RU2646747C2 - Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности - Google Patents

Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности Download PDF

Info

Publication number
RU2646747C2
RU2646747C2 RU2016129610A RU2016129610A RU2646747C2 RU 2646747 C2 RU2646747 C2 RU 2646747C2 RU 2016129610 A RU2016129610 A RU 2016129610A RU 2016129610 A RU2016129610 A RU 2016129610A RU 2646747 C2 RU2646747 C2 RU 2646747C2
Authority
RU
Russia
Prior art keywords
low
pass filter
measuring
magnetic field
skeletal muscles
Prior art date
Application number
RU2016129610A
Other languages
English (en)
Other versions
RU2016129610A (ru
Inventor
Денис Иванович Большаков
Михаил Андреевич Мищенко
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского"
Priority to RU2016129610A priority Critical patent/RU2646747C2/ru
Publication of RU2016129610A publication Critical patent/RU2016129610A/ru
Application granted granted Critical
Publication of RU2646747C2 publication Critical patent/RU2646747C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Изобретение относится к медицинской технике, а именно к магнитомиографической регистрации сигналов биоэлектрической активности человека. Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности содержит два измерительных канала, каждый из которых включает высокочувствительный магниторезистивный датчик, отличающееся тем, что в каждом из измерительных каналов к высокочувствительному магниторезистивному датчику последовательно подключены фильтр верхних частот с частотой среза 10 Гц, малошумящий прецизионный усилитель и фильтр нижних частот с частотой среза 500 Гц, при этом фильтр нижних частот одного канала подключен к неинвертирующему входу дифференциального операционного усилителя, а фильтр нижних частот другого канала - к инвертирующему входу дифференциального операционного усилителя. Использование изобретения позволяет расширить арсенал средств для регистрации мышечной активности. 2 ил.

