RU2647007C2 - Роторно-статорный агрегат для газотурбинного двигателя - Google Patents

Роторно-статорный агрегат для газотурбинного двигателя Download PDF

Info

Publication number
RU2647007C2
RU2647007C2 RU2015117610A RU2015117610A RU2647007C2 RU 2647007 C2 RU2647007 C2 RU 2647007C2 RU 2015117610 A RU2015117610 A RU 2015117610A RU 2015117610 A RU2015117610 A RU 2015117610A RU 2647007 C2 RU2647007 C2 RU 2647007C2
Authority
RU
Russia
Prior art keywords
layer
coating
unit according
porosity
abradable coating
Prior art date
Application number
RU2015117610A
Other languages
English (en)
Other versions
RU2015117610A (ru
Inventor
САНТАНАК Жюльен ГЮР
Фабрис КРАБО
Original Assignee
Турбомека
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Турбомека filed Critical Турбомека
Publication of RU2015117610A publication Critical patent/RU2015117610A/ru
Application granted granted Critical
Publication of RU2647007C2 publication Critical patent/RU2647007C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • F01D11/125Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material with a reinforcing structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0865Oxide ceramics
    • F05C2203/0895Zirconium oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/15Heat shield
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • F05D2300/2285Nitrides of zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/516Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Описан роторно-статорный агрегат для газотурбинного двигателя, причем агрегат содержит лопатку (2) ротора, имеющую слой (8) керамического материала, образующий истирающее покрытие, нанесенное на ее законцовку, причем упомянутый слой состоит в основном из диоксида циркония и имеет коэффициент пористости, меньший или равный 15%; и статор (4), расположенный вокруг лопатки ротора и предусмотренный с обращенным к законцовке лопатки ротора слоем (6) керамического материала, образующим истираемое покрытие, причем упомянутый слой состоит в основном из диоксида циркония и имеет коэффициент пористости в диапазоне 20-50%, с порами, имеющими размер, меньший или равный 50 мкм. Изобретение позволяет оптимизировать поведение пары покрытий при высокой температуре, при соприкосновении, возможность выдерживать эрозию, возможность выдерживать циклические теплосмены и хорошее состояние поверхности, в это же время также являясь недорогими в производстве. 2 н. и 11 з.п. ф-лы, 11 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится, в целом, к роторно-статорным агрегатам для газотурбинного двигателя. Более конкретно, изобретение относится к оптимизации микроструктур истирающего покрытия и истираемого покрытия, которые нанесены, соответственно, на законцовку лопатки ротора и на внутреннюю поверхность статора, окружающего лопатку ротор.
Предшествующий уровень техники
Конкретной областью применения изобретения являются компрессоры для турбин авиационного двигателя (в частности, для двигателей самолета или двигателей вертолета).
Компрессор авиационного двигателя содержит кожух компрессора, составленный из одной или более кольцевых конструкций, обращенных к одному или более комплектам лопаток, которые вращаются относительно кольцевых конструкций. Таким же образом, турбина авиационного двигателя содержит кольцо турбины, составленное из кольцевой конструкции, выполненной как единая деталь, и множества касающихся секторов кольца, которые окружают комплект вращающихся лопаток, приводимых газообразным продуктом сгорания.
Для того чтобы обеспечить наилучшую эффективность авиационного двигателя, обязательным является исключение, или по меньшей мере сведение к минимуму, утечек газа между законцовками лопаток и обращенной к ним поверхностью кожуха компрессора или кольца турбины, поскольку такие утечки не способствуют работе двигателя. Стремление свести зазор к минимуму или исключить его означает, что неминуемо возникновение соприкосновений между законцовками лопаток и обращенным к ним материалом. По причине твердости, которой обычно обладает этот материал, такие соприкосновения могут повредить законцовки лопаток.
Для того чтобы решить эту проблему, были сделаны предложения по оптимизации истираемости материала, расположенного напротив лопаток, то есть его способности к физическому износу посредством законцовок лопаток без возникновения значительного износа законцовок. Одна известная технология для этой цели заключается в предусмотрении внутренней поверхности кожуха компрессора или кольца турбины со слоем, образующим истираемое покрытие, выполненное из пористого материала, в это же время также предусматривая законцовки лопаток со слоем плотного материала, образующим истирающее покрытие.
