RU2647132C1 - Способ изготовления нанокомпозитов в стекле - Google Patents
Способ изготовления нанокомпозитов в стекле Download PDFInfo
- Publication number
- RU2647132C1 RU2647132C1 RU2016149977A RU2016149977A RU2647132C1 RU 2647132 C1 RU2647132 C1 RU 2647132C1 RU 2016149977 A RU2016149977 A RU 2016149977A RU 2016149977 A RU2016149977 A RU 2016149977A RU 2647132 C1 RU2647132 C1 RU 2647132C1
- Authority
- RU
- Russia
- Prior art keywords
- glass
- electrolysis
- nanocomposite
- npss
- metal
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 65
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 24
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 35
- 239000011148 porous material Substances 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 239000005368 silicate glass Substances 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000012266 salt solution Substances 0.000 claims abstract description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 19
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 230000005684 electric field Effects 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 230000007704 transition Effects 0.000 abstract description 2
- 239000000376 reactant Substances 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 description 27
- 239000004332 silver Substances 0.000 description 26
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- -1 silver ions Chemical class 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 7
- 229910021612 Silver iodide Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229940045105 silver iodide Drugs 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 101710134784 Agnoprotein Proteins 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000026045 iodination Effects 0.000 description 2
- 238000006192 iodination reaction Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 101000812677 Homo sapiens Nucleotide pyrophosphatase Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100039306 Nucleotide pyrophosphatase Human genes 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 241000669326 Selenaspidus articulatus Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CNYFJCCVJNARLE-UHFFFAOYSA-L calcium;2-sulfanylacetic acid;2-sulfidoacetate Chemical compound [Ca+2].[O-]C(=O)CS.[O-]C(=O)CS CNYFJCCVJNARLE-UHFFFAOYSA-L 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 150000002496 iodine Chemical class 0.000 description 1
- GNVXPFBEZCSHQZ-UHFFFAOYSA-N iron(2+);sulfide Chemical compound [S-2].[Fe+2] GNVXPFBEZCSHQZ-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/06—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
- C03C17/10—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0042—Assembling discrete nanostructures into nanostructural devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0061—Methods for manipulating nanostructures
- B82B3/0066—Orienting nanostructures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0095—Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hybrid Cells (AREA)
Abstract
Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу, сквозные поры которого заполнены раствором соли металла, и проведении электролиза при напряжении электрического поля 1.5-5 В. При этом в порах стекла формируются наноразмерные металлические нити. После проведения электролиза нанопористое стекло помещают в жидкий или газообразный реагент, обеспечивающий химическую реакцию с переходом металла в полупроводниковое химическое соединение. После электролиза стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере. Технический результат – упрощение технологии изготовления нанокомпозита. 2 з.п. ф-лы, 8 ил.
Description
Изобретение относится к нанотехнологиям и может быть использовано при изготовлении нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов, сенсоров, элементов электроники и оптоэлектроники и оптических поглотителей.
Известен способ формирования металлических нанокластеров в стекле (Патент РФ №2394001, МПК C03C 17/06, B82B 3/00, дата приоритета от 05.11.2008. опубликован 10.07.2010). Способ заключается в облучении электронным пучком стекла, содержащего ионы серебра, и последующей термообработке стекла. При облучении стекла электронами под поверхностью стекла формируется область отрицательного объемного заряда. Возникающее при этом электрическое поле вызывает полевой дрейф подвижных положительных ионов серебра из объема стекла в эту область, где происходит восстановление ионов термализованными электронами. При последующей термообработке из атомов серебра формируются наночастицы серебра. Данный процесс является твердофазным аналогом электролиза. Недостатком способа является то, что металл-стеклянный нанокомпозит может быть изготовлен только в тонком приповерхностном слое стекла. Недостатком является необходимость использования сложного оборудования - электронного микроскопа. Недостатком является то, нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например, из серебра или меди. Недостатком также является отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.