Description

Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности
Изобретение относится к области магнитомиографической регистрации сигналов биоэлектрической активности человека и может использоваться для неинвазивной регистрации слабых магнитных полей, порождаемых электрическими токами в мышечных тканях при напряжении мышц в системах детектирования биоэлектрических сигналов, а также для исследований в области биомедицины и создания экзоскелетных систем управления на основе данных мышечной активности.
Магнитомиография, основанная на измерении биомагнитных полей мышц, является актуальной отраслью сложившегося в настоящее время научно-практического направления - биомагнетизма.
В регуляторных процессах организма принимают участие электрические токи и электромагнитные поля биологического происхождения. Благодаря успехам современной техники стало возможным регистрировать очень слабые магнитные поля, характеризующие определенный биологический процесс. Область науки на стыке биологии и физики, изучающая магнитные поля биологического происхождения, получила название биомагнетизм.
Основной ветвью современного биомагнетизма можно считать направление, связанное с регистрацией магнитных полей, порождаемых переменными биотоками. Почти все зарегистрированные в этом направлении биомагнитные феномены имеют аналоги в биоэлектрических явлениях - кардиография, миография, энцефалография и т.п. (см., например, книгу авторов Холодова Ю.А., Козлова А.Н. и Горбача A.M. «Магнитные поля биологических объектов». М., «Наука», 1987).
Главным преимуществом неинвазивной регистрации биомагнитных явлений в сравнении с биоэлектрическими является отсутствие необходимости в контакте с кожей человека. Данная особенность позволяет, в частности, проводить измерения биомагнитных полей сердца, мышц, мозга плода при беременности.
Уровень техники в области измерения магнитных полей скелетных мышц характеризуется ограниченным количеством научных публикаций. Измерение магнитных полей активно применяется при исследовании активности мозга и сердца, но значительно более редко в регистрации мышечной активности (см., например, статью на англ. яз. авторов Garcia М., Baffa О. «Magnetic fields from skeletal muscles: a valuable physiological measurement? » - Frontiers in physiology. 2015, v. 6, p. 228).
Регистрация мышечной активности, основанная на неинвазивном измерении электрической составляющей биоэлектрических сигналов в мышечной ткани с помощью бесконтактных емкостных датчиков (см., например, описание изобретения ((Differential non-contact biopotential sensor» по заявке US 20140249397, А61В 5/0492, 2014), в настоящем описании не рассматривается как выходящая за его рамки в связи с ограничением технической задачи предлагаемой группы изобретений методикой измерения магнитной составляющей биоэлектрических сигналов в мышечной ткани.
Известны метод и оборудование для его реализации, изложенные в описании изобретения на англ. яз. «agnetic study of bioelectric phenomena» по патенту US 3557777, A61B 5/04, A61B 5/10, H05K 9/00, G01R 33/02, 1971.
Этот метод основан на использовании для неинвазивного измерения магнитной составляющей биоэлектрических сигналов в мышечной ткани в качестве магнитного датчика сверхпроводящего квантового интерференционного датчика (СКВИДа - см., например, описание изобретения по патенту РФ 2133525, H01L 39/22, H01L 39/24, G01R 33/035, 1999), погруженного для повышения чувствительности и достижения состояния сверхпроводимости в жидкий гелий. Необходимость использования жидкого гелия и проведения измерений в магнитоэкранированной комнате являются недостатками данных метода и оборудования.
В качестве прототипа заявляемого устройства для измерения магнитного поля скелетных мышц при определении мышечной активности выбрано лишенное указанных недостатков предыдущего аналога известное устройство, включающее измерительные каналы, каждый из которых включает высокочувствительный магниторезистивный датчик, усилитель, фильтр и дифференциальный датчик, изложенные в описании изобретения на англ. яз. «Systems, articles, and methods for gesture indentification in wearable electromyuography devaces» по патенту US 9367139, G06F 3/01, G06F 3/0346, 2016 (US 2015/169074 A1).
При этом актуальна разработка новых и эффективных устройств для измерения магнитного поля скелетных мышц при определении мышечной активности на основе магниторазностного определения мышечной активности, обеспечивающего повышение технологичности способа и доступности устройства за счет использования удобных в эксплуатации двух высокочувствительных магниторезистивных датчиков, снижающих габариты и стоимость устройства.
Поэтому техническим результатом предлагаемого изобретения послужило расширение арсенала средств регистрации мышечной активности.
Для достижения указанного технического результата в устройстве для измерения магнитного поля скелетных мышц при определении мышечной активности, содержащем два измерительных канала, каждый из которых включает высокочувствительный магниторезистивный датчик, в каждом из измерительных каналов к высокочувствительному магниторезистивному датчику последовательно подключены фильтр верхних частот с частотой среза 10 Гц, малошумящий прецизионный усилитель и фильтр нижних частот с частотой среза 500 Гц, при этом фильтр нижних частот одного канала подключен к неинвертирующему входу дифференциального операционного усилителя, а фильтр нижних частот другого канала - к инвертирующему входу дифференциального операционного усилителя.
На фиг. 1 представлена блок-схема предлагаемого устройства, осуществляющего метод магниторазностного определения регистрации мышечной активности; на фиг. 2 - пример записи мышечной активности, полученной в виде осциллограммы.