Таким образом, для истирающего покрытия, наносимого на законцовки лопаток, известно использование материала, содержащего частицы кубического нитрида бора (cubic boron nitride (cBN)) или другие твердые частицы типа оксида, карбида или нитрида. Такие покрытия имеют удовлетворительное истирающее поведение, когда они связаны с истираемым покрытием, которое выполнено из металла или из керамики. Тем не менее, они имеют плохую износостойкость, когда они используются при высокой температуре (эти покрытия подвержены окислению и диффузии в матрицу покрытий), а также они имеют термомеханическое поведение, которое является ограниченным и несовместимо с искомыми сроками службы. К тому же, нанесение таких покрытий является относительно дорогим.
Для пористого истираемого покрытия, наносимого на внутреннюю поверхность статора, известно использование металлического сплава типа MCrAlY или использование керамики на основе диоксида циркония. Металлический сплав имеет преимущество, заключающееся в том, что его производство является простым и недорогим. Напротив, его свойства истираемости являются относительно плохими и его использование ограничено температурой. Наоборот, керамика на основе диоксида циркония может быть использована для выполнения как функции истираемого покрытия, так и функции теплового барьера. Природа основанного на оксиде покрытия позволяет использовать его при высоких температурах (более чем 1100°C), поскольку оно сохраняет свои физические свойства. Это покрытие также известно тем, что оно является легким в производстве, недорогим (нанесение посредством термического напыления), и благодаря некоторому уровню пористости оно имеет хорошие свойства истираемости. Тем не менее, такое пористое покрытие показывает проблемы состояния поверхности после механической обработки по причине трудности придания формы и управления размерами пор или гранул в слое. К сожалению, такое состояние поверхности в потоке воздуха является вредным для эффективности двигателя.
В целом, несмотря на то, что все пары истираемого/истирающего покрытия, известные в предшествующем уровне техники, показывают особенно хорошее свойство среди основных искомых свойств (а именно: поведение системы при соприкосновении, возможность выдерживать эрозию, возможность выдерживать циклические теплосмены и хорошее состояние поверхности), ни одна из них сама по себе не позволяет оптимизировать все искомые свойства.
Следовательно, существует потребность в паре покрытий для истираемого материала и для истирающего материала, которые нанесены, соответственно, на внутреннюю поверхность статора и на законцовку лопатки ротора, которые обладают возможностью сведения к минимуму всех упомянутых выше недостатков.
Краткое изложение сущности изобретения
Таким образом, задача настоящего изобретения состоит в разработке пары покрытий, которые имеют однородное и высокоэффективное поведение в отношении всех упомянутых выше свойств, в частности при высокой температуре, в это же время также являясь недорогими в производстве.
Задача решается посредством роторно-статорного агрегата для газотурбинного двигателя, причем агрегат содержит:
лопатку ротора, имеющую слой керамического материала, образующий истирающее покрытие, нанесенное на ее законцовку, причем упомянутый слой состоит в основном из диоксида циркония и имеет коэффициент пористости, меньший или равный 15%; и
статор, расположенный вокруг лопатки ротора и предусмотренный с обращенным к законцовке лопатки ротора слоем керамического материала, образующим истираемое покрытие, причем упомянутый слой состоит в основном из диоксида циркония и имеет коэффициент пористости в диапазоне 20-50%, с порами, имеющими размер, меньший или равный 50 микрометрам (мкм).
Такая пара истирающего/истираемого покрытия имеет множество преимуществ. В частности, заявитель обнаружил, что истирающее покрытие, выполненное из материала на основе диоксида циркония, имеет особенно высокоэффективное истирающее поведение, когда оно связано с истираемым покрытием, выполненным из керамического материала на основе диоксида циркония, имеющего коэффициент пористости в диапазоне 20-50%, с порами, имеющими размер, меньший или равный 50 мкм. Также заявитель обнаружил, что истираемое покрытие, выполненное из керамического материала на основе диоксида циркония согласно изобретению, имеет удовлетворительное истирающее поведение, когда оно связано с истирающим покрытием, выполненным из керамического материала на основе диоксида циркония.
К тому же, истираемое покрытие показывает поведение, которое является однородным для всех условий соприкосновения (а именно, тангенциальной скорости, скорости проникновения и температуры) и может быть использовано при высокой температуре (более чем 1100°C). Также материал выполняет как функцию теплового барьера, так и функцию истираемого покрытия, и состояние его поверхности после механической обработки является удовлетворительным.
К тому же, пара истирающего/истираемого покрытия является простой для изготовления и для ремонта, а также имеет низкую производственную стоимость. Материал, состоящий в основном из диоксида циркония, может быть нанесен на истираемое покрытие посредством термического напыления, посредством золь-гель способа или посредством спекания, и эти способы нанесения являются легко выполнимыми.
