RU2645790C1 - Способ определения границ субвертикальных протяженных объектов в геологической среде - Google Patents

Способ определения границ субвертикальных протяженных объектов в геологической среде Download PDF

Info

Publication number
RU2645790C1
RU2645790C1 RU2016147963A RU2016147963A RU2645790C1 RU 2645790 C1 RU2645790 C1 RU 2645790C1 RU 2016147963 A RU2016147963 A RU 2016147963A RU 2016147963 A RU2016147963 A RU 2016147963A RU 2645790 C1 RU2645790 C1 RU 2645790C1
Authority
RU
Russia
Prior art keywords
boundaries
values
seismic
seismometers
objects
Prior art date
Application number
RU2016147963A
Other languages
English (en)
Inventor
Алексей Алексеевич Цуканов
Андрей Вениаминович Горбатиков
Original Assignee
Алексей Алексеевич Цуканов
Андрей Вениаминович Горбатиков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алексей Алексеевич Цуканов, Андрей Вениаминович Горбатиков filed Critical Алексей Алексеевич Цуканов
Priority to RU2016147963A priority Critical patent/RU2645790C1/ru
Application granted granted Critical
Publication of RU2645790C1 publication Critical patent/RU2645790C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/284Application of the shear wave component and/or several components of the seismic signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/288Event detection in seismic signals, e.g. microseismics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/307Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/123Passive source, e.g. microseismics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/63Seismic attributes, e.g. amplitude, polarity, instant phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области геофизики и может быть использовано для картирования границ субвертикальных протяженных объектов. Заявлен способ определения границ субвертикальных протяженных объектов в геологической среде, согласно которому на исследуемом участке устанавливают в каждой точке измерений i два горизонтальных с идентичными амплитудно-частотными характеристиками (АЧХ) сейсмометров X и Y, оси чувствительности которых взаимно ортогональны. Оси чувствительности всех сейсмометров X имеют одинаковое направление ориентации, и оси чувствительности всех сейсмометров Y имеют одинаковое направление ориентации. Расстояние между точками измерений i составляет не более минимальной глубины заданного диапазона исследований. Проводят синхронную регистрацию микросейсмических сигналов, состоящих из волн Рэлея, сейсмометрами X и Y в течение времени регистрации T, определяемом периодом стационарности горизонтальных компонент микросейсмического сигнала. Затем вычисляют усредненный по времени регистрации T спектр мощности SXi(f) горизонтальных компонент сигналов сейсмометров X и спектр мощности SYi(f) горизонтальных компонент сигналов сейсмометров Y в каждой точке измерений i. Определяют отношения полученных спектров мощности в каждой точке измерений i SXi(f)/SYi(f), после чего строят для каждой выбранной частоты fj карты значений отношения спектров мощности SXi(fj)/SYi(fj), интерполяционную поверхность значений отношения спектров мощности SXi(fj)/SYi(fj) и карты модуля градиента интерполяционной поверхности. Привязку каждой полученной карты значений отношения спектров мощности SXi(fj)/SYi(fj) к глубине Hj проводят с использованием формулы Hj=0,6-0,8V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре. Определение границ субвертикальных протяженных геологических объектов проводят по значениям модуля градиента, превышающим 2/3 от максимального значения модуля градиента. Технический результат – повышение достоверности определения субвертикальных границ объектов в геологической среде за счет того, что горизонтальные компоненты случайного микросейсмического сигнала по отношению друг к другу являются физически равнозначными, и сокращение трудоемкости измерений. 1 ил.