Предлагаемое устройство (см. фиг. 1) содержит образующие первый измерительный канал магниторезистивный датчик (далее сенсор) 1, подключенный через фильтр верхних частот 2 с частотой среза 10 Гц к входу операционного усилителя 3, подсоединенного своим выходом к входу фильтра нижних частот 4 с частотой среза 500 Гц, который (на выходе первого измерительного канала) своим выходом подключен к неинвертирующему входу дифференциального операционного усилителя 5, и образующие второй измерительный канал магниторезистивный датчик (далее сенсор) 6, подключенный через фильтр верхних частот 7 с частотой среза 10 Гц к входу операционного усилителя 8, подсоединенного своим выходом к входу фильтра нижних частот 9 с частотой среза 500 Гц, который (на выходе второго измерительного канала) подключен к инвертирующему входу дифференциального операционного усилителя 5, выход которого является выходом предлагаемого устройства.
Предлагаемое устройство функционирует следующим образом.
Магнитное поле скелетных мышц, создаваемое протекающими по мышечным волокнам ионными токами при сокращении мышц, детектируется магниторезистивными сенсорами 1 и 6, каждый из которых состоит из двух независимых резисторных мостов, а также имеет два дифференциальных выхода.
Причем магнитная ось моста В находится в плоскости корпуса микросхемы и направлена вдоль контактных ног микросхемы. Магнитная ось моста А также лежит в плоскости корпуса, но направлена под углом 45 градусов к оси моста В. Так как по особенностям устройства сенсора необходима только ось, лежащая вдоль контактных ног микросхемы, необходимости в использовании моста А нет.
На выходе магниторезистивных сенсоров 1 и 6 появляется зависимость напряжения от интенсивности поля вдоль магнитной оси моста, которая содержит в себе информацию о магнитном поле мышечных волокон, геомагнитном поле земли и электромагнитных помехах.
Сигнал с выхода магниторезистивных сенсоров 1 и 6 поступает на входы фильтров верхних частот 2 и 7 (с частотой среза 10 Гц), соответственно, которые удаляют из сигнала постоянную составляющую, обусловленную постоянным магнитным полем земли, и низкочастотные компоненты, вызванные смещением датчика относительно мышц.
Сигнал с выходов фильтров верхних частот 2 и 7 поступает на входы малошумящих прецизионных усилителей 3 и 8, соответственно, основная задача которых - предусиление сигналов. Сигнал с выходов малошумящих прецизионных усилителей 3 и 8 поступает на входы фильтров нижних частот 4 и 9 (с частотой среза 500 Гц) соответственно, основная задача которых состоит в уменьшении общего уровня шума на входах инструментального прецизионного усилителя (дифференциального операционного усилителя) 5. Сигнал с выхода фильтра нижних частот 4 поступает на неинвертирующий вход, а с выхода фильтра нижних частот 9 - на инвертирующий вход инструментального прецизионного усилителя 5, который усиливает разность между сигналами на своих входах. За счет вычисления разности из сигналов удаляется одинаковая компонента, содержащая информацию о магнитных полях, порожденных далекими источниками электромагнитного поля.
При этом:
В обоих каналах измерения фильтр верхних частот (2 и 7) предназначен для удаления из сигнала постоянной составляющей, возникающей в связи с особенностями конструкции магниточувствительного элемента, уменьшения влияния на схему постоянного магнитного поля земли, а так же артефактов движения (низкочастотных импульсов), обусловленных изменением геометрических размеров мышцы в результате ее сокращения, является фильтром верхних частот 2-го порядка и представляет собой две последовательно включенных Г-образных CR цепочки, причем данный фильтр имеет, как было указано, частоту среза 10 Гц по уровню -3 дБ;
В обоих каналах измерения фильтр нижних частот (4 и 9) предназначен для частичного ограничения полосы пропускания устройства (что необходимо для выделения полезного сигнала на фоне высокочастотных электромагнитных помех, обусловленных работой окружающей бытовой техникой, а также сигналами радиоэфира), является фильтром нижних частот 2-го порядка и представляет собой две последовательно включенных Г-образных RC цепочки, причем данный фильтр имеет, как было указано, частоту среза 500 Гц по уровню -3 дБ.
В результате применения указанных фильтров верхних и нижних частот полоса пропускания устройства составляет от 10 Гц до 500 Гц и соотношение сигнал/шум на выходе дифференциального операционного усилителя 5 составляет 6 дБ, что является достаточным для анализа и дальнейшего использования полезного сигнала. Частоты среза фильтров выбраны исходя из экспериментальных данных, представленных в статье на англ. яз. авторов Cohen D., Givler Е. «Magnetomyography: magnetic fields around the human body produced by skeletal muscles» - Appl. Phys. Lett. 1972, v. 21, №3, p. 116, fig.3.
Таким образом на выходе усилителя 5 содержится информация о магнитном поле скелетных мышц в виде напряжения, пропорционального величине магнитного поля, которое в свою очередь пропорционально силе ионных токов, вызванных сокращением мышечных волокон.
Осциллограмма, полученная в результате записи мышечной активности (см. фиг. 2) с помощью оборудования: осциллографа цифрового Tektronix DPO 4054 и лабораторного источника питания Matrix MPS-3005LK-3, хорошо согласуется с примером записи в статье на англ. яз. авторов Cohen D., Givler Е. «Magnetomyography: magnetic fields around the human body produced by skeletal muscles» - Appl. Phys. Lett. 1972, v. 21, №3, p. 115, fig. 2 и подтверждает работоспособность предлагаемого устройства, осуществляющего метод магниторазностного определения мышечной активности.