Предпочтительно пористость слоя истираемого покрытия распределена однородно по упомянутому слою.
Пористость слоя истираемого покрытия может иметь распределение, которое является мономодальным, с порами, имеющими размер, меньший или равный 5 мкм. В качестве альтернативы, пористость слоя истираемого покрытия может иметь распределение, которое является бимодальным, с мелкими порами, имеющими размер, меньший или равный 5 мкм, и средними порами, имеющими размер в диапазоне 15-50 мкм.
К тому же, слой истираемого покрытия составлен по меньшей мере из двух частей слоя, имеющих разные коэффициенты пористости. Наличие пористости, которая меняется с глубиной в истираемом покрытии, улучшает сопротивление покрытия температурным ударам, улучшает его сопротивление циклическим теплосменам и увеличивает изоляционную способность покрытия (оно обеспечивает более эффективный тепловой барьер). Слой истираемого покрытия также может включать в себя вертикальные трещины.
Также предпочтительно слой истираемого покрытия имеет модуль упругости в диапазоне 4 гигапаскаля (ГПа) - 10 ГПа и твердость в диапазоне 70 по шкале С твердости Роквелла (HRC) - 95 HRC. Такие свойства придают истираемому покрытию лучшее сопротивление температурным ударам и достаточную эрозионную устойчивостью, в это же время также сохраняя хорошую истираемость.
Подобным образом, слой истирающего покрытия преимущественно имеет модуль упругости, больший или равный 30 ГПа, и твердость больше 600 по шкале твердости Виккерса (HV).
Также предпочтительно диоксид циркония, составляющий слой истираемого покрытия и слой истирающего покрытия, легирован иттрием, гадолинием, диспрозием или любым другим стабилизатором диоксида циркония в тетрагональной или кубичной фазе.
Слой истираемого покрытия может быть нанесен на статор посредством термического напыления, посредством спекания или посредством золь-гель способа. Таким же образом, слой истирающего покрытия может быть нанесен на законцовку лопатки ротора посредством термического напыления, посредством спекания, посредством электролитического способа, посредством способа осаждения из паровой фазы или посредством золь-гель способа.
В изобретении также разработан газотурбинный двигатель, имеющий по меньшей мере один определенный выше роторно-статорный агрегат.
Краткое описание чертежей
Другие характеристики и преимущества настоящего изобретения будут очевидны из описания, приведенного со ссылкой на прилагаемые чертежи, на которых показан вариант осуществления, не подразумевающий каких-либо ограничений. На чертежах:
фиг. 1 представляет собой схематичный вид примера роторно-статорного агрегата согласно изобретению;
на фиг. 2А-2С, 3А-3С и 4А-4В показаны разные варианты осуществления материалов, подходящих для использования в качестве истираемых покрытий для статора агрегата с фиг. 1; и
фиг. 5 и 6 представляют собой фотографии, на которых показано поведение истирающих и истираемых покрытий во время испытания соответственно роторно-статорного агрегата предшествующего уровня техники и роторно-статорного агрегата согласно изобретению.
Подробное описание вариантов осуществления настоящего изобретения
Изобретение применяется к любому роторно-статорному агрегату для газотурбинного двигателя, в котором законцовка лопатки ротора приходит в соприкосновение с внутренней поверхностью части статора, окружающей лопатку ротора.
Фиг. 1 представляет собой схематичный вид примера применения изобретения, в котором ротор составлен из вращающихся лопаток 2 турбины высокого давления в турбореактивном двигателе, а статор представляет собой кольцо 4 турбины, выполненное как единая деталь или составленное из множества соприкасающихся секторов кольца, окружающих лопатки.
В таком агрегате зазор между внутренней поверхностью кольца 4 турбины и законцовками лопаток 2 является нулевым или почти нулевым.
На внутренней стороне, на кольце турбины находится истираемое покрытие 6, в которое частично проникает истирающее покрытие 8, нанесенное на законцовки лопаток 2, частично, не испытывая значительной величины износа.
Согласно изобретению слой, образующий истирающее покрытие 8, выполнен из керамического материала, в основном состоящего из диоксида циркония и имеющего коэффициент пористости, меньший или равный 15%, тогда как слой, образующий истираемое покрытие 6, состоит из керамики, в основном состоящей из диоксида циркония и имеющей коэффициент пористости в диапазоне 20-50%, с размером пор, меньшим или равным 50 мкм.
Термин "в основном" в этом документе означает, что диоксид циркония истираемого покрытия и истирающего покрытия представляет по меньшей мере 80% состава этих слоев.