Известен способ изготовления нанокомпозитов в стекле на основе стекол, содержащих ионы серебра (П.Н. Брунков, А.А. Липовский, В.Г. Мелехин, А.В. Редьков, В.В. Стаценко. // Журнал технической физики, 2015, Т. 85, В. 2, с. 112-117). Способ заключается в том, что на поверхность стекла накладывают электроды, причем положительный электрод изготовлен из серебра. Затем стекло нагревают до температуры 250°C, а к электродам прикладывают электрическое напряжение 250 В. При этом происходит твердофазный электролиз, и ионы серебра дрейфуют от положительного электрода к отрицательному. В результате вблизи отрицательного электрода в приповерхностном слое стекла и на его поверхности возникают микродендриты серебра. Недостатком способа является то, что металл-стеклянный нанокомпозит может быть изготовлен только в тонком приповерхностном слое стекла. Недостатком является то, что нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например из серебра или меди. Недостатком также является необходимость использования высокой температуры и напряжения, что усложняет технологию изготовления нанокомпозита, а также отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.
Известен способ изготовления нанокомпозитов в стекле на основе фосфатных стекол, содержащих ионы серебра (A. Doi, N. Asakura. // Journal of Material Sciense. 2001, V. 36, P. 3897-3901), выбранный в качестве прототипа. Способ заключается в том, что на противоположные поверхности стекла накладывают электроды, причем положительный электрод изготовлен из серебра. Затем стекло нагревают до температуры 148°C в вакууме, а к электродам прикладывают электрическое напряжение 50 В. При этом происходит твердофазный электролиз, и ионы серебра дрейфуют от положительного электрода к отрицательному. В результате вблизи отрицательного электрода в объеме стекла и на его поверхности возникают микродендриты серебра. Недостатком является то, что нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например из серебра или меди. Недостатком также является необходимость использования высокой температуры и напряжения и вакуумирования, что усложняет технологию изготовления нанокомпозита, а также отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.
Изобретение решает задачи упрощения технологии изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов, а также нанокомпозитов смешанного типа, содержащих металл и полупроводник, и расширения номенклатуры материалов, из которых могут быть изготовлены нанокомпозиты.
Сущность заключается в том, что нанопористое силикатное стекло со сквозными порами заполняют раствором соли металла и проводят электролиз при напряжении электрического поля 1.5-5 В. После чего нанопористое стекло промывают и высушивают. Сущность заключается также в том, что после проведения электролиза нанопористое стекло помещают в жидкий или газообразный реагент. Сущность заключается также в том, что после проведения электролиза нанопористое стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере. Цель достигается также тем, что после электролиза и проведения химической реакции нанопористое стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере.
Нанопористые силикатные стекла (НПСС) содержат сквозные сообщающиеся поры, размер которых может варьироваться от 3 до 2000 нм. Выбор технологических режимов изготовления НПСС позволяет получать стекла с малым разбросом размеров пор. Объемная концентрация пор может варьироваться от 20 до 60%. Каркас НПСС на 90-95% состоит из SiO2. При нагреве НПСС до Т=900-950°C поры НПСС схлопываются, и образуется сплошное кварцоидное стекло. В ряде стран НПСС производятся в промышленных масштабах (например, стекло Vikor фирмы Corning). Наши эксперименты показали, что при заполнении НПСС водным раствором соли металла и проведении электролиза с положительным электродом, изготовленным из металла, входящего в состав соли, в порах стекла формируются металлические нити, поперечный размер которых не превышает поперечный размер пор стекла, рост металлических нитей происходит от отрицательного электрода, и в процессе электролиза они заполняют весь объем пор стекла между электродами. Процесс происходит при комнатной температуре, электрическом напряжении между электродами 1.5-5 В, а его продолжительность составляет от десятков секунд до нескольких минут. После завершения электролиза, промывки и высушивания НПСС представляет собой металл-стеклянный нанокомпозит, состоящий из стекла с наноразмерными металлическими нитями в объеме. Металлические нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, например из Ag, Au, Pd, Cu, Fe, Ni, Cr, Sn, Pb, Zn и др., а также из сплавов металлов. При использовании электродов малого поперечного сечения нанокомпозит может быть изготовлен локально, на небольшом участке НПСС. При последующей обработке нанокомпозита в жидком или газообразном реагенте, при необходимости, включающей в себя термообработку, металл, из которого состоят нити, может быть преобразован в полупроводниковое химическое соединение, например оксид, галогенид или халькогенид. Таким образом, предлагаемый способ позволяет изготавливать металл-стеклянные и полупроводник-стеклянные нанокомпозиты, состоящие из НПСС, объем которых заполнен наноразмерными металлическими или полупроводниковыми нитями. При дополнительной термообработке при Т=900-950°C происходит схлопывание пор НПСС, в результате чего формируется сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные металлические или полупроводниковые нити в объеме.