Claims (1)

  1. Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности, содержащее два измерительных канала, каждый из которых включает высокочувствительный магниторезистивный датчик, отличающееся тем, что в каждом из измерительных каналов к высокочувствительному магниторезистивному датчику последовательно подключены фильтр верхних частот с частотой среза 10 Гц, малошумящий прецизионный усилитель и фильтр нижних частот с частотой среза 500 Гц, при этом фильтр нижних частот одного канала подключен к неинвертирующему входу дифференциального операционного усилителя, а фильтр нижних частот другого канала - к инвертирующему входу дифференциального операционного усилителя.
RU2016129610A 2016-07-19 2016-07-19 Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности RU2646747C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016129610A RU2646747C2 (ru) 2016-07-19 2016-07-19 Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016129610A RU2646747C2 (ru) 2016-07-19 2016-07-19 Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности

Publications (2)

Publication Number Publication Date
RU2016129610A RU2016129610A (ru) 2018-01-24
RU2646747C2 true RU2646747C2 (ru) 2018-03-06

Family

ID=61024042

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129610A RU2646747C2 (ru) 2016-07-19 2016-07-19 Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности

Country Status (1)

Country Link
RU (1) RU2646747C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196931U1 (ru) * 2019-10-21 2020-03-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Анализатор мышечной активности
RU201245U1 (ru) * 2020-08-06 2020-12-04 Денис Иванович Большаков Устройство для бесконтактной регистрации мышечной активности человека

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2230540C1 (ru) * 2002-11-04 2004-06-20 Утолин Константин Владимирович Способ внешней (индуцированной) идеомоторной тренировки людей
US20070252595A1 (en) * 2006-02-22 2007-11-01 Volegov Petr L Direct Imaging of Neural Currents Using Ultra-Low Field Magnetic Resonance Techniques
US20130116601A1 (en) * 2010-07-07 2013-05-09 Tmg-Bmc D.O.O. Method and device for non-invasive and selective determination of biomechanical, contractile and viscoelastic properties of surface skeletal muscles
US20150169074A1 (en) * 2013-12-12 2015-06-18 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
US20150208934A1 (en) * 2014-01-24 2015-07-30 Genevieve Sztrubel Method And Apparatus For The Detection Of Neural Tissue
US20150261306A1 (en) * 2014-03-17 2015-09-17 Thalmic Labs Inc. Systems, devices, and methods for selecting between multiple wireless connections

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2230540C1 (ru) * 2002-11-04 2004-06-20 Утолин Константин Владимирович Способ внешней (индуцированной) идеомоторной тренировки людей
US20070252595A1 (en) * 2006-02-22 2007-11-01 Volegov Petr L Direct Imaging of Neural Currents Using Ultra-Low Field Magnetic Resonance Techniques
US20130116601A1 (en) * 2010-07-07 2013-05-09 Tmg-Bmc D.O.O. Method and device for non-invasive and selective determination of biomechanical, contractile and viscoelastic properties of surface skeletal muscles
US20150169074A1 (en) * 2013-12-12 2015-06-18 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
US20150208934A1 (en) * 2014-01-24 2015-07-30 Genevieve Sztrubel Method And Apparatus For The Detection Of Neural Tissue
US20150261306A1 (en) * 2014-03-17 2015-09-17 Thalmic Labs Inc. Systems, devices, and methods for selecting between multiple wireless connections