Таким образом, истираемое покрытие 6 и истирающее покрытие 8 роторно-статорного агрегата согласно изобретению выполнены с использованием одной и той же керамики, а именно диоксида циркония, но с разными микроструктурами. Слой диоксида циркония, составляющий истирающее покрытие, имеет относительно низкую пористость, чтобы обеспечивать наилучшие возможные механические свойства (твердость и сопротивление температурным ударам), тогда как слой диоксида циркония, составляющий истираемое покрытие, имеет микроструктуру, которая является мелкой (то есть поры имеют размер, меньший или равный 50 мкм), и пористость, которая управляется так, чтобы улучшать эрозионную устойчивость покрытия, и так, чтобы гарантировать свойства высокоэффективной истираемости.
Для обоих покрытий используемый диоксид циркония преимущественно является легированным (иттрием, гадолинием, диспрозием или любым другим стабилизатором диоксида циркония в тетрагональной или кубической фазе). Тем не менее, состав порошка диоксида циркония, образующего эти покрытия, не должен обязательно быть строго идентичным для обоих покрытий. Таким образом, в качестве примера, возможно добавлять стабилизирующие вещества в один порошок или в другой порошок.
Истирающее покрытие 8, нанесенное на законцовки лопаток 2, предпочтительно также имеет модуль упругости, который больше или равен 30 ГПа, и твердость более чем 600 HV.
Слой истирающего покрытия может быть нанесен на законцовки лопаток посредством известных способов, таких как термическое напыление, спекание, электролитический способ, осаждение из паровой фазы или золь-гель способ.
Также может быть использован подслой 10 для способствования нанесению слоя истирающего покрытия на законцовки лопаток, которые выполнены из металла. Например, связующий подслой 10 может состоять из MCrAlY (где М может представлять собой Ni, Со, или NiCo) или из покрытия платинового алюминида.
Далее со ссылкой на фиг. 2А-2С, 3А-3С и 4А-4В следует описание различных вариантов осуществления микроструктур для слоев материала, образующего истираемое покрытие роторно-статорного агрегата изобретения.
На фиг. 2А и 2В показан первый вариант осуществления соответственно в форме фотографии (масштаб: 1 мкм) и в форме схемы такого слоя 12, составленного, в основном, из диоксида циркония и нанесенного на подложку 14. В этом варианте осуществления заявлено, что пористость (поры представлены черными точками 16) является мелкой, то есть она состоит из пор с размером, меньшим или равным 5 мкм, и равномерно распределенной по толщине слоя. В этом примере распределение пористости в слое является мономодальным.
Следует заметить, что этот слой 12 может быть нанесен на подложку через связующий подслой 18, например, образованный посредством нанесения сплава типа MCrAlY (где М представляет собой Ni, Со или NiCo) или нанесения покрытия из платинового алюминида, и так далее. К тому же, в разновидности этого первого варианта осуществления, показанной на фиг. 2С, слой 12 диоксида циркония также содержит частицы 17 твердого лубриканта, такие как, например, частицы шестигранного нитрида бора. Такие частицы облегчают перемещение лопаток во время соприкосновения лопатки ротора и статора и ограничивают силы между лопаткой ротора и статором. На фиг. 3А-3С показан второй вариант осуществления слоя 20, нанесенного на подложку 14 и подходящего для использования в составе истираемого покрытия роторно-статорного агрегата.
В этом втором варианте осуществления слой 20 составлен двумя слоями 20а и 20b диоксида циркония, имеющими разные микроструктуры. Таким образом, слой 20а, нанесенный рядом с зоной истирания, имеет высокую пористость (то есть имеет коэффициент пористости в диапазоне 20-50%), тогда как слой 20b, нанесенный рядом с подложкой 14, имеет более низкую пористость (порядка 10-20%).
Таким образом, получен слой, который имеет высокую пористость у поверхности для выполнения функции истираемого покрытия, и более плотный подслой рядом с подложкой для выполнения функции теплового барьера. Такая разновидность пористости в глубину истираемого покрытия предназначена для улучшения сопротивления покрытия температурным ударам, для улучшения его сопротивления циклическим теплосменам и для увеличения изоляционной способности покрытия (она обеспечивает более эффективный тепловой барьер).
Следует заметить, что этот слой 20 может быть нанесен на подложку через промежуточный связующий подслой 18.
Также следует заметить, что в каждом из двух слоев 20а и 20b поры предпочтительно распределены однородно по всей толщине слоев. К тому же, в разновидности этого второго варианта осуществления, как показано на фиг. 3С, слой 20а, нанесенный рядом с зоной истирания, может иметь группу вертикальных трещин 22 (по меньшей мере по две трещины на каждый миллиметр), чтобы улучшать термомеханическое поведение покрытия.
На фиг. 4А, 4В показан третий вариант осуществления слоя 24, нанесенного на подложку 14 и подходящего для использования в составе истираемого покрытия роторно-статорного агрегата.
