RU2647073C1 - Способ получения порошков тантала - Google Patents

Способ получения порошков тантала Download PDF

Info

Publication number
RU2647073C1
RU2647073C1 RU2017121223A RU2017121223A RU2647073C1 RU 2647073 C1 RU2647073 C1 RU 2647073C1 RU 2017121223 A RU2017121223 A RU 2017121223A RU 2017121223 A RU2017121223 A RU 2017121223A RU 2647073 C1 RU2647073 C1 RU 2647073C1
Authority
RU
Russia
Prior art keywords
hydrogen
hydride
tantalum
lani
powder
Prior art date
Application number
RU2017121223A
Other languages
English (en)
Inventor
Ахмедали Амиралы оглы Гасанов
Юрий Борисович Патрикеев
Сергей Александрович Репин
Юлия Михайловна Филянд
Original Assignee
Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности АО "Гиредмет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности АО "Гиредмет" filed Critical Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности АО "Гиредмет"
Priority to RU2017121223A priority Critical patent/RU2647073C1/ru
Application granted granted Critical
Publication of RU2647073C1 publication Critical patent/RU2647073C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к получению порошка тантала. Способ включает активацию слитка тантала нагреванием до 700-900°C и гидрирование в атмосфере водорода при избыточном давлении 0,01-0,3 МПа с использованием в качестве источника водорода насыщенного гидрида интерметаллического соединения LaNi4Co, измельчение синтезированного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка ТаНх в две стадии. Сначала дегидрируемый порошок ТаНх нагревают до 800-850°C и поглощают основную часть выделяющегося водорода с использованием в качестве сорбента ненасыщенного гидрида интерметаллического соединения LaNi4Co, затем повышают температуру до 850-900°C и поглощают остаточную часть водорода с использованием предварительно активированного и дегазированного LaNi4Co. Обеспечивается получение порошка тантала с содержанием водорода менее 0,05 мас.%. 3 ил., 1 табл.

