RU2646644C1 - Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния - Google Patents

Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния Download PDF

Info

Publication number
RU2646644C1
RU2646644C1 RU2016141293A RU2016141293A RU2646644C1 RU 2646644 C1 RU2646644 C1 RU 2646644C1 RU 2016141293 A RU2016141293 A RU 2016141293A RU 2016141293 A RU2016141293 A RU 2016141293A RU 2646644 C1 RU2646644 C1 RU 2646644C1
Authority
RU
Russia
Prior art keywords
silicon
sulfur
laser
silicon surface
radiation
Prior art date
Application number
RU2016141293A
Other languages
English (en)
Inventor
Сергей Иванович Кудряшов
Павел Александрович Данилов
Дмитрий Альбертович Заярный
Андрей Алексеевич Ионин
Ирина Николаевна Сараева
Original Assignee
Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФГБУН ФИАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФГБУН ФИАН) filed Critical Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФГБУН ФИАН)
Priority to RU2016141293A priority Critical patent/RU2646644C1/ru
Application granted granted Critical
Publication of RU2646644C1 publication Critical patent/RU2646644C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/04Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion materials in the liquid state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/02Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using electric fields, e.g. electrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Настоящее изобретение относится к способу формирования сильнолегированного серой микроструктурированного кристаллического слоя на поверхности кремния, который может быть использован в солнечной энергетике, оптоэлектронике, приборах ночного и тепловидения. Способ заключается в размещении поверхности кремния под химически активной жидкой средой серосодержащего соединения и облучении поверхности кремния импульсами сфокусированного лазерного излучения наносекундной длительности инфракрасного диапазона, при этом задают плотность энергии лазерного излучения достаточной для проникновения этим излучением через жидкую среду к поверхности кремния с разложением молекул серосодержащего соединения до выделения атомов серы и для нагрева поверхности кремния до температуры, при которой происходит диффузия в нее атомов серы вместе с ее абляционным микроструктурированием и отжигом. Технический результат изобретения состоит в многократном расширении области и величины высокой поглощательной способности (в том числе высокого коэффициента поглощения) поверхностного слоя кремния в процессе сверхлегирования атомами серы под действием лазерного облучения с сохранением его кристаллического характера. 6 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу формирования сильнолегированного серой микроструктурированного кристаллического слоя на поверхности кремния.
Уровень техники
Формирование микроструктурированных сильнолегированных тонких слоев на поверхности кремния не только с высокой поглощательной способностью в ультрафиолетовом (УФ) и видимом, а также ближнем и среднем инфракрасном (ИК) диапазонах, но и с высоким коэффициентом поглощения в данных областях представляет интерес при создании устройств высокочувствительной ИК-визуализации, приборов ночного и тепловидения, тонкопленочных фотоэлектрических и термоэлектрических солнечных элементов, фоточувствительных объемных и тонкопленочных элементов солнечной энергетики.
Фоточувствительные устройства на базе высокоразвитой кремниевой электроники являются удобной платформой для развития соседних областей оптоэлектроники различных спектральных диапазонов. Однако актуальной задачей является придание самому материалу высокого коэффициента поглощения или высокой поглощательной способности в широком - ближнем, среднем и дальнем - ИК-диапазоне. В настоящее время эта задача отчасти решается созданием микроструктурных светоулавливающих покрытий (см., например, Z. Huang et al. Microstructured silicon photodetector, Appl. Phys. Lett. 89, 033506 (2006); Y. Liu et al. Broad band enhanced infrared light absorption of a femtosecond laser microstructured silicon, Laser Physics 18, 1148-1152 (2008)), что применимо к объемным фотоэлементам, но непригодно, например, для тонкопленочных солнечных элементов.
С другой стороны, ИК-поглощение может также быть вызвано легированием поверхностного слоя полупроводников (см. Н.Р. Hjalmarson et al. Theory of substitutional deep traps in covalent semiconductors, Phys. Rev. Lett. 44, 810-813 (1980)), из которых наиболее эффективным является способ ионной имплантации. Вместе с тем максимальная степень допирования, достигаемая путем ионной имплантации, относительно невелика - менее 10-1 атомных % (концентрация примеси порядка 1020 см-3), что связано с распылением имплантированного слоя ионным пучком, а также спонтанной аморфизацией структурно-нарушенного легированного слоя материала при концентрации примеси более 1021 см-3. В случае же использования низкоинтенсивных пучков время имплантации становится неоправданно большим.