В этом третьем варианте осуществления слой 24 образован слоем диоксида циркония с высокой пористостью (то есть имеющим коэффициент пористости в диапазоне 20-50%).
По сравнению с первым вариантом осуществления, распределение пористости в слое в этом примере является бимодальным, то есть поры разделены на "мелкие" поры (то есть имеющие размер, меньший или равный 5 мкм), и "средние" поры (то есть имеющие размер в диапазоне 15-50 мкм).
Таким образом, на фотографии на фиг. 4А поры мелкого размера представлены черными зонами 26, тогда как поры среднего размера представлены черными зонами 28. Следует заметить, что, независимо от размера пор, распределение пор в слое 24 является однородным.
Ниже описаны другие характеристики, являющиеся общими для различных вариантов осуществления слоя, образующего истираемое покрытие роторно-статорного агрегата.
Этот слой истираемого покрытия предпочтительно имеет модуль упругости в диапазоне 4-10 ГПа. Такие величины придают покрытию улучшенное сопротивление температурным ударам.
Также предпочтительно слой истираемого покрытия имеет твердость поверхности в диапазоне 70-95 по поверхностной шкале твердости Роквелла (HR15Y), таким образом позволяя гарантировать достаточное сопротивление эрозии, при этом имея хорошую истираемость.
К тому же, слой истираемого покрытия может быть нанесен посредством термического напыления гранулированного порошка, предпочтительно содержащего образующее поры вещество и твердый лубрикант. Также возможно использовать термическое напыление суспензии порошка нанометрового размера, который способствует получению более мелкой микроструктуры. Также возможно изменять параметры распыления для достижения микроструктуры с вертикальными трещинами и коэффициентом пористости более 20%.
Также может быть использовано нанесение посредством спекания порошков, имеющих субмикронную микроструктуру с образующим поры веществом и твердым лубрикантом или без них. Спекание обеспечивает улучшенное управление всей микроструктурой посредством формования осадка при температуре ниже температуры плавления керамики. В частности, микроструктура может быть сохранена мелкой, и пористостью можно управлять как в отношении однородности, так и в отношении размера и распределения.
Также для нанесения слоя истираемого покрытия может быть использован золь-гель способ.
Далее со ссылкой на фиг. 5 и 6 следует описание результатов испытания истираемости и износа для пары истирающего/истираемого покрытия предшествующего уровня техники (фиг. 5) и для пары истирающего/истираемого покрытия согласно изобретению (фиг. 6). Эти испытания выполнены с использованием испытательного стенда, такого как предлагаемый на рынке поставщиком Sulzer Innotec. Как известно, такой испытательный стенд содержит как ротор, несущий лопатку, которая предусмотрена у своего свободного конца со слоем истирающего покрытия, так и пластину, несущую образец истираемого покрытия, причем возможно перемещать пластину к лопатке ротора, чтобы обеспечивать проникновение истирающего материала в истираемый материал. Испытательный стенд также имеет генератор высокоскоростного пламени для нагрева истираемого покрытия во время испытания.
Испытания выполнялись при одинаковых условиях, в которых лопатка ротора вращалась со скоростью 410 метров в секунду (м/с), истираемое покрытие нагревалось до температуры около 1100°C, и скорость проникновения истирающего покрытия в истираемое покрытие составляла около 50 мкм в секунду (мкм/с).
На фиг. 5 показаны состояние 30 поверхности после испытания истираемого покрытия предшествующего уровня техники, состоящего из плотного диоксида циркония (коэффициент пористости около 10%), и вид 32 в плане законцовки лопатки (без покрытия) после соприкосновения с покрытием.
На этом чертеже можно видеть высокую степень износа у законцовки лопатки, с плохим соприкосновением в истираемом покрытии, нанесенном на статор, а также наличие переноса материала с лопатки на статор.
На фиг. 6 показаны состояние 34 поверхности после испытания истираемого покрытия согласно изобретению и вид 36 в разрезе истирающего покрытия согласно изобретению. В частности, в этом испытании используемое истираемое покрытие 34 имело коэффициент пористости в интервале 25-28% с мелкой микроструктурой, состоящей из мелких пор и средних пор (бимодальное распределение), которые были распределены однородно, как описано со ссылкой на фиг. 3А и 3В. Подобным образом, истирающее покрытие 36, выполненное из диоксида циркония, частично стабилизированного иттрием, имело коэффициент пористости около 10%.
При сравнении с фиг. 5 на этом чертеже можно увидеть, что в истирающем покрытии, нанесенном на лопатку ротора, износ является низким, и в истираемом покрытии, нанесенном на статор, соприкосновение является хорошим. Это ведет к хорошему поведению в отношении истираемости и износа пары истирающего/истираемого покрытия роторно-статорного агрегата согласно изобретению.