Description

Изобретение относится к области сейсморазведки и может быть использовано для картирования границ субвертикальных протяженных объектов как естественного, так и искусственного происхождения, в геологической среде, для определения поверхностных и глубинных разломных структур, неоднородностей земной коры, при поиске рудных месторождений и месторождений нефти и газа, оптимального подбора мест бурения при разработке месторождений, для мониторинга среды при прогнозировании землетрясений и исследования районов и площадок размещения объектов ядерного топливного цикла.
Известен способ сейсморазведки, включающий регистрацию естественного сейсмического фона по трем компонентам не менее чем двумя сейсмоприемниками до и после генерирования сейсмических колебаний с частотой 0,1-70 Гц, суждение о наличии нефтегазовых месторождений по увеличению площади под кривой спектра сейсмического фона по всем трем компонентам после генерирования сейсмических колебаний по сравнению с исходным (RU №2119677, G01V 1/00, 1998).
Недостатками способа являются низкие достоверность, и надежность, и реализуемость, т.к. произвести генерирование сигнала в диапазоне 0,1-1 Гц представляет собой сложную техническую задачу.
Известен способ сейсморазведки, включающий предварительное определение дисперсионной кривой микросейсмических волн, характерной для исследуемой территории, путем проведения синхронной регистрации микросейсмических сигналов не менее чем тремя сейсмостанциями с вертикальными сейсмодатчиками с последующей оценкой по полученным данным зависимости кажущихся скоростей распространения микросейсмических волн от частоты сигнала, определение длин волн и частотного диапазона на основе анализа кажущихся скоростей, в котором микросейсмический сигнал состоит из волн Рэлея, размещение сейсмодатчиков на исследуемой территории таким образом, чтобы расстояние между ними составляло не более половины самой короткой длины волны Рэлея, определение амплитудной неидентичности измерительных каналов сейсмодатчиков в полосе частот микросейсмического сигнала путем одновременной регистрации микросейсмического сигнала всеми сейсмодатчиками в одной точке в течение времени, достаточного для установления стационарности спектра мощности микросейсмического сигнала, с последующим определением логарифмической разности спектров всех измерительных каналов сейсмодатчиков, регистрацию микросейсмического сигнала не менее чем двумя сейсмостанциями, одна из которых установлена стационарно в центральной части исследуемой территории, а остальные перемещаются по исследуемой территории, накопление спектра мощности микросейсмического сигнала в каждой точке измерений в течение времени, достаточного для установления стационарности спектра, расчет спектра пространственных вариаций микросейсмического сигнала для каждой точки измерений путем определения логарифмической разности спектра мощности для каждой точки измерений и спектра мощности микросейсмического сигнала, накопленного на сейсмостанции, установленной стационарно, в течение эквивалентного времени в тот же временной период с учетом амплитудной неидентичности измерительных каналов сейсмодатчиков, построение карты амплитудных вариаций микросейсмического сигнала для каждой частоты спектра пространственных вариаций, привязку каждой полученной карты к соответствующей ей глубине H (RU 2271554, G01V 1/00, 2006).
Недостатками способа является необходимость использования стационарно установленной базовой станции, производящей регистрацию микросейсмического сигнала в течении всего цикла полевых работ синхронно с измерениями в каждой точке наблюдения, что трудно реализуемо, а также низкая точность определения глубоких границ объектов геологической среды ввиду специфики рассеяния микросейсмических волн.
Наиболее близким по технической сущности к предлагаемому изобретению является метод и система картирования подповерхностных углеводородных пород-коллекторов, включающий регистрацию многокомпонентных сейсмических данных естественного низкочастотного сейсмического фона, разделение полученных данных на временные окна, разложение векторов данных в спектральные компоненты, объединение горизонтальных компонент в один вектор, процедуру сглаживания спектров, вычисление отношений вертикальной спектральной компоненты сейсмических данных к горизонтальной спектральной компоненте и усреднение спектров в пределах временных окон, при этом полученные отношения могут быть нанесены, очерчены и отображаться в виде карт подповерхностных коллекторов углеводородов или карты потенциальной углеводородоносности (патент US №7676326 B2, 2010).
Недостатками являются низкая достоверность и сложная реализуемость сейсморазведки в реальных условиях вследствие того, что в качестве основной информации используются различные наборы спектральных отношений вертикальной и любой одной из горизонтальных компонент либо вертикальной к суммарной горизонтальной, при этом вертикальная и горизонтальная компоненты фонового низкочастотного сейсмического поля не являются равнозначными с точки зрения их реакции на структуру среды и свойства материала среды, их спектральные отношения подвержены влиянию множества факторов, помимо геометрии геологических объектов, в связи с чем усложняется получение достоверных данных о структуре геологической среды, что делает метод трудно реализуемым в реальных геолого-геофизических условиях.
Техническим результатом является повышение достоверности определения субвертикальных границ протяженных объектов в геологической среде за счет того, что горизонтальные компоненты случайного микросейсмического сигнала по отношению друг к другу являются физически равнозначными, сокращение трудоемкости измерений.
Технический результат достигается в способе определения границ субвертикальных протяженных объектов в геологической среде, включающем установку в каждой точке измерений i на исследуемом участке двух горизонтальных с идентичными амплитудно-частотными характеристиками сейсмометров X и Y, оси чувствительности которых взаимно ортогональны, синхронную регистрацию микросейсмических сигналов, состоящих из волн Рэлея, сейсмометрами X и Y в течение времени регистрации T, определяемом периодом стационарности горизонтальных компонент микросейсмического сигнала с последующим вычислением усредненного по времени регистрации T спектра мощности SXi(f) горизонтальных компонент сигналов сейсмометров X и спектра мощности SYi(f) горизонтальных компонент сигналов сейсмометров Y в каждой точке измерений i, определение отношений полученных спектров мощности в каждой точке измерений i SXi(f)/SYi(f), построение для каждой выбранной частоты fj карт значений отношений спектров мощности SXi(fj)/SYi(fj) с последующим построением интерполяционной поверхности значений отношения спектров мощности SXi(fj)/SYi(fj) и карты модуля градиента интерполяционной поверхности, определение границ субвертикальных протяженных геологических объектов по значениям модуля градиента, превышающим 2/3 от максимального значения модуля градиента, при этом привязку каждой полученной карты значений отношения спектров мощности SXi(fj)/SYi(fj) к глубине Hj проводят с использованием формулы Hj=0,6-0,8 V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре, причем оси чувствительности всех сейсмометров X имеют одинаковое направление ориентации и оси чувствительности всех сейсмометров Y имеют одинаковое направление ориентации, а расстояние между точками измерений i составляет не более минимальной глубины заданного диапазона исследований.
Установка в каждой точке измерений i на исследуемом участке двух горизонтальных с идентичными амплитудно-частотными характеристиками сейсмометров X и Y, оси чувствительности которых взаимно ортогональны, позволяет определить субвертикальные границы протяженных объектов без дополнительной трудоемкой обработки за счет регистрации горизонтальных компонент в проекции на одни и те же оси по всей площади.
Синхронная регистрация горизонтальных компонент микросейсмического сигнала позволяет устранить временные вариации микросейсмического сигнала.
Построение для каждой выбранной частоты fj карт значений отношений спектров мощности горизонтальных компонент SXi(fj)/SYi(fj) с последующим построением интерполяционной поверхности значений отношения спектров SXi(fj)/SYi(fj) и карты модуля градиента интерполяционной поверхности позволяет перейти от измерений в отдельных точках к оценке пространственного положения субвертикальных границ протяженных геологических объектов.
Отношение спектров мощности горизонтальных компонент SXi(fj)/SYi(fj) отражает анизотропию строения геологической среды, наличия в ней протяженных объектов, при этом спектральное отношение горизонтальных компонент меньше подвержено влиянию неконтролируемых факторов, таких как отношение скоростей сейсмических волн между различными горизонтами среды.
Определение границ субвертикальных протяженных геологических объектов по значениям модуля градиента, превышающим 2/3 от максимального значения модуля градиента, на данной карте fj позволяет выделить области с высоким значением модуля градиента, которые определяют пространственное положение субвертикальных границ протяженных геологических объектов, что повышает достоверность определения этих границ.
Оси чувствительности всех сейсмометров X имеют одинаковое направление ориентации, и оси чувствительности всех сейсмометров Y имеют одинаковое направление ориентации, что позволяет существенно снизить трудоемкость, связанную с обработкой измеренных микросейсмических сигналов.
Расстояние между точками измерений i составляет не более минимальной глубины заданного диапазона исследований, необходимо для достоверности и точности определения субвертикальных границ за счет исключения пропуска границ.
Способ определения границ субвертикальных про тяженных объектов в геологической среде поясняется фиг.1, где изображен пример интерполяционной поверхности значений отношения спектров мощности SXi(fj)/SYi(fj) на частоте fj, для протяженного заглубленного субвертикального высокоскоростного тела, границы которого указаны пунктиром.
Способ определения границ субвертикальных протяженных объектов в геологической среде осуществляется следующим образом.