Description

Изобретение относится к области порошковой металлургии и может быть использовано для получения высокочистых порошков тантала гидридным методом.
Гидридный способ получения порошков (ГСПП) основан на использовании водородного охрупчивания металлов, позволяющего измельчать их до требуемой степени дисперсности. ГСПП включает активацию компактного материала нагреванием в вакууме или в атмосфере водорода, гидрирование в процессе ступенчатого охлаждения в водороде, измельчение синтезированного гидрида механическим путем до требуемого гранулометрического состава и дегидрирование полученных порошков при нагревании и удалении выделяющегося газа с помощью вакуумных насосов или специальных сорбентов. В качестве таковых можно использовать материалы, способные обратимо поглощать Н2: некоторые гидридообразующие металлы (например, титан) или интерметаллические соединения (ИМС), что позволяет, во-первых, насыщать диспергируемый металл газом высокой степени чистоты, образующимся при термическом разложении гидридов, а во-вторых, осуществлять вышеописанный процесс ГСПП в замкнутом цикле по водороду. В этом случае гидриды титана или ИМС в насыщенном состоянии служат источниками высокочистого Н2, а в ненасыщенном - поглотителями, обеспечивающими сорбцию основного количества газа, выделяющегося из порошка при дегидрировании.
Известен способ получения порошков редких металлов гидрированием-дегидрированием компактных материалов с использованием водорода в замкнутом цикле. Данный способ включает технологические операции гидрирования, размола, классификации и дегидрирования. При этом чистый водород поступает в систему из насыщенного гидрида титана, а удаление водорода, выделяющегося при дегидрировании порошка, обеспечивается за счет поглощения этого газа ненасыщенным TiHx (Исследования и разработки ИХТРЭМС КНЦ РАН в области материаловедения для решения задач специальной техники / В.Т. Калинников, А.Г. Касиков, В.М. Орлов, Н.Н. Гришин, Б.М. Фрейдин // Химическая технология. 2009. Т. 10, №3. С. 177-182). Главный недостаток такого способа заключается в том, что из-за высоких температур образования и особенно разложения гидрида титана разогрев его до заданного температурного уровня требует много времени и больших затрат электроэнергии, что значительно удлиняет процессы гидрирования компактного металла, снижает их производительность и увеличивает стоимость продукта.
Известно использование интерметаллического соединения LaNi4Co при гидрировании ниобия водородом, выделяющимся при разложении гидрида этого ИМС. Слитки ниобия помещали в реторту, которую затем герметизировали, вакуумировали, заполняли водородом, выделяющимся из насыщенного гидрида ИМС LaNi4Co, нагревали в электропечи до (750±50)°C и делали выдержку при этой температуре в течение 4-5 ч. Начавшийся процесс гидрирования продолжали путем ступенчатого снижения температуры: сначала до (450±50)°C (с выдержкой на этом уровне около 5 ч), потом до 80-100°C (вместе с печью, на протяжении 20-30 ч), а после извлечения реторты из печи - до комнатной температуры (Разработка оксидно-полупроводниковых конденсаторов на основе ниобия / А.В. Елютин, Ю.Б. Патрикеев, Н.С. Воробьева // ГИРЕДМЕТ - 70 лет в металлургии редких металлов и полупроводников: юбилейный сборник. М.: ЦИНАО, 2001. С. 291-306). Продуктом этого технологического процесса был порошок гидрида ниобия, используемый для изготовления анодов оксидно-полупроводниковых конденсаторов (ОПК). Водород из него удаляли уже на стадии изготовления ОПК, поэтому на этапе получения порошка замкнутый цикл реализован не был.
При производстве порошков в замкнутом цикле недостатком данного способа является меньшая по сравнению с гидридом титана сорбционная активность ИМС LaNi4Co при абсолютном давлении ниже 0,1 МПа, которое необходимо для более полного дегидрирования порошка тантала. Поскольку равновесное давление образования гидрида LaNi4CoHx при температуре 20°C находится на уровне 0,12-0,14 МПа, то по мере поглощения водорода, выделяющегося из ТаНх, сорбент насыщается раньше, чем будет достигнуто требуемое потребителями остаточное содержание водорода в порошке тантала ([H]Ta).
Известен также способ получения порошков тантала в замкнутом цикле по водороду (технологическая схема представлена на рис. 1), включающий активацию слитка тантала нагреванием до 700-900°C в атмосфере водорода, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка тантала с использованием ненасыщенного гидрида титана. Активацию слитка тантала нагреванием ведут в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции водорода из насыщенного гидрида многокомпонентного интерметаллического соединения La1-yRyNi4Co (где R - редкоземельные металлы цериевой группы и/или мишметалл, 0<y≤1), что инициирует начало гидрирования слитка тантала водородом. Одновременно с активацией слитка тантала нагревают насыщенный гидрид титана до температуры его разложения с выделением водорода и при достижении избыточного давления 0,2-0,3 МПа продолжают начатое гидрирование слитка тантала водородом, выделяющимся при разложении гидрида титана. (Способ получения порошков тантала. Патент RU №2582414, МПК С22B 34/24, B22F 9/04, B22F 9/16, опубл. 27.04.2016.) Способ принят за прототип.