Claims (15)

1. Роторно-статорный агрегат для газотурбинного двигателя, содержащий:
лопатку (2) ротора, имеющую слой (8) керамического материала, образующий истирающее покрытие, нанесенное на ее законцовку, причем упомянутый слой состоит в основном из диоксида циркония и имеет коэффициент пористости, меньший или равный 15%; и
статор (4), расположенный вокруг лопатки ротора и предусмотренный с обращенным к законцовке лопатки ротора слоем (6; 12; 20; 24) керамического материала, образующим истираемое покрытие, причем упомянутый слой состоит в основном из диоксида циркония и имеет коэффициент пористости в диапазоне 20-50%, с порами, имеющими размер, меньший или равный 50 мкм.
2. Агрегат по п. 1, в котором пористость слоя истираемого покрытия распределена однородно по упомянутому слою.
3. Агрегат по п. 1, в котором пористость слоя истираемого покрытия имеет распределение, которое является мономодальным, с порами, имеющими размер, меньший или равный 5 мкм.
4. Агрегат по п. 1, в котором пористость слоя истираемого покрытия имеет распределение, которое является бимодальным, с мелкими порами, имеющими размер, меньший или равный 5 мкм, и средними порами, имеющими размер в диапазоне 15-50 мкм.
5. Агрегат по п. 1, в котором слой (20) истираемого покрытия составлен по меньшей мере из двух частей (20а, 20b) слоя, имеющих разные коэффициенты пористости.
6. Агрегат по п. 1, в котором слой (20) истираемого покрытия включает в себя вертикальные трещины (22).
7. Агрегат по п. 1, в котором слой истираемого покрытия имеет модуль упругости в диапазоне 4-10 ГПа и твердость в диапазоне 70 HR15Y - 95 HR15Y.
8. Агрегат по п. 1, в котором слой истирающего покрытия имеет модуль упругости, больший или равный 30 ГПа, и твердость больше 600 HV.
9. Агрегат по п. 1, в котором диоксид циркония, составляющий слой истираемого покрытия и слой истирающего покрытия, легирован иттрием, гадолинием, диспрозием или любым другим стабилизатором диоксида циркония в тетрагональной или кубичной фазе.
10. Агрегат по п. 1, в котором слой истираемого покрытия нанесен на статор посредством термического напыления, посредством спекания или посредством золь-гель способа.
11. Агрегат по п. 1, в котором слой истирающего покрытия нанесен на законцовку лопатки ротора посредством термического напыления, посредством спекания, посредством электролитического способа, посредством способа осаждения из паровой фазы или посредством золь-гель способа.
12. Агрегат по п. 1, в котором лопатка ротора представляет собой лопатку турбины, а статор представляет собой кожух турбины.
13. Газотурбинный двигатель, включающий в себя по меньшей мере один роторно-статорный агрегат по п. 1.
RU2015117610A 2012-10-11 2013-10-07 Роторно-статорный агрегат для газотурбинного двигателя RU2647007C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1259704A FR2996874B1 (fr) 2012-10-11 2012-10-11 Ensemble rotor-stator pour moteur a turbine a gaz
FR1259704 2012-10-11
PCT/FR2013/052370 WO2014057194A1 (fr) 2012-10-11 2013-10-07 Ensemble rotor-stator pour moteur a turbine a gaz