На исследуемом участке устанавливают в каждой точке измерений i два горизонтальных с идентичными амплитудно-частотными характеристиками (АЧХ) сейсмометра X и Y, оси чувствительности которых взаимно ортогональны. Оси чувствительности всех сейсмометров X имеют одинаковое направление ориентации, и оси чувствительности всех сейсмометров Y имеют одинаковое направление ориентации. Расстояние между точками измерений i составляет не более минимальной глубины заданного диапазона исследований. Проводят синхронную регистрацию микросейсмических сигналов, состоящих из волн Рэлея, сейсмометрами X и Y в течение времени регистрации T, определяемом периодом стационарности горизонтальных компонент микросейсмического сигнала. Затем вычисляют усредненный по времени регистрации T спектр мощности SXi(f) горизонтальных компонент сигналов сейсмометров X и спектр мощности SYi(f) горизонтальных компонент сигналов сейсмометров Y в каждой точке измерений i. Определяют отношения полученных спектров мощности в каждой точке измерений i SXi(i)/SYi(f), после чего строят для каждой выбранной частоты fj карты значений отношений спектров мощности SXi(fj)/SYi(fj), интерполяционную поверхность значений отношения спектров SXi(fj)/SYi(fj) и карты модуля градиента интерполяционной поверхности. Привязку каждой полученной карты значений отношения спектров мощности SXi(fj)/SYi(fj) к глубине Hj проводят с использованием формулы Hj=0,6-0,8 V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре. Определение границ субвертикальных протяженных геологических объектов проводят по значениям модуля градиента, превышающим 2/3 от максимального значения модуля градиента.
Конкретный пример реализации способа определения границ субвертикальных протяженных объектов в геологической среде
На исследуемом участке размерами 75 на 45 м со средними скоростями сейсмических волн в осадочных породах VP=800 м/с, VS=460 м/с, и V=420 м/с для волны Рэлея в каждой точке измерений i по квадратной сетке с равномерным шагом 2 м устанавливались два горизонтальных сейсмометра X и Y с идентичными АЧХ, оси чувствительности которых взаимно ортогональны, использовались горизонтальные сейсмометры CM3. Оси чувствительности всех сейсмометров X имели одинаковое направление ориентации, и оси чувствительности всех сейсмометров Y имели одинаковое направление ориентации во всех точках наблюдения i. Направления осей чувствительности приборов X и Y во всех точках наблюдений i были выбраны по сторонам света - N и E соответственно. Проводилась синхронная регистрация микросейсмических сигналов, состоящих из волн Рэлея, сейсмометров X и Y в течение времени регистрации T=120 минут. Затем были вычислены усредненные по времени регистрации T=120 минут спектры мощности SXi(f) горизонтальных компонент сигналов сейсмометров X и спектры мощности SYi(f) горизонтальных компонент сигналов сейсмометров Y в каждой точке измерений i в частотном диапазоне 5-90 Гц, после чего были рассчитаны отношения полученных спектров мощности в каждой точке измерений i SXi(f)/SYi(f). Для каждой частоты fj, выбранной из частотного диапазона 5-90 Гц с шагом 1 Гц, были построены карты значений отношения спектров мощности SXi(fj)/SYi(fj) и интерполяционные поверхности значений отношения спектров SXi(fj)/SYi(fj), привязка каждой из которых к глубине Hj производилась по формуле Hj=0.7V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре. На фиг. 1 представлена карта интерполяционной поверхности значений отношения спектров мощности SXi(fj)/SYi(fj) на частоте fj=38 Гц, соответствующей длине волны Рэлея 11 м, карта симметризована относительно середины аномалии и повернута кажущейся осью неоднородности вдоль оси координат x для наглядности/определенности. В области над протяженной субвертикальной высокоскоростной неоднородностью формируется аномалия повышенных значений отношений спектров мощности SXi(fj)/SYi(fj) - светлая зона, в то время как по обе стороны вблизи ее протяженных границ формируются аномалии пониженных значений отношений спектров мощности SXi(fj)/SYi(fj) - темные зоны, при этом ось x направлена вдоль тела протяженного объекта. Для каждой карты значений отношения спектров мощности SXi(fj)/SYi(fj) строилась интерполяционная поверхность значений отношения спектров мощности SXi(fj)/SYi(fj) и карта модуля градиента интерполяционной поверхности, выполнялась привязка каждой полученной карты к глубине Hj с использованием формулы Hj=0,7V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре. Области значений модуля градиента интерполяционной поверхности значений отношения спектров мощности SXi(fj)/SYi(fj), превышающих 2/3 от максимального значения модуля градиента, определяют положение субвертикальных границ искомой протяженной неоднородности. Указанные области находятся между светлой и темной аномалиями на интерполяционной поверхности значений отношения спектров мощности SXi(fj)/SYi(fj) для частоты fj=38 Гц на фиг. 1. Пунктиром показано положение субвертикальных границ найденного объекта - вертикально захороненной высокоскоростной плиты. Размеры искомого объекта - 20 м в длину, 3.5 м в ширину и около 10 м в глубину.
Кроме того, трехмерный анализ карт значений отношений спектров мощности горизонтальных компонент SXi(f)/SYi(f) для всех частот из диапазона 5-90 Гц с использованием формулы глубинной привязки с коэффициентом 0.7: Hj=0.7V(fj)/fj, позволил оценить глубину верхней части плиты 5-6 м и спрогнозировать глубину нижней - около 15-18 м.
Предлагаемое изобретение позволяет повысить достоверность определения субвертикальных границ объектов в геологической среде, особенно на больших глубинах, сократить трудоемкость измерений.