Также в последнее десятилетие определенный интерес привлекли экспериментальные исследования в области сверхлегирования поверхности кремния донорными атомами халькогенидов (в первую очередь серы) с помощью фемтосекундной лазерной обработки в серосодержащих газах или непосредственно ионной имплантацией с последующим наносекундным лазерным отжигом. Это позволило создать поверхностные слои, содержащие до 0,8% серы (~1021 см-3) (см. С.Н. Crouch et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation, Appl. Phys. A 79, 1635 (2004)), но потребовало при этом специфических режимов лазерного или стационарного отжига - не только для восстановления нарушенной при сверхлегировании кристаллической структуры, но и для установления - в условиях пересыщения материала на много порядков (предел растворимости серы в кремнии при комнатной температуре ~1016 см-3, см. R. Carlson, R. Hall, Е. Pell, Sulfur in silicon, J. Phys. Chem. Solids 8, 81 (1959)) - желательного квазистационарного (метастабильного) распределения легирующей примеси по его структурным формам (атомам, кластерам разного размера и т.п.) (см. Е. Janzen et al. High-resolution studies of sulfur-and selenium-related donor centers in silicon, Phys. Rev. В 29, 1907 (1984)). Известно, что разные структурные формы донорной примеси связаны с разной глубиной залегания соответствующих донорных состояний по энергии ниже дна зоны проводимости и в результате с разными диапазонами ИК-поглощения вплоть до 10 мкм по длине волны. Режимы лазерной обработки - легирования и отжига, определяющие динамические локальные температуры и давления в кремниевой матрице, концентрацию введенной легирующей примеси, ее подвижность и высокотемпературное локальное химическое равновесие, являются ключевыми факторами, позволяющими управлять структурными состояниями и соответствующей зонной структурой примесных уровней. Вместе с тем, до сих пор имеющиеся в мире практические достижения - это, как правило, бесструктурные широкие полосы ИК-поглощения квазиконтинуума разных примесных состояний в диапазоне до 10 мкм без дискретных зон различных донорных состояний атомов серы в сверхлегированном слое поверхности кремния (см. M.J. Sher et al. Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation, J. Appl. Phys. 113, 063520 (2013)), обеспечивающих сильное его широкополосное или избирательное дискретное ИК-поглощение с возможностью управления этим зонным спектром на стадии формирования такого слоя («зонная инженерия») при помощи лазерного излучения.
В то же время существует способ сильного легирования (степень легирования на несколько порядков выше, чем при ионной имплантации - до нескольких атомных процентов) поверхности кремния с одновременным сохранением ее кристаллического характера под действием множественных фемтосекундных лазерных импульсов, когда образец кремния размещается под тонким слоем жидкого серосодержащего соединения - например, сероуглерода (см. патент РФ №2550868, опубл. 15.04.2015), который не имеет указанных выше недостатков и принят в качестве ближайшего аналога.
Суть раскрытого в этом документе способа заключается в разложении жидкофазного серосодержащего соединения - сероуглерода - на нагретой, расплавленной или аблированной фемтосекундными лазерными импульсами поверхности кремния с последующим интенсивным диффузионным потоком атомов серы в объем конденсированной фазы, на 2-3 порядка превосходящий аналогичный поток в случае газофазных серосодержащих соединений, при высоком соотношении атомного содержания серы к содержанию побочных элементов (в данном случае - углерода). При этом в результате сверхбыстрого (пикосекундного) плавления тонкого легируемого поверхностного слоя мишени кремния под действием фемтосекундного лазерного импульса (см. А.А. Ионин и др. Термическое плавление и абляция поверхности кремния фемтосекундным лазерным излучением, ЖЭТФ 143, №3, 403-422 (2013)), а также очень быстрого (в течение нескольких наносекунд) его затвердевания в ходе охлаждения за счет теплопроводности, испарительных и радиационных потерь, в него можно ввести высокие неравновесные концентрации серы, недостижимые путем ионной имплантации. Сверхлегирование в данном режиме придает поверхности кремния высокий, хорошо спектрально структурированный коэффициент ИК-поглощения, что хорошо видно по Фиг. 1, где сплошная кривая показывает простирающийся от ультрафиолетовой до инфракрасной области (УФ-ИК) спектр коэффициента поглощения кристаллического нелегированного кремния, а пунктирная кривая показывает спектр добавочного ИК-поглощения, связанный с легированием кремния серой.
Основными недостатками данного способа формирования сверхлегированных серой и микроструктурированных слоев на поверхности кремния является использование дорогостоящего фемтосекундного лазера (из-за высокой стоимости его излучения), а также ограниченный диапазон этого излучения (1,4-2 мкм), хотя получаемое высокое содержание серы - до 6% - обеспечивает большую амплитуду наведенного коэффициента ИК-поглощения, которое можно связать с глубокими донорными состояниями двухатомных кластеров серы. Другим недостатком является время жизни поверхностного расплава, которое определяет продолжительность термического разложения серосодержащих интермедиатов на поверхности кремния, глубину диффузии легирующей примеси, а также скорость охлаждения расплава, определяющую степень его рекристаллизации наряду с закалкой сверхлегированных состояний.