Publications (2)

Publication Number Publication Date
RU2015117610A RU2015117610A (ru) 2016-12-10
RU2647007C2 true RU2647007C2 (ru) 2018-03-13

Family

ID=47714219

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015117610A RU2647007C2 (ru) 2012-10-11 2013-10-07 Роторно-статорный агрегат для газотурбинного двигателя

Country Status (11)

Country Link
US (1) US10329928B2 (ru)
EP (1) EP2917502B1 (ru)
JP (1) JP6290224B2 (ru)
KR (1) KR102139395B1 (ru)
CN (1) CN104718349B (ru)
CA (1) CA2887901C (ru)
FR (1) FR2996874B1 (ru)
IN (1) IN2015DN03013A (ru)
PL (1) PL2917502T3 (ru)
RU (1) RU2647007C2 (ru)
WO (1) WO2014057194A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160305319A1 (en) * 2015-04-17 2016-10-20 General Electric Company Variable coating porosity to influence shroud and rotor durability
EP3332894A1 (de) * 2016-12-08 2018-06-13 Siemens Aktiengesellschaft Verfahren zur herstellung eines gasturbinenbauteils
GB2557679A (en) * 2016-12-15 2018-06-27 Edwards Ltd Stator blade unit for a turbomolecular pump
DE102017207238A1 (de) * 2017-04-28 2018-10-31 Siemens Aktiengesellschaft Dichtungssystem für Laufschaufel und Gehäuse
US10294962B2 (en) * 2017-06-30 2019-05-21 United Technologies Corporation Turbine engine seal for high erosion environment
FR3074448B1 (fr) * 2017-12-06 2019-12-20 Safran Aircraft Engines Revetement a gradient de propriete pour paroi interne de turbomachine
EP3720698B1 (fr) * 2017-12-06 2022-10-19 Safran Aircraft Engines Revêtement a gradient de propriété pour paroi interne de turbomachine
US10662788B2 (en) 2018-02-02 2020-05-26 Raytheon Technologies Corporation Wear resistant turbine blade tip
US10662799B2 (en) 2018-02-02 2020-05-26 Raytheon Technologies Corporation Wear resistant airfoil tip
US11203942B2 (en) 2018-03-14 2021-12-21 Raytheon Technologies Corporation Wear resistant airfoil tip
US11346232B2 (en) 2018-04-23 2022-05-31 Rolls-Royce Corporation Turbine blade with abradable tip
US10995623B2 (en) 2018-04-23 2021-05-04 Rolls-Royce Corporation Ceramic matrix composite turbine blade with abrasive tip
EP3683406B1 (en) * 2019-01-18 2023-11-29 Ansaldo Energia Switzerland AG Abradable hybrid material, particularly for seal elements in gas turbines, and manufacturing method thereof
IT201900001173A1 (it) * 2019-01-25 2020-07-25 Nuovo Pignone Tecnologie Srl Turbina con un anello avvolgente attorno a pale rotoriche e metodo per limitare la perdita di fluido di lavoro in una turbina
CN113623022A (zh) * 2021-07-30 2021-11-09 中国航发沈阳发动机研究所 一种具有易磨涂层的涡轮外环