Claims (1)

  1. Способ определения границ субвертикальных протяженных объектов в геологической среде, включающий установку в каждой точке измерений i на исследуемом участке двух горизонтальных с идентичными амплитудно-частотными характеристиками сейсмометров X и Y, оси чувствительности которых взаимно ортогональны, синхронную регистрацию микросейсмических сигналов, состоящих из волн Рэлея, сейсмометрами X и Y в течение времени регистрации Т, определяемого периодом стационарности горизонтальных компонент микросейсмического сигнала с последующим вычислением усредненного по времени регистрации Т спектра мощности SXi(f) горизонтальных компонент сигналов сейсмометров X и спектра мощности SYi(f) горизонтальных компонент сигналов сейсмометров Y в каждой точке измерений i, определение отношений полученных спектров мощности в каждой точке измерений i SXi(f)/SYi(f), построение для каждой выбранной частоты fj карт значений отношения спектров мощности SXi(fj)/SYi(fj) с последующим построением интерполяционной поверхности значений отношения спектров мощности SXi(fj)/SYi(fj) и карты модуля градиента интерполяционной поверхности, определение границ субвертикальных протяженных геологических объектов по значениям модуля градиента, превышающим 2/3 от максимального значения модуля градиента, при этом привязку каждой полученной карты значений отношения спектров мощности SXi(fj)/SYi(fj) к глубине Hj проводят с использованием формулы Hj=0,6-0,8 V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре, причем оси чувствительности всех сейсмометров X имеют одинаковое направление ориентации, и оси чувствительности всех сейсмометров Y имеют одинаковое направление ориентации, а расстояние между точками измерений i составляет не более минимальной глубины заданного диапазона исследований.
RU2016147963A 2016-12-07 2016-12-07 Способ определения границ субвертикальных протяженных объектов в геологической среде RU2645790C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016147963A RU2645790C1 (ru) 2016-12-07 2016-12-07 Способ определения границ субвертикальных протяженных объектов в геологической среде

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016147963A RU2645790C1 (ru) 2016-12-07 2016-12-07 Способ определения границ субвертикальных протяженных объектов в геологической среде

Publications (1)

Publication Number Publication Date
RU2645790C1 true RU2645790C1 (ru) 2018-02-28

Family

ID=61568313

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016147963A RU2645790C1 (ru) 2016-12-07 2016-12-07 Способ определения границ субвертикальных протяженных объектов в геологической среде

Country Status (1)

Country Link
RU (1) RU2645790C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188515A (zh) * 2018-10-31 2019-01-11 中国石油化工股份有限公司 微地震监测裂缝震源点位置计算方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU996964A1 (ru) * 1981-01-05 1983-02-15 Ордена Ленина Институт Физики Земли Им.О.Ю.Шмидта Способ вибросейсмической разведки
RU2119677C1 (ru) * 1993-11-18 1998-09-27 Научно-производственная фирма "Аквазинэль" Способ сейсморазведки
RU2263932C1 (ru) * 2004-07-30 2005-11-10 Ведерников Геннадий Васильевич Способ сейсмической разведки
RU2271554C1 (ru) * 2005-03-25 2006-03-10 Андрей Вениаминович Горбатиков Способ сейсморазведки
US7676326B2 (en) * 2006-06-09 2010-03-09 Spectraseis Ag VH Reservoir Mapping
WO2011008708A1 (en) * 2009-07-13 2011-01-20 Spectraseis Ag Statics calculation
RU2433425C2 (ru) * 2010-01-29 2011-11-10 Юрий Николаевич Жуков Способ сейсмической разведки при поиске углеводородов и способ определения залегания продуктивных на углеводороды пластов и сейсмическая станция для его осуществления