Достоинством предлагаемого способа является то, что он позволяет изготавливать нанокомпозиты при комнатной температуре, с использованием низкого электрического напряжения. Это упрощает технологию изготовления нанокомпозита. Достоинством является также то, что наноразмерные нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, сплавов металлов, а также из полупроводниковых соединений металла. Совокупность признаков, изложенных формуле, характеризует способ изготовления нанокомпозитов в стекле, заключающийся в проведении электролиза в нанопористом силикатном стекле, содержащем раствор соли металла. Это позволяет формировать в объеме стекла наноразмерные металлические нити. Способ позволяет трансформировать металл, из которого состоят нити, в его полупроводниковое химическое соединение. Это позволяет формировать в объеме стекла наноразмерные полупроводниковые нити. Предлагаемый способ позволяет также изготавливать сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные металлические или полупроводниковые нити в объеме.
Изобретение иллюстрируется следующими чертежами, где на:
фиг. 1 показаны схемы электролиза для изготовления нанокомпозита во всем объеме НПСС: а - электроды расположены на противоположных поверхностях пластины НПСС; б - электроды расположены на противоположных торцах пластины НПСС. 1 - пластина НПСС, заполненная раствором соли металла; 2 - отрицательный электрод; 3 - положительный электрод;
фиг. 2 показаны: а - схема электролиза для локального изготовления нанокомпозита в объеме пластины НПСС; б - схема электролиза для локального изготовления нанокомпозита в приповерхностном слое пластины НПСС. 1 - пластина НПСС, заполненная раствором соли металла; 2 - отрицательный электрод; 3 - положительный электрод;
фиг. 3 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС с наноразмерными нитями серебра, изготовленными при использовании схемы, показанной на фиг. 2, а. 4 - участок НПС без нанокомпозита; 5 - участок НПСС с нанокомпозитом. Масштаб 100 мкм.
фиг. 4 показано изображение, полученное с помощью сканирующего электронного микроскопа, торца скола НПСС с микродендритом из серебра. Масштаб 200 нм.
фиг. 5 показана фотография, сделанная с помощью оптического микроскопа, торца скола НПСС с наноразмерными нитями серебра после частичного йодирования. 6 - Ag, 7 - AgI. Масштаб 500 мкм.
фиг. 6 показан спектр поглощения нанокомпозита на основе НПСС с полупроводниковым йодидом серебра.
фиг. 7 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС с микродендритами меди, изготовленными при использовании схемы, показанной на фиг. 2, а.
фиг. 8 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС наноразмерными нитями железа, изготовленными при использовании схемы, показанной на фиг. 2, а. Масштаб 50 мкм.
Сущность изобретения раскрывается на примерах, которые не должны рассматриваться экспертом как ограничивающие притязания изобретения.
Сведения, подтверждающие возможность осуществления изобретения.
Пример 1
На фиг. 1 и фиг. 2 показаны схемы проведения электролиза при изготовлении нанокомпозита. 1 - пластина НПСС, заполненная раствором соли металла, 2 - отрицательный электрод, 3 - положительный электрод, изготовленный из металла, входящего в состав соли. Схемы, показанные на фиг. 1, используются для формирования нанокомпозита во всем объеме НПСС. Схема, показанная на фиг. 2, а, используется для формирования нанокомпозита локально по всей толщине пластины НПСС. Схема, показанная на фиг. 2, а, используется для формирования нанокомпозита локально в приповерхностном слое пластины НПСС. Пластину НПСС толщиной 1 мм со средним размером пор 25 нм и объемной концентрацией пор 57% помещают в водный раствор AgNO3 (концентрация 20 г/л) с добавлением 10% HNO3. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, а. Положительный электрод 3 на фиг. 2, а изготовлен из серебра. Диаметр электродов равен 1 мм. К электродам прикладывают постоянное напряжение, равное 3 В. Электролиз проводят при комнатной температуре в течение 30 с при плотности тока 2 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора AgNO3, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 3 показана фотография участка пластины НПСС после локального изготовления нанокомпозита серебро-стекло. Исходно бесцветное и прозрачное стекло на фиг. 3 (область 4) приобрело темно-коричневую окраску под электродами и вблизи электродов на фиг. 3 (область 5). Из фиг. 3 видно, что серебро заполнило объем пор стекла в виде микродендритов и серебра. На фиг. 4 показано изображение, полученное с помощью сканирующего электронного микроскопа, торца скола НПСС с микродендритом из серебра на поверхности скола. Из фиг. 4 видно, что микродендрит состоит из наноразмерных нитей серебра толщиной 20-25 нм. Удельное сопротивление исходного НПСС превышает 200 МОм/см. В области формирования нанокомпозита удельное сопротивление НПСС равно 1.4 МОм/см.
Пример 2
В пластине НПСС толщиной 1 мм со средним размером пор 25 нм и объемной концентрацией пор 57% изготавливают нанокомпозит с серебром способом, описанным в примере 1. После этого пластину НПСС при комнатной температуре помещают в воздушную атмосферу с насыщенным давлением паров йода и выдерживают в течение 1 ч. При этом в результате химической реакции серебра с йодом серебро преобразуется в полупроводниковое соединение йодид серебра (AgI). В результате этого нанокомпозит изменяет окраску с черной на желтую. На фиг. 5 показан торец скола НПСС после частичного йодирования. Из фиг. 5 видно, что в приповерхностных слоях стекла серебро трансформировалось в йодид серебра (6 на фиг. 5), а в глубине стекла серебро осталось в металлическом виде (7 на фиг. 5). Таким образом, предложенный способ позволяет изготавливать нанокомпозиты смешанного типа, содержащие как металл, так и полупроводник. После полного йодирования на спектре поглощения нанокомпозита на длине волны 410 нм появляется экситонная полоса поглощения, характерная для кристаллического йодида серебра (фиг. 6).
Пример 3
Пластину НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% помещают в водный раствор CuSO4 (концентрация 15 г/л) с добавлением 10% H2SO4. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, б. Положительный электрод 3 на фиг. 2, б изготовлен из меди. Диаметр электродов равен 1 мм. Расстояние между электродами 3 мм. К электродам прикладывают постоянное напряжение, равное 3.5 В. Электролиз проводят при комнатной температуре в течение 10 мин при плотности тока 3 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора CuSO4, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 7 показана фотография участка пластины НПСС на начальной стадии электролиза (через 2 мин после начала электролиза) при локальном изготовлении нанокомпозита медь-стекло. Из фиг. 7 видно, что на поверхности и в приповерхностном слое НПСС вблизи отрицательного электрода формируются микродендриты из меди, состоящие из групп наноразмерных нитей и имеющие коричневую окраску. На концах микродендритов, соответствующих начальной стадии роста микродендритов, окраска переходит в желтую. При проведении полного цикла электролиза НПСС между электродами приобретает коричневую окраску из-за полного заполнения пространства микродендритами. В области формирования нанокомпозита удельное сопротивление НПСС равно 5 МОм/см.
Пример 4
В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с медью способом, описанным в примере 3. После этого пластину НПСС нагревают в воздушной атмосфере при температуре 400°C в течение 30 мин. При этом в результате химической реакции меди с кислородом воздуха медь преобразуется в полупроводниковое соединение оксид меди (CuO). В результате этого нанокомпозит изменяет окраску с коричневой на черную.
Пример 5
Пластину НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% помещают в водный раствор FeCl2 (концентрация 20 г/л) с добавлением 10% HCl. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, а. Положительный электрод 3 на фиг. 2, б изготовлен из железа. Диаметр электродов равен 0.5 мм. К электродам прикладывают постоянное напряжение, равное 3.5 В. Электролиз проводят при комнатной температуре в течение 10 мин при плотности тока 5 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора FeCl2, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 8 показана фотография участка пластины НПСС после электролиза в области нанокомпозита железо-стекло. Из фиг. 8 видно, что в объеме НПСС формируются наноразмерные нити из железа, создающие темно-коричневую окраску. В области формирования нанокомпозита удельное сопротивление НПСС равно 7 МОм/см. Нанокомпозит с железом обладает магнитными свойствами.
Пример 6
В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с железом способом, описанным в примере 5. После этого пластину НПСС при комнатной температуре помещают в водный раствор Na2S на 30 мин. При этом в результате химической реакции железа с Na2S железо преобразуется в полупроводниковое соединение сульфид железа (FeS). В результате этого нанокомпозит изменяет окраску с коричневой на черную. После этого НПСС промывают в дистиллированной воде и высушивают.
Пример 7
В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с сульфидом железа способом, описанным в примере 6. После этого пластину НПСС подвергают термообработке в воздушной атмосфере при температуре 950°C в течение 30 мин. При этом происходит схлопывание пор НПСС, в результате чего формируется сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные полупроводниковые нити из сульфида железа в объеме.
Промышленная применимость изобретения
Предложенный способ позволяет изготавливать нанопористые электроды для батарей, аккумуляторов и солнечных элементов, прозрачные и непрозрачные проводящие электроды, катализаторы, среды с усилением рамановского рассеяния, оптические поглотители, элементы электроники и оптоэлектроники, чувствительные элементы химических сенсоров и биосенсоров. Метод позволяет также изготавливать магнитные стекла, при использовании в нанокомпозите переходных и редкоземельных металлов, а также поглотители и накопители водорода при использовании в нанокомпозите никеля, палладия или ванадия.
Таким образом, предлагаемое техническое решение позволяет решить задачу упрощения технологии изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов, а также нанокомпозитов смешанного типа, и расширения номенклатуры материалов, из которых могут быть изготовлены нанокомпозиты. Достоинством предлагаемого способа является то, что он позволяет изготавливать нанокомпозиты при комнатной температуре, с использованием низкого электрического напряжения. Это упрощает технологию изготовления нанокомпозита. Достоинством является также то, что наноразмерные нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, сплавов металлов, а также из полупроводниковых соединений металла.
Claims (3)
1. Способ изготовления нанокомпозитов в стекле заключающийся в том, что на поверхности стекла, которое содержит ионы металла, накладывают электроды и проводят электролиз, отличающийся тем, что используют нанопористое силикатное стекло со сквозными порами, заполненное раствором соли металла, а электролиз проводят при напряжении электрического поля 1.5-5 В, после чего нанопористое стекло промывают и высушивают.
2. Способ по п. 1, отличающийся тем, что после электролиза проводят химическую реакцию, помещая нанопористое стекло в жидкий или газообразный реагент.
3. Способ по пп. 1 и 2, отличающийся тем, что после электролиза стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016149977A RU2647132C1 (ru) | 2016-12-19 | 2016-12-19 | Способ изготовления нанокомпозитов в стекле |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016149977A RU2647132C1 (ru) | 2016-12-19 | 2016-12-19 | Способ изготовления нанокомпозитов в стекле |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2647132C1 true RU2647132C1 (ru) | 2018-03-14 |
Family
ID=61629299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016149977A RU2647132C1 (ru) | 2016-12-19 | 2016-12-19 | Способ изготовления нанокомпозитов в стекле |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2647132C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2056133A1 (en) * | 2006-08-25 | 2009-05-06 | FUJIFILM Corporation | Glass |
RU2394001C1 (ru) * | 2008-11-05 | 2010-07-10 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет информационных технологий, механики и оптики" | Способ формирования металлических нанокластеров в стекле |
RU2429210C1 (ru) * | 2009-12-29 | 2011-09-20 | Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Наноструктурированное поляризованное стекло и способ его получения |
US20150211142A1 (en) * | 2014-01-28 | 2015-07-30 | University Of Delaware | Processes for depositing nanoparticles upon non-conductive substrates |
RU2594183C1 (ru) * | 2015-04-10 | 2016-08-10 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) | Способ получения композитного мультиферроика на основе ферромагнитного пористого стекла |
-
2016
- 2016-12-19 RU RU2016149977A patent/RU2647132C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2056133A1 (en) * | 2006-08-25 | 2009-05-06 | FUJIFILM Corporation | Glass |
RU2394001C1 (ru) * | 2008-11-05 | 2010-07-10 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет информационных технологий, механики и оптики" | Способ формирования металлических нанокластеров в стекле |
RU2429210C1 (ru) * | 2009-12-29 | 2011-09-20 | Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Наноструктурированное поляризованное стекло и способ его получения |
US20150211142A1 (en) * | 2014-01-28 | 2015-07-30 | University Of Delaware | Processes for depositing nanoparticles upon non-conductive substrates |
RU2594183C1 (ru) * | 2015-04-10 | 2016-08-10 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) | Способ получения композитного мультиферроика на основе ферромагнитного пористого стекла |
Non-Patent Citations (1)
Title |
---|
A.DOI et al. Dendrites creating in silver metaphosphate glass treated by direct current of high density. 2001. v.36, p. 3897-3901. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shin et al. | A tree-like nanoporous WO 3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation | |
Rai | Plasmonic noble metal@ metal oxide core–shell nanoparticles for dye-sensitized solar cell applications | |
US7011737B2 (en) | Titania nanotube arrays for use as sensors and method of producing | |
KR102430267B1 (ko) | 그래핀 기반의 투명 전도성 전극 생성을 위한 프로세스 및 이를 이용한 생성물 | |
US20150246847A1 (en) | Ion Exchange Substrate and Metalized Product and Apparatus and Method for Production Thereof | |
JP2023081904A (ja) | 多孔質金属箔又はワイヤ、及びそれから製造したコンデンサアノード、及びその製造方法 | |
Karbassian | Porous silicon | |
Kushwaha et al. | Defect controlled water splitting characteristics of gold nanoparticle functionalized ZnO nanowire films | |
Zhang et al. | Fabrication of a composite electrode: CdS decorated Sb–SnO2/TiO2-NTs for efficient photoelectrochemical reactivity | |
KR101382911B1 (ko) | 비등을 이용한 폼형상 그라핀 구조의 생성방법 및 이를 이용한 폼형상 그라핀 구조 | |
Liu et al. | Fabrication of porous TiO 2 nanorod array photoelectrodes with enhanced photoelectrochemical water splitting by helium ion implantation | |
KR102366774B1 (ko) | 광전기화학적 수처리용 광전극, 이의 제조방법 및 이의 용도 | |
Ghrib et al. | Synthesis and characterization of ZnO/ZnS core/shell nanowires | |
RU2647132C1 (ru) | Способ изготовления нанокомпозитов в стекле | |
Grochowska et al. | Laser induced formation of copper species over TiO2 nanotubes towards enhanced water splitting performance | |
Dan et al. | Diodelike behavior in glass–metal nanocomposites | |
KR20200025753A (ko) | 플라즈몬 금속 나노 입자가 꾸며진 광전기화학셀 광양극 제조 방법 및 광전기화학셀 광양극 | |
Rozana et al. | Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film | |
JP6497590B2 (ja) | 水の分解方法、水分解装置および酸素生成用のアノード電極 | |
KR101352330B1 (ko) | 염료감응형 태양전지의 금속 나노 구조체 제조방법 | |
Kumar et al. | Photoluminescence quenching and confinement effects in mesoporous silicon: photoluminescence, optical and electrical studies | |
Rahman et al. | Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe 2 O 3–WO 3 Composite Synthesized by Single-Step Hydrothermal Method | |
Afrosimov et al. | Mass transfer in thermo-electric-field modification of glass-metal nanocomposites | |
Ren et al. | Slow-rise and fast-drop current feature of ultraviolet response spectra for ZnO-nanowire film modulated by water molecules | |
KR101625485B1 (ko) | α-Fe₂O₃그래핀 인버스 오팔 구조체 |