Раскрытие изобретения
Задача, решаемая настоящим изобретением, заключается в устранении недостатка ближайшего аналога, то есть в многократном расширении области и величины высокой поглощательной способности (в том числе высокого коэффициента поглощения) поверхностного слоя кремния в процессе сверхлегирования атомами серы под действием лазерного облучения с сохранением его кристаллического характера.
Для решения поставленной задачи с достижением указанного технического результата предложен способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния, заключающийся в том, что: размещают поверхность кремния под химически активной жидкой средой серосодержащего соединения; облучают поверхность кремния импульсами сфокусированного лазерного излучения наносекундной длительности инфракрасного диапазона; при этом задают плотность энергии упомянутого лазерного излучения достаточной для проникновения излучением через жидкую среду к поверхности кремния с разложением молекул серосодержащего соединения до выделения атомов серы и для нагрева поверхности кремния до температуры, при которой происходит диффузия в нее атомов серы вместе с ее абляционным микроструктурированием и отжигом.
Особенность способа по настоящему изобретению заключается в том, что в качестве серосодержащего соединения могут использовать сероуглерод.
Другая особенность способа по настоящему изобретению заключается в том, что плотность энергии лазерного излучения могут задавать так, чтобы разложение молекул серосодержащего соединения происходило в лазерном факеле, либо в плазме оптического пробоя, либо на нагретой или расплавленной поверхности кремния.
Еще одна особенность способа по настоящему изобретению заключается в том, что плотность энергии излучения могут выбирать так, чтобы она составляла не менее 100 Дж/см2.
Наконец, еще особенность способа по настоящему изобретению заключается в том, что число лазерных импульсов, падающих в каждую точку поверхности кремния, могут выбирать не более 100.
Краткое описание чертежей
На Фиг. 1 представлены спектры коэффициента поглощения кристаллического нелегированного и легированного кремния.
На Фиг. 2 приведены результаты химического микроанализа легированного серой поверхностного слоя кремния.
На Фиг. 3 представлены спектры комбинационного рассеяния поверхности кремния.
На Фиг. 4 представлены инфракрасные спектры пропускания пластины кремния.
На Фиг. 5 представлен инфракрасный спектр экстинкции (поглощения + рассеяния) легированного слоя пластины кремния, обработанной наносекундным лазерным излучением под слоем сероуглерода согласно способу по настоящему изобретению.
Подробное описание изобретения
В настоящем изобретении в качестве источника излучения выбран наносекундный лазер ИК-диапазона (длина волны - около 1 мкм) с высокой (до 20 кГц) частотой следования импульсов, который по характеристикам похож на распространенный тип промышленных наносекундных волоконных ИК-лазеров. Параметры этого лазера выбраны так, чтобы лазерное излучение проникало к мишени сквозь жидкую фазу серосодержащего соединения, а энергия, частота следования и фокусировка обеспечивали абляционное микроструктурирование поверхности кремния и разложение серосодержащего соединения в абляционном факеле, в плазме оптического пробоя факела, на горячей поверхности расплава или твердого материала.
Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния по настоящему изобретению имеет много общего со способом, описанным в упомянутом патенте РФ №2550868, и заключается в том, что поверхность кремния размещают под химически активной жидкой средой серосодержащего соединения, например сероуглерода (хотя это может быть, к примеру, и жидкий тетрагидрофуран), и облучают эту поверхность кремния импульсами сфокусированного лазерного излучения инфракрасного (ИК) диапазона. Важным отличием способа по настоящему изобретению является использование импульсов наносекундной (а не фемтосекундной, как в ближайшем аналоге) длительности, что резко удешевляет микроструктурирование и легирование. При этом плотность энергии используемого лазерного излучения задают достаточной для проникновения этим излучением через жидкую серосодержащую среду к обрабатываемой поверхности кремния, для разложения молекул серосодержащего соединения до выделения атомов серы и для нагрева обрабатываемой поверхности кремния до температуры, при которой происходит диффузия в нее атомов серы вместе с ее абляционным микроструктурированием и отжигом.
Решение поставленной задачи демонстрируется следующими примерами. Пластина недопированного кремния с полированной поверхностью оптического качества облучается в режиме сканирования фокусированным излучением неодимового лазера с длиной волны 1064 нм, длительностью 75-200 нс (полуширина) и энергией 0,6-1,5 мДж при частоте следования в диапазоне 0,6-20 кГц, чтобы обеспечить интенсивную абляцию и микроструктурирование поверхности кремния (Фиг. 1) при плотности энергии около 100 Дж/см2 в зависимости от числа лазерных импульсов (обычно в диапазоне 1-100), падающих в каждую точку поверхности. При этом обрабатываемая пластина кремния была погружена в ячейку с серосодержащим соединением - жидким сероуглеродом CS2 - на глубину около 2 мм для абляционного сверхлегирования поверхности.