При реализации такого комбинированного варианта ГСПП с участием в технологических процессах двух сорбентов водорода достигается сокращение времени, необходимого для проведения операций гидрирования-дегидрирования. Также обеспечивается снижение потерь водорода и повышение безопасности процесса за счет использования возможности дополнительного поглощения излишнего количества выделяющегося водорода, что позволяет избежать резких скачков давления, которые могут возникнуть из-за инерционности печей и разницы в скоростях выделения водорода и поглощения его гидрируемым металлом. Однако в качестве базового сорбента здесь по-прежнему применяется титан, что требует больших затрат электроэнергии и негативно сказывается на стоимости продукта. Кроме того, как показала практика длительного использования гидрида титана в качестве источника водорода, продолжительное пребывание TiHx при повышенных температурах в тесном контакте с материалом реторты, нержавеющей сталью, стимулирует диффузионные процессы, приводящие к образованию легкоплавких композиций титана с элементами, входящими в ее состав. В результате локального расплавления возможно нарушение целостности реторты, что чревато выбросом водорода и его возгоранием.
Техническим результатом заявленного изобретения является:
1) снижение энергетических затрат на проведение операций гидрирования-дегидрирования и увеличение тем самым экономической эффективности технологического процесса в целом;
2) повышение безопасности процесса.
Технический результат достигается тем, что в способе получения порошков тантала, включающем активацию слитка тантала нагреванием до 700-900°C и гидрирование в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции его из насыщенных металлогидридов, измельчение синтезированного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка с использованием в качестве сорбентов водорода ненасыщенных металлогидридов, согласно изобретению при активации и гидрировании слитка тантала в качестве источника водорода используют насыщенный гидрид интерметаллического соединения LaNi4Co, а дегидрирование проводят в две стадии: сначала дегидрируемый ТаНх нагревают до 800-850°C и поглощают основную часть выделяющегося водорода с использованием в качестве сорбента ненасыщенного гидрида интерметаллического соединения LaNi4Co, затем повышают температуру до 850-900°C и поглощают остаточную часть водорода с использованием предварительно активированного и дегазированного LaNi4Co.
Технологическая схема получения порошков представлена на рис. 2.
Сущность изобретения заключается в следующем.
Активацию исходного слитка тантала осуществляют нагреванием его до температуры 700-900°C в атмосфере чистого водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции этого газа из насыщенного гидрида интерметаллического соединения LaNi4Co. Использование этого ИМС в качестве базового сорбента не требует нагревания его до столь высоких температур, которые необходимы для насыщения и дегазации TiHx (350-950°C). Гидрид LaNi4CoHx образуется и разлагается при температурах, близких к комнатной. Поэтому для создания требуемого при активации тантала избыточного давления водорода и подержания его на заданном уровне в процессе гидрирования достаточно подогрева гидрида ИМС до температурного уровня 30-80°C, обеспечивающего разложение LaNi4CoHx и компенсацию сопутствующего этому эндотермического эффекта.
Дегидрирование порошка ТаНх проводят в две стадии: удаление из гидрида тантала основного количества водорода и снижение остаточной концентрации [Н]Та до требуемых потребителями значений.
На первой стадии порошок ТаНх нагревают от комнатной температуры до 800-850°C. В данном интервале выделяется основная часть водорода, которую поглощают с помощью ненасыщенного гидрида LaNi4CoHx. Сорбция осуществляется при комнатной температуре, подогрева поглотителя не требуется. При этом [Н]та снижается до ~0,1% (мас.).
На второй стадии дегидрируемый порошок нагревают до 850-900°C и выделяющийся из него остаточный водород поглощают с помощью дополнительного сорбента - ИМС LaNi4Co, предварительно активированного в атмосфере водорода при комнатной температуре с последующей дегазацией при 80-100°C. В результате получают порошок тантала, содержащий менее 0,05% (мас.) водорода.
Использование ИМС LaNi4Co в качестве базового и дополнительного сорбента водорода позволяет значительно сократить энергетические затраты на проведение операций гидрирования-дегидрирования, поскольку резко уменьшается расход электроэнергии: для подогрева насыщенного гидрида LaNi4Co до 30-80°C и дегазации дополнительного сорбента при 80-100°C ее требуется во много раз меньше, чем при нагревании и поддержании высокой температуры, необходимой для образования (350-400°C) и разложения (550-950°C) гидрида титана. Таким образом, повышается экономическая эффективность ГСПП в замкнутом цикле по водороду. При этом минимизируются риски, связанные с возможностью нарушения целостности реторты из-за образования легкоплавких композиций и локального расплавления ее материала, и, следовательно, обеспечивается безопасное проведение технологического процесса.
