q0 и Q1 в общем случае неизвестны и зависят от конкретного типа грунта и рельефа в момент времени и месте измерения глубины эхолотом.
Вычисляют Тгр путем ввода предположительных значений коэффициентов обратного рассеяния от дна Q0 в направлении главного лепестка ДН и от объекта Q1 в направлении первого бокового лепестка ДН. Значения коэффициентов обратного рассеяния зависят от типа грунта на дне в месте проведения измерения глубины, а тип грунта указывается на навигационных картах для района проведения измерения глубины, а также на них указаны величины предполагаемых глубин, на основе которых выбирают шкалу зондирования Н. В районах плавания с сильно расчлененным рельефом дна, в узкостях, вблизи причальных стенок, как правило, низины затянуты ильными отложениями, а склоны представляют собой либо скальные отложения, либо выходы скальных пород, или искусственные сооружения из бетона или металла. Для достижения максимально возможной достоверности измеренной глубины и навигационной безопасности плавания следует считать дно акустически мягким с минимальным значением коэффициента обратного рассеяния, а объекты в направлении первого бокового лепестка ДН считать акустически жесткими с максимальным значением коэффициента обратного рассеяния. Согласно международному стандарту ISO9875:2000 "Морские эхолоты", стр. 13, минимальное значение коэффициента обратного рассеяния от дна следует считать равным - 25 Д6 (0.056), а максимальное значение коэффициента обратного рассеяния для акустически жестких грунтов может составлять до 6 Дб (0.4…0.5), А.В. Богородский, Д.Б. Островский. «Гидроакустические навигационные и поисково-обследовательские средства». - СПб., 2009 г., Изд. ЛЭТИ с. 95-96.
Предложенный способ реализуется следующим образом.
В каждом цикле зондирования в режиме излучения антенной эхолота излучают акустический зондирующий импульс в водную среду в направлении дна по основному и боковым лепесткам ДН. В режиме приема осуществляют прием эхо-сигналов антенной эхолота, отраженных от дна и различных объектов, в пределах диаграммы направленности антенны, формируют исходный массив амплитуд эхо-сигналов на интервале времени Тш, выделяют из него путем пороговой обработки по амплитуде и по длительности ряд эхо-сигналов, амплитуда которых больше установленного порога, а длительность больше длительности зондирующего импульса. Для селекции мешающих эхо-сигналов в эхолоте с целью повышения достоверности измеренных глубин эхолотом вводят исходные значения параметров - шкалу зонирования Н, уровень первого бокового лепестка ДН антенны G, коэффициент обратного рассеяния от дна в направлении главного лепестка ДН Q0, коэффициент обратного рассеяния в направлении первого бокового лепестка ДН Q1 от объектов, создающих мешающие эхо-сигналы, определенное ранее значение скорости звука с в воде в месте измерения глубины, по которым рассчитывают граничное время Тгр, то есть определяют границу интервала времени, в течение которого могут быть обнаружены мешающие эхо-сигналы, принятые от объектов, расположенных в направлении первого бокового лепестка ДН согласно формуле (5). Таким образом интервал времени Тш разбивается на два смежных интервала, первый от 0 до Тгр и второй от Тгр до Тш и в общем случае, после пороговой обработки эхо-сигналов по амплитуде и по длительности количество эхо-сигналов на этих интервалах времени и соотношения их амплитуд могут быть совершенно различными.
Затем из всех эхо-сигналов на интервале времени от Тгр до Тш выделяют эхо-сигнал с максимальной амплитудой Uc и принимают Uc за эхо-сигнал от дна. В случае не обнаружения даже ни одного эхо-сигнала на интервале времени от Тгр до Тш выделяют из всех эхо-сигналов на интервале времени от 0 до Тгр эхо-сигнал Uп с максимальной амплитудой, принимают эхо-сигнал Uп за эхо-сигнал от дна. Для выделенного эхо-сигнала, принятого за эхо-сигнал от дна, определяют время и, используя определенное ранее значение скорости звука в воде, вычисляют глубину дна, выводят ее значение на индикатор для оператора. В случае не обнаружения ни одного эхо-сигнала на интервале времени от 0 до Тгр не производят вычисление глубины дна.
Таким образом, в каждом цикле зондирования в исходном массиве амплитуд эхо-сигналов производят селекцию мешающих эхо-сигналов, принятых по боковым лепесткам ДН антенны, в результате повышается достоверность измеренных глубин эхолотом.
Аппаратная реализация предлагаемого способа селекции эхо-сигналов в эхолоте может быть выполнена аналогично реализации примененной в эхолоте, представленном в патенте РФ №22241242 «Эхолот». Следовательно, технический результат предлагаемого изобретения достигнут.

Claims (4)

  1. Способ селекции эхо-сигналов в эхолоте, в котором: в каждом цикле «излучение-прием» излучают зондирующие сигналы в водную среду в направлении дна, принимают отраженные эхо-сигналы, формируют исходный цифровой массив отсчетов амплитуд эхо-сигналов, обрабатывают исходный цифровой массив отсчетов амплитуд эхо-сигналов, выделяют из него путем пороговой обработки по амплитуде и по длительности ряд отсчетов амплитуд эхо-сигнала с максимальной амплитудой, отображают выделенный ряд отчетов амплитуд эхо-сигнала с максимальной амплитудой на индикаторе, получают значения скорости звука в воде, определяют время для выбранного эхо-сигнала, вычисляют глубину, отличающийся тем, что дополнительно вводят селекцию эхо-сигналов по двум смежным интервалам времени от 0 до Тгр и от Тгр до Тш, где Тш - временя распространения зондирующего сигнала от антенны эхолота на всю шкалу зондирования и обратно, границу между интервалами Тгр определяют по известным величинам шкалы зондирования эхолота Н, уровню первого бокового лепестка диаграммы направленности антенны эхолота G, значению коэффициента обратного рассеяния от дна в направлении главного лепестка диаграммы направленности антенны эхолота Q0 и значению коэффициента обратного рассеяния в направлении первого бокового лепестка диаграммы направленности антенны эхолота от объектов создающих мешающие эхо-сигналы Q1, по формуле
  2. Figure 00000008
  3. где:
    Figure 00000009
    , с - скорость звука в воде,
  4. на интервале времени от Тгр до Тш выделяют эхо-сигнал с максимальной амплитудой и принимают его за эхо-сигнал от дна, в случае отсутствия эхо-сигналов в интервале времени от Тгр до Тш выделяют эхо-сигнал с максимальной амплитудой на интервале времени от 0 до Тгр и принимают его за эхо-сигнал от дна, в случае отсутствия эхо-сигналов в интервале времени от 0 до Тгр, не производят вычисление глубины дна.
RU2017102862A 2017-01-27 2017-01-27 Способ селекции эхо-сигналов в эхолоте RU2649070C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017102862A RU2649070C1 (ru) 2017-01-27 2017-01-27 Способ селекции эхо-сигналов в эхолоте

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017102862A RU2649070C1 (ru) 2017-01-27 2017-01-27 Способ селекции эхо-сигналов в эхолоте

Publications (1)

Publication Number Publication Date
RU2649070C1 true RU2649070C1 (ru) 2018-03-29

Family

ID=61867595

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017102862A RU2649070C1 (ru) 2017-01-27 2017-01-27 Способ селекции эхо-сигналов в эхолоте

Country Status (1)

Country Link
RU (1) RU2649070C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822275A (en) * 1995-10-27 1998-10-13 Endress & Hauser Gmbh & Co. Method and apparatus for fixed target echo suppression in distance measurement on the principle of pulse transit time
US5877997A (en) * 1995-02-02 1999-03-02 Croma Developments Limited Pulse echo distance measurement
RU2241242C1 (ru) * 2003-03-31 2004-11-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Эхолот
RU2242021C2 (ru) * 2002-07-15 2004-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидролокационный способ обнаружения подводных объектов, движущихся с малой радиальной скоростью в контролируемой акватории, и гидролокационная станция кругового обзора, реализующая этот способ
RU2473924C1 (ru) * 2011-10-03 2013-01-27 Открытое акционерное общество "Концерн "Океанприбор" Способ обнаружения и классификации сигнала от цели

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877997A (en) * 1995-02-02 1999-03-02 Croma Developments Limited Pulse echo distance measurement
US5822275A (en) * 1995-10-27 1998-10-13 Endress & Hauser Gmbh & Co. Method and apparatus for fixed target echo suppression in distance measurement on the principle of pulse transit time
RU2242021C2 (ru) * 2002-07-15 2004-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидролокационный способ обнаружения подводных объектов, движущихся с малой радиальной скоростью в контролируемой акватории, и гидролокационная станция кругового обзора, реализующая этот способ
RU2241242C1 (ru) * 2003-03-31 2004-11-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Эхолот
RU2473924C1 (ru) * 2011-10-03 2013-01-27 Открытое акционерное общество "Концерн "Океанприбор" Способ обнаружения и классификации сигнала от цели

Similar Documents

Publication Publication Date Title
US7330399B2 (en) Sonar system and process
RU2473924C1 (ru) Способ обнаружения и классификации сигнала от цели
RU2634787C1 (ru) Способ обнаружения локального объекта на фоне распределенной помехи
RU2343502C2 (ru) Способ и система определения положения наблюдаемого объекта по глубине в водной среде
Holland et al. Measurement technique for bottom scattering in shallow water
CN108398690B (zh) 一种海底反向散射强度测量方法
Misund et al. Recording fish schools by multi-beam sonar: potential for validating and supplementing echo integration recordings of schooling fish
Jackson et al. Sonar evidence for methane ebullition in Eckernförde Bay
RU2541435C1 (ru) Способ определения осадки айсберга
RU2548596C1 (ru) Способ определения осадки айсберга
Preston et al. Statistical analysis of multistatic echoes from a shipwreck in the Malta Plateau
RU2559159C1 (ru) Способ измерения толщины льда
RU2624826C1 (ru) Способ классификации целей, адаптированный к гидроакустическим условиям
Farmer et al. Intermediate range fish detection with a 12-kHz sidescan sonar
RU75060U1 (ru) Акустическая локационная система ближнего действия
RU2421755C1 (ru) Способ и устройство для поиска и подсчёта рыбы
RU2649070C1 (ru) Способ селекции эхо-сигналов в эхолоте
KR20060135715A (ko) 고속 다선체 선박용 장애물 회피 장치
RU178905U1 (ru) Многолучевой научный эхолот для учёта водных биоресурсов
RU2658528C1 (ru) Способ измерения скорости движения цели гидролокатором
RU2510608C1 (ru) Способ измерения толщины льда с подводного носителя
RU2660292C1 (ru) Способ определения глубины погружения объекта
Trevorrow An evaluation of a steerable sidescan sonar for surveys of near-surface fish
RU2559311C1 (ru) Способ оценки состояния ледового поля
Trevorrow Salmon and herring school detection in shallow waters using sidescan sonars