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAC Garcia, et al. Magnetic fields from skeletal muscles: a valuable physiological measurement?, Frontiers in physiology, v.6, art.228, 2015 - ncbi.nlm.nih.gov. *
Ranjith S. Wijesinghe, Detection of Magnetic Fields Created by Biological Tissues, Journal of Electrical & Electronic Systems, February 05, 2014. *
Ranjith S. Wijesinghe, Detection of Magnetic Fields Created by Biological Tissues, Journal of Electrical & Electronic Systems, February 05, 2014. MAC Garcia, et al. Magnetic fields from skeletal muscles: a valuable physiological measurement?, Frontiers in physiology, v.6, art.228, 2015 - ncbi.nlm.nih.gov. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196931U1 (ru) * 2019-10-21 2020-03-23 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Анализатор мышечной активности
RU201245U1 (ru) * 2020-08-06 2020-12-04 Денис Иванович Большаков Устройство для бесконтактной регистрации мышечной активности человека

Also Published As

Publication number Publication date
RU2016129610A (ru) 2018-01-24

Similar Documents

Publication Publication Date Title
Zuo et al. Miniaturized magnetic sensors for implantable magnetomyography
Scharfetter et al. Biological tissue characterization by magnetic induction spectroscopy (MIS): requirements and limitations
Wei et al. Hardware and software design for a National Instrument-based magnetic induction tomography system for prospective biomedical applications
US20140005518A1 (en) Magnetoencephalography System and Method for 3D Localization and Tracking of Electrical Activity in Brain
Nurminen et al. Improving MEG performance with additional tangential sensors
JP6890484B2 (ja) 磁界計測装置および計測磁界表示方法
WO2019034840A1 (en) ELIMINATION OF NOISE IN A MAGNETOMETER FOR MEDICAL USE
RU2646747C2 (ru) Устройство для измерения магнитного поля скелетных мышц при определении мышечной активности
Costa et al. A neuronal signal detector for biologically generated magnetic fields
Svärd et al. Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG
FI115736B (fi) Menetelmä AC- ja DC-lähteiden aiheuttamien monikanavasignaalien erottamiseksi toisistaan
Primin et al. Inverse problem solution algorithms in magnetocardiography: new analytical approaches and some results
Wang et al. Auditory evoked field measurement using magneto-impedance sensors
Kõiv et al. Development of bioimpedance sensing device for wearable monitoring of the aortic blood pressure curve
Li et al. A multiple biomedical signals synchronous acquisition circuit based on over-sampling and shaped signal for the application of the ubiquitous health care
CN116008871A (zh) 一种用于心磁图仪探头的精度标定方法
Menolotto et al. Towards the development of a wearable electrical impedance tomography system: A study about the suitability of a low power bioimpedance front-end
Yang et al. A DSP-based EIT system with adaptive boundary voltage acquisition
Xu et al. The design of the biomagnetic field sensor without magnetic shielding
US3604411A (en) Electroencephalograph having meter probe movable in a calvarium-shaped liquid filled tank and method of use
Okamura et al. Inverse problem analysis in magnetic nanoparticle tomography using minimum variance spatial filter
Zuo et al. Modelling and analysis of magnetic fields from skeletal muscle for valuable physiological measurements
Wu et al. Noninvasive diagnosis of coronary artery disease using two parameters extracted in an extrema circle of magnetocardiogram
Dimas et al. SPICE and MATLAB simulation and evaluation of Electrical Impedance Tomography readout chain using phantom equivalents
Ruytenberg et al. A multi-purpose open-source triggering platform for magnetic resonance

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190720