Примеры осуществления способа
Исходным материалом для получения порошков тантала служили слитки электронно-лучевой плавки массой около 150 кг. Порошки получали известным методом (пример 1) и заявленным способом (пример 2). Активацию слитка тантала осуществляли нагревом до 700-900°C в атмосфере водорода, которую создавали перед началом подъема температуры. В первом случае для этой цели использовали газ, образующийся при разложении гидрида ИМС La1-yRyNi4Co. Одновременно с гидрируемым металлом нагревали и насыщенный TiHx, а когда избыточное давление водорода, выделяющегося при его разложении, достигало 0,2-0,3 МПа, подавали этот газ в зону реакции. Во втором случае атмосферу водорода создавали и проводили весь процесс гидрирования только за счет разложения насыщенного гидрида ИМС LaNi4Co.
Для осуществления процессов гидрирования-дегидрирования использовали установку, принципиальная схема которой представлена на рис. 3. Слиток тантала загружали в стальную реторту 1, которую помещали в электропечь 2, герметизировали и вакуумировали с помощью форвакуумного насоса 3. Металлогидриды находились в оснащенных мановакумметрами 4-6 стальных герметизированных сосудах: насыщенные - в ретортах 7 и 8 (пример 1), 7 (пример 2); ненасыщенные (в обоих случаях) - в реторте 9; дегазированный (пример 2) - в реторте 8. Реторту 1 заполняли водородом до избыточного давления около 0,01-0,02 МПа и плавно нагревали до температуры активации. При этом давление, регистрируемое мановакуумметром 10, сначала возрастало за счет теплового расширения газа примерно до 0,25-0,3 МПа, а затем снижалось, что свидетельствовало о начале гидрирования. Количество поглощаемого водорода измеряли счетчиком 11, показания которого соответствуют объему, занимаемому газом при нормальных условиях.
Активация слитка занимала 3,5-4 ч, выдержка при достигнутой температуре, обеспечивающая диффузию водорода с поверхности в толщу слитка металла, длилась примерно столько же, и общая продолжительность высокотемпературной фазы процесса составляла ~8 ч. Затем температуру в реторте 1 постепенно снижали вплоть до полного остывания в течение ~40 ч. После выгрузки из реторты синтезированный гидрид тантала измельчали в шаровой мельнице до порошка с размером частиц менее 125 мкм, подвергали классификации и направляли на дегидрирование в стальную реторту 12, оснащенную мановакуумметром 13, которую нагревали электропечью 14 до температуры 850-900°C. Выделяющийся при этом водород пускали в реторту 9, а на стадии удаления остаточного водорода (пример 2) - в реторту 8.
Потоки газа в системе регулировали с помощью вентилей 15. Технический водород, необходимый для первоначального гидрирования титановой губки и интерметаллических соединений (La1-yRyNi4Co и LaNi4Co), поступал из стандартного газового баллона 16 через вентиль 17 и редуктор 18.
Пример 1. Для активации слитка тантала в реторту 1 подавали водород из сосуда 8, заполненного гидридом ИМС La0,78Ce0,22Ni4Co. Одновременно с нагревом танталового слитка до температуры активации разогревали находившийся в реторте 7 насыщенный гидрид титана (наводороженную титановую губку) до температуры 550-950°C, используя для этого электропечь 19. Выделяющийся при разложении TiHx газ подавали в реторту 1, поддерживая в ней избыточное давление, необходимое для гидрирования слитка.
При дегидрировании порошка тантала десорбирующийся из него водород поглощали с помощью ненасыщенного гидрида титана, помешенного в реторту 9 и нагретого до температуры 350-400°C с помощью электропечи 20.
Пример 2. Для активации и гидрирования слитка тантала в реторту 1 подавали водород из сосуда 7, заполненного насыщенным гидридом ИМС LaNi4Co. Необходимое избыточное давление газа создавали и поддерживали путем подогрева до 30-80°C с помощью ленточного нагревателя 21.
На первой стадии дегидрирования основную часть водорода, выделяющегося из порошка ТаНх при нагреве до 800-850°C, поглощали с помощью ненасыщенного гидрида ИМС LaNi4Co, находившегося в реторте 9 при комнатной температуре. Чтобы компенсировать сопутствующий этому экзотермический эффект, реторту охлаждали проточной водой с помощью змеевика 22.
На второй стадии дегидрирования остаточную часть водорода, выделяющегося из порошка ТаНх при нагреве до 850-900°C, поглощали с помощью помещенного в реторту 8 дополнительного сорбента LaNi4Co, который предварительно активировали в атмосфере Н2 при комнатной температуре и дегазировали при 80-100°C. При работе дополнительного водородопоглотителя сорбция также осуществляется при комнатной температуре, подогрев не требуется.
В приведенной ниже таблице сопоставлены затраты электроэнергии на нагрев сорбентов водорода при проведении операций гидрирования слитка тантала и дегидрирования ТаНх для известного (пример 1) и заявленного (пример 2) способов получения порошков тантала. Представленные в таблице данные свидетельствуют о том, что использование ИМС LaNi4Co вместо титановой губки позволяет сократить расход электроэнергии в 6,8 раза.
Кроме того, изобретение повышает безопасность процесса получения порошка тантала.
Figure 00000001

Claims (1)

  1. Способ получения порошков тантала, включающий активацию слитка тантала нагреванием до 700-900°C и гидрирование в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции его из насыщенных металлогидридов, измельчение синтезированного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка с использованием в качестве сорбентов водорода ненасыщенных металлогидридов, отличающийся тем, что при активации и гидрировании слитка тантала в качестве источника водорода используют насыщенный гидрид интерметаллического соединения LaNi4Co, а дегидрирование проводят в две стадии, причем сначала дегидрируемый порошок ТаНх нагревают до 800-850°C и поглощают основную часть выделяющегося водорода с использованием в качестве сорбента ненасыщенного гидрида интерметаллического соединения LaNi4Co, а затем повышают температуру до 850-900°C и поглощают остаточную часть водорода с использованием предварительно активированного и дегазированного LaNi4Co.
RU2017121223A 2017-06-16 2017-06-16 Способ получения порошков тантала RU2647073C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121223A RU2647073C1 (ru) 2017-06-16 2017-06-16 Способ получения порошков тантала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121223A RU2647073C1 (ru) 2017-06-16 2017-06-16 Способ получения порошков тантала

Publications (1)

Publication Number Publication Date
RU2647073C1 true RU2647073C1 (ru) 2018-03-13

Family

ID=61627641

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121223A RU2647073C1 (ru) 2017-06-16 2017-06-16 Способ получения порошков тантала

Country Status (1)

Country Link
RU (1) RU2647073C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635693A (en) * 1969-01-27 1972-01-18 Starck Hermann C Fa Method of producing tantalum or niobium powder from compact bodies
US20110067527A1 (en) * 2004-04-23 2011-03-24 H. C. Starck Gmbh Method for production of niobium and tantalum powder
RU2582414C1 (ru) * 2014-10-17 2016-04-27 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" (АО "Гиредмет") Способ получения порошков тантала
RU2610652C1 (ru) * 2016-03-29 2017-02-14 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" Способ получения порошков ниобия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635693A (en) * 1969-01-27 1972-01-18 Starck Hermann C Fa Method of producing tantalum or niobium powder from compact bodies
US20110067527A1 (en) * 2004-04-23 2011-03-24 H. C. Starck Gmbh Method for production of niobium and tantalum powder
RU2582414C1 (ru) * 2014-10-17 2016-04-27 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" (АО "Гиредмет") Способ получения порошков тантала
RU2610652C1 (ru) * 2016-03-29 2017-02-14 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" Способ получения порошков ниобия

Similar Documents

Publication Publication Date Title
Yang et al. Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy
EP0402498B1 (en) Method of manufacturing tough and porous getters by means of hydrogen pulverization and getters produced thereby
Silva et al. Design of TiVNb-(Cr, Ni or Co) multicomponent alloys with the same valence electron concentration for hydrogen storage
Yao et al. Improvement on the kinetic and thermodynamic characteristics of Zr1-xNbxCo (x= 0–0.2) alloys for hydrogen isotope storage and delivery
CN111636022B (zh) 一种长寿命高容量钒基储氢合金及其氢化制粉方法
Shang et al. Effect of Pr content on activation capability and hydrogen storage performances of TiFe alloy
CN109023004B (zh) 一种面向等离子体含钨的单相难熔高熵合金及其制备方法
Yamagishi et al. Creating the hydrogen absorption capability of CeNi5 through the addition of Al
CN113106296A (zh) 一种适用于固态储氢的稀土系金属氢化物储氢合金及其制备方法
Li et al. Structural characterization and electrochemical hydrogen storage properties of Ti2− xZrxNi (x= 0, 0.1, 0.2) alloys prepared by mechanical alloying
Ding et al. Study on the eutectic formation and its correlation with the hydrogen storage properties of Mg98Ni2-xLax alloys
Liang et al. Effects of V doping on microstructure, kinetic, and thermodynamic characteristics of Zr50‐xVxCo50 (x= 0, 2.5, 3.5, and 5.0) hydrogen storage alloys
RU2647073C1 (ru) Способ получения порошков тантала
RU2582414C1 (ru) Способ получения порошков тантала
TW201231681A (en) Method of synthesizing magnesium-cobalt pentahydride
Verbetsky et al. Absorption of hydrogen by V-Mo and V-Mo-Ti alloys
RU2610652C1 (ru) Способ получения порошков ниобия
Fokin et al. Study of the interaction with hydrogen and ammonia of titanium and its alloys with iron
Yasuda et al. Self-ignition combustion synthesis of LaNi5 at different hydrogen pressures
CN112048651B (zh) 燃料电池用高性能高容量贮氢合金及其制备方法
CN101121968B (zh) 一种制备La2Mg17储氢合金的方法
Aydınlı et al. Size reduction in Mg rich intermetallics via hydrogen decrepitation
de Lima Andreani et al. Hydrogen storage properties of 2 Mg–Fe mixtures processed by hot extrusion: Effect of ram speeds
JP5628767B2 (ja) チタン合金の水素化方法
Hu et al. Development of Ti–V–Cr–Mn–Mo–Ce high-entropy alloys for high-density hydrogen storage in water bath environments