Высокотемпературное испарение жидкого сероуглерода и термическое разложение молекул CS2, как минимум, до двухатомной молекулы CS и атома серы при взаимодействии с нагретой поверхностью твердого или расплавленного кремния, с атомной и кластерно-капельной компонентами его абляционного факела, или плазмой оптического пробоя в этом факеле обеспечивают высокую - близкую к твердофазной - концентрацию атомов серы на поверхности кремния, что выражается в чрезвычайно высокой скорости и результирующей рекордной степени легирования (до 2-3%) поверхностного слоя на характерную глубину 0,2-0,3 мкм, согласно данным энергодисперсионного рентгеновского анализа. Соответствующая таблица с результатами анализа по содержанию кремния, углерода и серы в поверхностном слое облученного материала приведена на Фиг. 2. В этой таблице даны результаты химического микроанализа (весовой и атомный состав) легированного серой поверхностного слоя кремния, полученные методом энергодисперсионной рентгеновской флюоресцентной спектроскопии по К-линиям элементов О (кислород), Si (кремний) и S (сера) при энергии возбуждающих электронов 5 кэВ.
Одновременно на низкоинтенсивном хвосте каждого лазерного импульса - при относительно медленном охлаждении расплава, несмотря на оптический пробой в абляционном факеле, сохраняется высокая степень кристалличности поверхностного слоя, подтверждаемая исследованиями с помощью спектроскопии комбинационного рассеяния (КР) и ИК-спектроскопии пропускания. Так, спектры комбинационного рассеяния кремния, аблированного наносекундными лазерными импульсами (один импульс в точку, длительность 175 нм, плотность энергии - 100 Дж/см2), показывает чрезвычайно слабую степень разупорядочения кремния в области обработки (по сравнению с исходным кристаллическим образцом), как это видно на Фиг. 3, где представлены спектры комбинационного рассеяния (КР-рассеяния) поверхности кремния. Сплошная линия относится к исходной необработанной поверхности, кривая с темными кружками - к обработанной наносекундным лазерным излучением на воздухе, а кривая со светлыми кружками - к поверхности, обработанной под слоем сероуглерода. Практическая неизменность полуширины и интенсивности линии КР-рассеяния указывает на высокую кристалличность обработанного лазером слоя.
Аналогично ИК-спектроскопия пропускания показывает наличие в спектре нескольких хорошо выраженных полос поглощения (Фиг. 4), связанных с поглощением на свободных носителях и определенными структурными состояниями глубоких двухатомных нейтральных и заряженных донорных центров серы S2 0,+ в кремнии (Фиг. 5) и свидетельствующих о пренебрежимо малом разупорядочении материала непосредственно в области обработки. Отметим, что на Фиг. 4. представлены спектры ИК-пропускания пластины кремния - исходной необработанной (линия, помеченная «исх»), обработанной наносекундным лазерным излучением на воздухе (линия, помеченная «воздух»), и под слоем сероуглерода (линия, помеченная «CS2»). Более низкое пропускание обработанного лазером слоя пластины указывает на его более высокое поглощение, а хорошо оформленные полосы пониженного пропускания указывают высокую кристалличность легированного слоя с четко выделенными типами донорных дефектов серы. Более того, указанные полосы поглощения в совокупности демонстрируют для сверхлегированного слоя толщиной в 0,2-0,3 мкм широкополосное ИК-поглощение в диапазоне 1,5-25 мкм с высоким коэффициентом поглощения порядка ~104 см-1 (Фиг. 5). Отметим, что на Фиг. 5. представлен спектр ИК-экстинкции (поглощения + рассеяния) легированного слоя пластины кремния, обработанной наносекундным лазерным излучением под слоем сероуглерода. Видны структурные полосы поглощения двухатомных донорных дефектов (нейтральных S2 0 и положительно заряженных S2 +), а также длинноволновый хвост поглощения на свободных носителях (ПСН). Наличие хорошо структурированных, интенсивных полос ИК-поглощения и соответствующих зон с высокой плотностью глубоких донорных состояний серы в запрещенной зоне кремния, а также связанных с ними структурных состояний дефектов кремния открывают возможности для зонной инженерии донорных состояний кремния для придания ему избирательного или широкополосного ИК-поглощения разной интенсивности.
Таким образом, предлагаемое данным изобретением сверхлегирование поверхностного слоя кремния атомами серы в среде жидкого сероуглерода под действием наносекундных ИК-лазерных импульсов, обеспечивающее многократное (почти на порядок величины) расширение диапазона высокой поглощательной способности и коэффициента поглощения ~104 см-1 в ближнем и среднем ИК-диапазонах (1,5-25 мкм), микроструктурирование его поверхности и ее отжиг реализуется в результате воздействия каждого (в том числе единичного) лазерного импульса и задает чрезвычайно большое расширение диапазона и повышение фоточувствительности кремния в ИК-диапазоне для возможных применений, например, в солнечной энергетике и оптоэлектронике, приборов ночного и тепловидения. Реализация изобретения с наносекундным лазером обеспечивает возможность применения более дешевых и мощных промышленных лазеров, в частности волоконных.

Claims (10)

1. Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния, заключающийся в том, что:
- размещают упомянутую поверхность кремния под химически активной жидкой средой серосодержащего соединения;
- облучают упомянутую поверхность кремния импульсами сфокусированного лазерного излучения наносекундной длительности инфракрасного диапазона;
- при этом задают плотность энергии упомянутого лазерного излучения достаточной для проникновения упомянутым излучением через упомянутую жидкую среду к упомянутой поверхности кремния с разложением молекул упомянутого серосодержащего соединения до выделения атомов серы и для нагрева упомянутой поверхности кремния до температуры, при которой происходит диффузия в нее атомов серы вместе с ее абляционным микроструктурированием и отжигом.
2. Способ по п. 1, в котором в качестве упомянутого серосодержащего соединения используют сероуглерод.
3. Способ по п. 1 или 2, в котором упомянутую плотность энергии лазерного излучения задают так, чтобы упомянутое разложение молекул серосодержащего соединения происходило в лазерном факеле.
4. Способ по п. 1 или 2, в котором упомянутую плотность энергии лазерного излучения задают так, чтобы упомянутое разложение молекул серосодержащего соединения происходило в плазме оптического пробоя.
5. Способ по п. 1 или 2, в котором упомянутую плотность энергии лазерного излучения задают так, чтобы упомянутое разложение молекул серосодержащего соединения происходило на нагретой или расплавленной поверхности кремния.
6. Способ по п. 2, в котором упомянутую плотность энергии излучения выбирают так, чтобы она составляла не менее 100 Дж/см2.
7. Способ по п. 1, в котором число упомянутых лазерных импульсов, падающих в каждую точку упомянутой поверхности кремния, выбирают не более 100.
RU2016141293A 2016-10-20 2016-10-20 Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния RU2646644C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016141293A RU2646644C1 (ru) 2016-10-20 2016-10-20 Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016141293A RU2646644C1 (ru) 2016-10-20 2016-10-20 Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния

Publications (1)

Publication Number Publication Date
RU2646644C1 true RU2646644C1 (ru) 2018-03-06

Family

ID=61568684

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016141293A RU2646644C1 (ru) 2016-10-20 2016-10-20 Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния

Country Status (1)

Country Link
RU (1) RU2646644C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257957A (zh) * 2021-06-11 2021-08-13 四川蜀旺新能源股份有限公司 超掺杂硅薄膜太阳能电池及其制作方法
RU2756777C1 (ru) * 2020-12-28 2021-10-05 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ получения микроструктур на поверхности полупроводника

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550868C2 (ru) * 2013-05-28 2015-05-20 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния
WO2016077587A2 (en) * 2014-11-12 2016-05-19 President And Fellows Of Harvard College Creation of hyperdoped semiconductors with concurrent high crystallinity and high sub-bandgap absorptance using nanosecond laser annealing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550868C2 (ru) * 2013-05-28 2015-05-20 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния
WO2016077587A2 (en) * 2014-11-12 2016-05-19 President And Fellows Of Harvard College Creation of hyperdoped semiconductors with concurrent high crystallinity and high sub-bandgap absorptance using nanosecond laser annealing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756777C1 (ru) * 2020-12-28 2021-10-05 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ получения микроструктур на поверхности полупроводника
RU2756777C9 (ru) * 2020-12-28 2021-12-14 Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) Способ получения микроструктур на поверхности полупроводника
CN113257957A (zh) * 2021-06-11 2021-08-13 四川蜀旺新能源股份有限公司 超掺杂硅薄膜太阳能电池及其制作方法
CN113257957B (zh) * 2021-06-11 2022-08-23 四川蜀旺新能源股份有限公司 超掺杂硅薄膜太阳能电池及其制作方法

Similar Documents

Publication Publication Date Title
Cavalleri et al. Ultrafast x-ray measurement of laser heating in semiconductors: Parameters determining the melting threshold
US7759607B2 (en) Method of direct Coulomb explosion in laser ablation of semiconductor structures
RU2646644C1 (ru) Способ формирования сверхлегированного серой микроструктурированного кристаллического слоя на поверхности кремния
Karatay et al. The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0. 7Ga0. 3 (Se1− xTex) 2 (0≤ x≤ 1) amorphous semiconductor thin films
Boulmer-Leborgne et al. Plasma formation resulting from the interaction of a laser beam with a solid metal target in an ambient gas
Yüksek et al. Two photon absorption characteristics of bulk GaTe crystal
Albarkaty et al. Erbium-doped chalcogenide glass thin film on silicon using femtosecond pulsed laser with different deposition temperatures
García et al. Analysis of wavelength influence on a-Si crystallization processes with nanosecond laser sources
Volodin et al. Crystallization of hydrogenated amorphous silicon films by exposure to femtosecond pulsed laser radiation
Palani et al. Influence of laser wavelength and beam profile on Nd3+: YAG laser assisted formation of polycrystalline-Si films
Aravinth et al. Growth of< 201> 8-hydroxyquinoline organic crystal by Czochralski method and its characterizations
Neimash et al. Role of Laser Power, Wavelength, and Pulse Duration in Laser Assisted Tin‐Induced Crystallization of Amorphous Silicon
RU2550868C2 (ru) Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния
Shehab Using Boltzmann Plots Method to Calculate Plasma Parameters Generated from a Magnesium Target Using Optical Emission Spectroscopy Technique
Dresvyansky et al. Monitoring the Heat of a Material during the Laser Formation of Defects
Aravinth et al. Characterization of 4-chloro-3-nitrobenzophenone crystal grown by Bridgman technique
García et al. Estimation of local crystallization of a-Si: H thin films by nanosecond pulsed laser irradiation through local temperature simulation
Danilov et al. One-Step Nanosecond-Laser Microstructuring, Sulfur-Hyperdoping, and Annealing of Silicon Surfaces in Liquid Carbon Disulfide
Neelima et al. Crystallization of Germanium-SiO2 composite films via nanosecond laser pulse irradiation
Volodin et al. Phase transitions in a-Si: H films on a glass irradiated by high-power femtosecond pulses: Manifestation of nonlinear and nonthermal effects
Larin et al. Formation of luminescent structures in thin a-Si: H–Er films irradiated by femtosecond laser pulses
Emelyanov et al. Modification of the structure and hydrogen content of amorphous hydrogenated silicon films under conditions of femtosecond laser-induced crystallization
Iaseniuc et al. Influence of heat treatment and illumination on the vibration modes of (As4S3Se3) 1-xSnx thin films
He et al. Micro-structure changes induced by femtosecond laser on the surface of GaN multilayer film grown on Si substrate
Bulgakov et al. Selective Ultrashort-Laser Crystallization of Amorphous Ge/Si Multilayer Stacks

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191021