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226050A (en) * 1988-12-16 1990-06-20 United Technologies Corp Thin abradable ceramic air seal
US5743013A (en) * 1994-09-16 1998-04-28 Praxair S.T. Technology, Inc. Zirconia-based tipped blades having macrocracked structure and process for producing it
RU2229031C2 (ru) * 1997-11-26 2004-05-20 Юнайтед Текнолоджис Корпорейшн Устройство уплотнения газотурбинного двигателя (варианты), лопатка газотурбинного двигателя и острая кромка газотурбинного двигателя
US20050129511A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Turbine blade tip with optimized abrasive
US20050249602A1 (en) * 2004-05-06 2005-11-10 Melvin Freling Integrated ceramic/metallic components and methods of making same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289446A (en) * 1979-06-27 1981-09-15 United Technologies Corporation Ceramic faced outer air seal for gas turbine engines
JP2870778B2 (ja) * 1989-01-25 1999-03-17 石川島播磨重工業株式会社 ガスタービンのシュラウド構造
IN187185B (ru) * 1995-04-25 2002-02-23 Siemens Ag
JP2006104577A (ja) * 2004-10-04 2006-04-20 United Technol Corp <Utc> セグメント化ガドリニアジルコニア被膜およびその形成方法、セグメント化セラミック被覆システムならびに被膜部品
CA2585992C (en) * 2006-06-08 2014-06-17 Sulzer Metco (Us) Inc. Dysprosia stabilized zirconia abradable
US20080145694A1 (en) * 2006-12-19 2008-06-19 David Vincent Bucci Thermal barrier coating system and method for coating a component
US8038388B2 (en) * 2007-03-05 2011-10-18 United Technologies Corporation Abradable component for a gas turbine engine
US9447503B2 (en) * 2007-05-30 2016-09-20 United Technologies Corporation Closed pore ceramic composite article
JP2009228018A (ja) * 2008-03-19 2009-10-08 Mitsubishi Heavy Ind Ltd 遮熱コーティング材、これを備えたタービン部材及びガスタービン、並びに遮熱コーティング材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226050A (en) * 1988-12-16 1990-06-20 United Technologies Corp Thin abradable ceramic air seal
US5743013A (en) * 1994-09-16 1998-04-28 Praxair S.T. Technology, Inc. Zirconia-based tipped blades having macrocracked structure and process for producing it
RU2229031C2 (ru) * 1997-11-26 2004-05-20 Юнайтед Текнолоджис Корпорейшн Устройство уплотнения газотурбинного двигателя (варианты), лопатка газотурбинного двигателя и острая кромка газотурбинного двигателя
US20050129511A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Turbine blade tip with optimized abrasive
US20050249602A1 (en) * 2004-05-06 2005-11-10 Melvin Freling Integrated ceramic/metallic components and methods of making same

Also Published As

Publication number Publication date
US10329928B2 (en) 2019-06-25
EP2917502A1 (fr) 2015-09-16
RU2015117610A (ru) 2016-12-10
WO2014057194A1 (fr) 2014-04-17
CN104718349B (zh) 2018-03-30
IN2015DN03013A (ru) 2015-10-02
PL2917502T3 (pl) 2019-12-31
CA2887901A1 (fr) 2014-04-17
CA2887901C (fr) 2020-09-15
FR2996874B1 (fr) 2014-12-19
US20150267544A1 (en) 2015-09-24
CN104718349A (zh) 2015-06-17
JP2015537139A (ja) 2015-12-24
JP6290224B2 (ja) 2018-03-07
EP2917502B1 (fr) 2019-08-07
FR2996874A1 (fr) 2014-04-18
KR102139395B1 (ko) 2020-07-29
KR20150067359A (ko) 2015-06-17

Similar Documents

Publication Publication Date Title
RU2647007C2 (ru) Роторно-статорный агрегат для газотурбинного двигателя
US8187717B1 (en) High purity ceramic abradable coatings
EP1734146B1 (en) Ceramic abradable material with alumina dopant
US9598973B2 (en) Seal systems for use in turbomachines and methods of fabricating the same
CN101125753B (zh) 可磨耗的氧化镝稳定的氧化锆
EP1484426B1 (en) Sinter resistant abradable thermal barrier coating
US10989066B2 (en) Abradable coating made of a material having a low surface roughness
SE443828B (sv) Yttre lufttetning for gasturbinmotor
US20210317584A1 (en) Method for manufacturing an abradable layer
CN105756720A (zh) 围带可磨耗涂层和制造方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner