RU2647486C1 - Способ испытания высокотемпературных тепловыделяющих элементов - Google Patents

Способ испытания высокотемпературных тепловыделяющих элементов Download PDF

Info

Publication number
RU2647486C1
RU2647486C1 RU2017109558A RU2017109558A RU2647486C1 RU 2647486 C1 RU2647486 C1 RU 2647486C1 RU 2017109558 A RU2017109558 A RU 2017109558A RU 2017109558 A RU2017109558 A RU 2017109558A RU 2647486 C1 RU2647486 C1 RU 2647486C1
Authority
RU
Russia
Prior art keywords
fuel
ventilated
fuel rods
deformation
ampoule
Prior art date
Application number
RU2017109558A
Other languages
English (en)
Inventor
Александр Степанович Гонтарь
Вячеслав Витальевич Кузнецов
Михаил Васильевич Нелидов
Валерий Николаевич Сотников
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority to RU2017109558A priority Critical patent/RU2647486C1/ru
Application granted granted Critical
Publication of RU2647486C1 publication Critical patent/RU2647486C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного реактора-преобразователя наземной атомной станции малой мощности для использования в труднодоступных и удаленных районах. Способ включает размещение в ампульном облучательном устройстве вентилируемых твэлов, имеющих диаметральные размеры и материальный состав базовых твэлов, облучение и последующее измерение диаметральной деформации их оболочек. В ампульном облучательном устройстве дополнительно размещают и одновременно с вентилируемыми испытывают с последующим измерением деформации оболочек не менее трех невентилируемых твэлов с теми же диаметральными размерами и материальным составом, имеющих различные компенсационные объемы, величины которых отличаются друг от друга не менее чем в два раза. При этом внутреннюю полость вентилируемых твэлов заполняют инертным газом под давлением, которое в процессе испытаний поддерживают в диапазоне (0,4÷4)⋅104 Па. Техническим результатом является повышение надежности оценки работоспособности твэлов путем разделения вкладов в изменении характеристик оболочки от воздействия топлива и воздействия газообразных продуктов деления. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к ядерной технике, а более конкретно - к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства, и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного реактора-преобразователя наземной атомной станции малой мощности для использования в труднодоступных и удаленных районах.
При обосновании работоспособности указанных невентилируемых твэлов необходим надежный инструмент прогнозирования деформации их оболочек, выполняемых из жаропрочных сплавов тугоплавких металлов. Таким инструментом является, например, комплексная компьютерная программа HERMETICTVEL [Свидетельство РФ о государственной регистрации программы для ЭВМ №2012611060, 2011 г.], предназначенная для моделирования ресурсного поведения невентилируемого высокотемпературного, например, термоэмиссионного твэла. В процессе моделирования программа HERMETICTVEL рассчитывает и деформацию оболочки твэла, являющуюся одним из основных ресурсоограничивающих факторов. В программе учтены две составляющие деформации, обусловленные распуханием топлива и нарастанием давления газообразных продуктов деления (ГПД), соотношение между которыми изменяется во времени. При этом для обеспечения высокой достоверности получаемых результатов необходимо проведение представительного экспериментального тестирования программы с определением составляющих деформации оболочки от распухания сердечника и от совместного воздействия распухающего сердечника и давления ГПД, вышедших из топлива.
Известен способ испытания стержневых тепловыделяющих элементов, включающий облучение и определение характеристик твэлов и трубок, по физико-механическим свойствам идентичных оболочкам твэлов. В известном способе в процессе облучения в 0,2-0,5 от общего количества трубок давление ГПД повышают по режиму повышения давления ГПД в твэлах, а в 0,05-0,5 от общего количества твэлов и в остальных трубках давление ГПД поддерживают на уровне (1,0-1,1)⋅105 Па, измеряют характеристики оболочек твэлов и трубок, находят изменение характеристик от давления ГПД
Figure 00000001
и изменение характеристик от воздействия топлива
Figure 00000002
, где c1, c2, c3, c4 - соответственно характеристики оболочек твэлов, испытанных в номинальном режиме, трубок, в которых в процессе облучения давление ГПД поддерживали на уровне (1,0-1,1)⋅105 Па, трубок, в которых давление ГПД в процессе облучения повышали по режиму повышения ГПД в твэлах, оболочек твэлов, в которых давление ГПД в процессе облучения поддерживали на уровне (1,0-1,1)⋅105 Па [Авторское свидетельство СССР №957659 A1, МПК G21C 17/06 (2000.01), опубл. 10.11.2001].
Целью авторов изобретения является повышение надежности оценки работоспособности твэлов путем разделения вкладов в изменение характеристик оболочки от воздействия топлива и воздействия ГПД. Однако использование данного способа ограничено температурами оболочек энергетических реакторов (500-700°C) и не применимо для высокотемпературных твэлов. Кроме того, из приведенных математических формул видно, что в данном техническом решении воздействие на оболочку твэла давления ГПД и распухающего топлива равно сумме отдельных воздействий этих факторов. Однако давление ГПД после достижения механического контакта оболочки с топливом вследствие распухания последнего действует на оболочку через слой топлива и поэтому суммарное воздействие на оболочку твэла давления ГПД и распухающего топлива не равно сумме отдельных воздействий этих факторов, а соотношение этих воздействий зависит от скорости нарастания давления ГПД (то есть, от величины компенсационного объема в твэле) при одной и той же скорости распухания топлива. Поэтому в данном способе точность разделения составляющих деформации оболочки твэла невелика.
Известен способ исследования совместного свеллинга системы топливо-оболочка высокотемпературного твэла термоэмиссионного реактора-преобразователя, характерная температура оболочки которого превышает 1400°C, а сердечника из диоксида урана - 1700°C [В.В. Синявский. Методы и средства экспериментальных исследований и реакторных испытаний термоэмиссионных электрогенерирующих сборок. М.: Энергоатомиздат, 2000, с. 112-113].
Модельные твэлы в виде топливных сердечников в негерметичных оболочках коаксиально размещали в капсуле ампульного облучательного устройства, которая была снабжена газовыми коммуникациями, сообщенными с испытательным стендом для начального заполнения ее инертными газами или их смесью. На газовых коммуникациях устанавливали пневматические клапаны для возможности герметизации при проведении испытаний. Капсулу размещали в герметичной оболочке из нержавеющей стали с радиальным зазором для регулирования температуры капсулы заменой смеси инертных газов с помощью газового тракта с пневмоклапаном. После проведенных реакторных испытаний проводили измерение деформации оболочек твэлов. Этот способ является наиболее близким к заявляемому способу и принят в качестве прототипа.
Недостаток способа-прототипа состоит в том, что он не позволяет оценить вклад каждой составляющей деформации оболочки в невентилируемом твэле: от распухания сердечника и от давления ГПД, поскольку негерметичная оболочка модельного твэла разгружена от одностороннего внутреннего давления ГПД и на нее воздействует лишь распухающий сердечник, как в штатной конструкции вентилируемого термоэмиссионного твэла. В то время как для моделирования деформационного поведения невентилируемого высокотемпературного, например, термоэмиссионного твэла, необходимы и значимы обе составляющие деформации оболочки.
Задачей настоящего изобретения является разработка способа испытания высокотемпературных твэлов, позволяющего с высокой степенью достоверности определить составляющие деформации упрочненной оболочки от распухания сердечника и от совместного воздействия распухающего сердечника и давления ГПД, вышедших из топлива.
Поставленная задача решается тем, что в способе испытания высокотемпературных тепловыделяющих элементов с оболочками из жаропрочных сплавов тугоплавких металлов в исследовательском реакторе, включающем размещение в ампульном облучательном устройстве вентилируемых твэлов, имеющих диаметральные размеры и материальный состав базовых твэлов, облучение и последующее измерение диаметральной деформации их оболочек, согласно изобретению в ампульном облучательном устройстве дополнительно размещают и одновременно с вентилируемыми испытывают с последующим измерением деформации оболочек не менее трех невентилируемых твэлов с теми же диаметральными размерами и материальным составом, имеющих различные компенсационные объемы, величины которых отличаются друг от друга не менее чем в два раза, при этом внутреннюю полость вентилируемых твэлов заполняют инертным газом под давлением, которое в процессе испытаний поддерживают в диапазоне (0,4÷4)⋅104 Па.
В частных случаях осуществления изобретения в качестве инертного газа используют ксенон.
Данные по деформации оболочек по меньшей мере трех невентилируемых твэлов, испытанных одновременно в одинаковых условиях, но при различных темпах нарастания давления ГПД, т.е. при различных величинах компенсационного объема в твэлах, и по меньшей мере одного вентилируемого твэла, обеспечивают высокую степень достоверности определения составляющих деформации оболочки твэла от распухания сердечника и от совместного воздействия распухающего сердечника и давления ГПД, вышедших из топлива. Однако при испытании твэла на основе низкотеплопроводного топлива с высоким уровнем давления паров (как в случае диоксида урана) и сильно разреженной газовой среды или вакуума в полости этого твэла возможна блокировка газоотводного канала конденсатом UO2 вследствие интенсивного осевого массопереноса и конденсации его в области пониженных температур. Замедление массопереноса диоксида урана достигается путем поддержания в полости вентилируемого твэла давления инертного газа, например ксенона, в диапазоне (0,4-4)⋅104 Па, что позволяет практически исключить массоперенос UO2, не привнося при этом заметного вклада в деформацию оболочки, выполненной из используемых в настоящее время жаропрочных сплавов на основе молибдена и вольфрама.
Сущность предложенного технического решения иллюстрируется при помощи чертежей.
На фиг. 1 схематично изображен продольный разрез ампульного облучательного устройства.
На фиг. 2 представлена температурная зависимость давления ксенона в вентилируемом твэле, сдерживающего массоперенос топлива в центральном канале топливного сердечника.
Ампульное устройство, приведенное на фиг. 1, содержит герметичный корпус 1, в котором с радиальным зазором последовательно размещены вентилируемый твэл 2, включающий топливный сердечник и оболочку, и невентилируемые твэлы 3, включающие топливный сердечник, оболочку и компенсационный объем 4. При этом внутренняя полость вентилируемого твэла 2 соединена с испытательным стендом (на чертеже не показан) газовым трактом 5, снабженным пневмоклапаном, а внутренняя полость ампулы - газовым трактом 6, также снабженным пневмоклапаном.
Испытания в соответствии с предложенным способом осуществляются следующим образом. Во всех модельных твэлах (2, 3) топливный сердечник в процессе распухания нагружает и деформирует оболочку. При этом в твэле (2) оболочка деформируется лишь за счет объемных изменений сердечника, вызванных распуханием, так как вышедшие из топлива ГПД отводятся из твэла по газовому тракту (5). В невентилируемых твэлах (3) оболочки нагружаются совместным воздействием распухающего сердечника и давления ГПД. Поскольку составляющие деформации оболочки при нагрузках первого и второго рода (распухания и газового давления) аддитивно не суммируются, а соотношение составляющих кроме того изменяется во времени из-за нарастания газового давления с выгоранием, то вклад составляющих может быть определен с одновременным использованием в качестве входных данных к расчету, например, по программе HERMETICTVEL результатов испытаний невентилируемых и вентилируемого твэлов. Согласование экспериментально полученной деформации оболочки невентилируемого твэла с результатами итерационных расчетов с использованием экспериментальных значений деформации оболочки вентилируемого твэла определяет величины составляющих при совместном воздействии на оболочку газового давления и распухания сердечника.
Использование в рамках предложенного способа в составе облучательного устройства невентилируемых твэлов с различными величинами компенсационного объема (4) позволяет одновременно оптимизировать величину компенсационного объема для штатной конструкции разрабатываемого твэла.
Сведения, подтверждающие возможность реализации изобретения
Для исследования деформационного поведения высокотемпературных твэлов, которые находятся в стадии отработки и являются базовыми для реакторов с предусмотренным выходом ГПД во внешнее пространство или их локализацией в пределах реакторной установки, в герметичном корпусе ампульного облучательного устройства размещают два типа твэлов, имеющих диаметральные размеры и материальный состав базовых твэлов: один вентилируемый твэл диаметром 19,6 мм с топливным сердечником из диоксида урана высотой 50 мм с центральным каналом диаметром 8 мм, заключенным в оболочку из монокристаллического сплава MH3(Mo+3% масс. Nb), и три невентилируемых твэла диаметром 19,6 мм с топливными сердечниками из диоксида урана высотой 50 мм с центральным каналом диаметром 8 мм, заключенными в оболочки из монокристаллического сплава MH3(Mo+3% масс. Nb), имеющие компенсационный объем высотой 1 мм, 5 мм и 20 мм.
Внутреннюю полость корпуса ампульного облучательного устройства и внутреннюю полость вентилируемого твэла соединяют с испытательным стендом отдельными газовыми трактами с пневмоклапанами.
Ампульное облучательное устройство с твэлами двух типов (фиг. 1) помещают в петлевой канал исследовательского реактора и проводят реакторные испытания. В процессе испытаний для предотвращения продольного массопереноса топлива UO2 в вентилируемом твэле посредством газового трактра с пневмоклапаном поддерживают давление ксенона в диапазоне (0,4-4)⋅104 Па, не влияющее на геометрическую стабильность оболочки, но подавляющее продольный массоперенос топлива.
Из представленных на фиг. 2 результатов следует, что выбранный диапазон давления ксенона в вентилируемом твэле является приемлемым для характерных режимов эксплуатации термоэмиссионного твэла. При этих давлениях радиальная деформация оболочки из монокристаллического сплава MH3 при максимальной температуре оболочки 1650°C на конец типичного ресурса сравнима с чувствительностью измерений при послереакторных исследованиях твэла, т.е. выбранный для блокировки массопереноса диоксида урана в вентилируемом твэле диапазон газового давления является вполне допустимым. В качестве критерия сдерживания массопереноса принято максимальное изменение диаметра центрального канала за год не более 0,1 мм.
После проведения реакторных испытаний выполняют измерения геометрических диаметральных размеров оболочки для определения величины их деформации. Данные о составляющих деформации могут быть использованы для представительного тестирования комплексной компьютерной программы, например, HERMETICTVEL.
Качественно новым результатом предложенного способа является высокая степень достоверности определения составляющих деформации упрочненной оболочки от распухания сердечника и от совместного воздействия распухающего сердечника и давления ГПД, вышедших из топлива, позволяющая создать надежную методику прогнозирования деформации упрочненных оболочек высокотемпературных невентилируемых термоэмиссионных твэлов. При этом заявленный способ не только позволяет решить поставленную задачу, но совместить ее выполнение с испытанием базовых твэлов двух типов реакторов.

Claims (2)

1. Способ испытания высокотемпературных тепловыделяющих элементов с оболочками из жаропрочных сплавов тугоплавких металлов в исследовательском реакторе, включающий размещение в ампульном облучательном устройстве вентилируемых твэлов, имеющих диаметральные размеры и материальный состав базовых твэлов, облучение и последующее измерение диаметральной деформации их оболочек, отличающийся тем, что в ампульном облучательном устройстве дополнительно размещают и одновременно с вентилируемыми испытывают с последующим измерением деформации оболочек не менее трех невентилируемых твэлов с теми же диаметральными размерами и материальным составом, имеющих различные компенсационные объемы, величины которых отличаются друг от друга не менее чем в два раза, при этом внутреннюю полость вентилируемых твэлов заполняют инертным газом под давлением, которое в процессе испытаний поддерживают в диапазоне (0,4÷4)⋅104 Па.
2. Способ по п. 1, отличающийся тем, что в качестве инертного газа используют ксенон.
RU2017109558A 2017-03-22 2017-03-22 Способ испытания высокотемпературных тепловыделяющих элементов RU2647486C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017109558A RU2647486C1 (ru) 2017-03-22 2017-03-22 Способ испытания высокотемпературных тепловыделяющих элементов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017109558A RU2647486C1 (ru) 2017-03-22 2017-03-22 Способ испытания высокотемпературных тепловыделяющих элементов

Publications (1)

Publication Number Publication Date
RU2647486C1 true RU2647486C1 (ru) 2018-03-16

Family

ID=61629457

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017109558A RU2647486C1 (ru) 2017-03-22 2017-03-22 Способ испытания высокотемпературных тепловыделяющих элементов

Country Status (1)

Country Link
RU (1) RU2647486C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682238C1 (ru) * 2018-05-07 2019-03-18 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2069918C1 (ru) * 1994-06-08 1996-11-27 Ракетно-космическая корпорация "Энергия" им.С.П.Королева Способ определения коэффициента теплопроводности оксидного топливного материала для вентилируемого твэла
RU2223571C2 (ru) * 2002-04-08 2004-02-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Многоэлементная термоэмиссионная электрогенерирующая сборка
RU109897U1 (ru) * 2011-06-23 2011-10-27 Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" Устройство для сравнительных испытаний материалов ядерной техники в исследовательском реакторе
EP1922736B1 (fr) * 2005-09-09 2014-05-21 Areva Np Procede de determination d'au moins un facteur d'incertitude technologique d'elements de combustible nucleaire, procede de conception, procede de fabrication et procede de controle d'elements de combustible nucleaire correspondants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2069918C1 (ru) * 1994-06-08 1996-11-27 Ракетно-космическая корпорация "Энергия" им.С.П.Королева Способ определения коэффициента теплопроводности оксидного топливного материала для вентилируемого твэла
RU2223571C2 (ru) * 2002-04-08 2004-02-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Многоэлементная термоэмиссионная электрогенерирующая сборка
EP1922736B1 (fr) * 2005-09-09 2014-05-21 Areva Np Procede de determination d'au moins un facteur d'incertitude technologique d'elements de combustible nucleaire, procede de conception, procede de fabrication et procede de controle d'elements de combustible nucleaire correspondants
RU109897U1 (ru) * 2011-06-23 2011-10-27 Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" Устройство для сравнительных испытаний материалов ядерной техники в исследовательском реакторе

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682238C1 (ru) * 2018-05-07 2019-03-18 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Similar Documents

Publication Publication Date Title
CN105117536B (zh) 一种rpv含裂纹类缺陷的简化弹塑性断裂力学分析方法
EP2172943B1 (en) Doppler reactivity coefficient measuring method
RU2508571C2 (ru) Способ проверки работы активной зоны контрольно-измерительными приборами активной зоны
RU2647486C1 (ru) Способ испытания высокотемпературных тепловыделяющих элементов
Wang et al. Creep damage characterization of UNS N10003 alloy based on a numerical simulation using the Norton creep law and Kachanov–Rabotnov creep damage model
Seok et al. High temperature deformation characteristics of Zirlo™ tubing via ring-creep and burst tests
Lyon et al. PCI analysis and fuel rod failure prediction using FALCON
RU2682238C1 (ru) Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов
JP2008175692A (ja) 炉心の軸方向出力分布の測定方法
Arrestad Fuel rod performance measurements and re-instrumentation capabilities at HALDEN project
Jang et al. Burst Opening Area of HANA-6 Cladding in Simulated LOCA Conditions
Rashid et al. A cladding failure model for fuel rods subjected to operational and accident transients
Van Uffelen et al. Modelling of Nuclear Fuel under Accident Conditions by means of TRANSURANUS
Metzger et al. Analysis of Test Method to Extract Material Properties From Candu Fuel Channel Spacers Made of Helical Springs
Asayama et al. Probabilistic prediction of crack depth distributions observed in structures subjected to thermal fatigue
Ganina et al. Problems of calculation modelling of nitride fuel performance: DRAKON code
JP2006084181A (ja) 加圧水型軽水炉の温度反応度係数分離測定方法
Stuckert et al. Experimental results of the commissioning bundle test QUENCH-L0 performed in the framework of the QUENCH-LOCA program
Gamble et al. A layered 2D computational framework: Theory and applications to nuclear fuel behavior
Murugan et al. Irradiation testing of structural materials in fast breeder test reactor
Venkatesu et al. Development of out-of-pile version of instrumented irradiation capsule for determination of online creep deformation
Ponomarev-Stepnoi et al. Estimation of the hydrogen emission from a hydride moderator by measuring the reactivity and using mathematical statistics
Bouroukine et al. Status and development of instrumented fuel rod testing simulating the power reactor operating conditions in the research reactor MIR
Hadley et al. Effects of Mechanical Loading on Residual Stress and Fracture: Part II—Validation of the BS 7910: 2013 Rules
Palmer Assembly and Functional Test of NRAD Heated Instrumentation Rig