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU996964A1 (ru) * 1981-01-05 1983-02-15 Ордена Ленина Институт Физики Земли Им.О.Ю.Шмидта Способ вибросейсмической разведки
RU2119677C1 (ru) * 1993-11-18 1998-09-27 Научно-производственная фирма "Аквазинэль" Способ сейсморазведки
RU2263932C1 (ru) * 2004-07-30 2005-11-10 Ведерников Геннадий Васильевич Способ сейсмической разведки
RU2271554C1 (ru) * 2005-03-25 2006-03-10 Андрей Вениаминович Горбатиков Способ сейсморазведки
US7676326B2 (en) * 2006-06-09 2010-03-09 Spectraseis Ag VH Reservoir Mapping
WO2011008708A1 (en) * 2009-07-13 2011-01-20 Spectraseis Ag Statics calculation
RU2433425C2 (ru) * 2010-01-29 2011-11-10 Юрий Николаевич Жуков Способ сейсмической разведки при поиске углеводородов и способ определения залегания продуктивных на углеводороды пластов и сейсмическая станция для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RU 2119677 C1, ;27.09.1998. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188515A (zh) * 2018-10-31 2019-01-11 中国石油化工股份有限公司 微地震监测裂缝震源点位置计算方法及系统
CN109188515B (zh) * 2018-10-31 2021-02-26 中国石油化工股份有限公司 微地震监测裂缝震源点位置计算方法及系统

Similar Documents

Publication Publication Date Title
JP6982103B2 (ja) 地下構造の検出
Geng et al. 3D inversion of airborne gravity-gradiometry data using cokriging
US20180203144A1 (en) Interferometric Microseismic Imaging Methods and Apparatus
Neducza Stacking of surface waves
CN109557582B (zh) 一种二维多分量地震资料偏移成像方法及系统
Luo et al. Research on the middle-of-receiver-spread assumption of the MASW method
Grassi et al. Geophysical surveys for the dynamic characterization of a cultural heritage building and its subsoil: The S. Michele Arcangelo Church (Acireale, eastern Sicily)
Marciniak et al. Integrated geophysical imaging of a mountain landslide–a case study from the Outer Carpathians, Poland
Lior et al. Imaging an underwater basin and its resonance modes using optical fiber distributed acoustic sensing
Hayashi et al. Common-midpoint spatial autocorrelation analysis of seismic ambient noise obtained from a spatially unaliased sensor distribution
Foulger et al. Earthquakes and errors: Methods for industrial applications
CA3018736A1 (en) Fluid resonance seismic surveying
RU2645790C1 (ru) Способ определения границ субвертикальных протяженных объектов в геологической среде
Quiros et al. Aftershock imaging with dense arrays (AIDA) following the M w 4.0 Waterboro earthquake of 16 October 2012 Maine, USA
Feng et al. Rockfall localization from seismic polarization considering multiple triaxial geophones and frequency bands
Xu et al. Determination of near-surface shear-velocity structure based on the joint inversion of Rayleigh-wave dispersion and ellipticity from multistation active-seismic records
Abu-Zeid et al. Shear-wave velocity profiles across the Ferrara arc: a contribution for assessing the recent activity of blind tectonic structures
Mantovani et al. A geophysical transect across the central sector of the Ferrara Arc: passive seismic investigations-part II
Wang et al. Retrieving drill bit seismic signals using surface seismometers
RU2648015C1 (ru) Мобильный поисковый метод проведения пассивной низкочастотной сейсморазведки
Bui et al. Incorporation of geology with rock physics enables subsalt poststack inversion: A case study in the Gulf of Mexico
Orfanos et al. Surface wave tomography using active sources in engineering applications: A 3D experiment at a test site of known conditions
Li et al. Characterization for the carbonate-karst reservoir based on target-oriented full-waveform inversion
Aung et al. Evaluation of Deep S-wave Velocity Profiles in Sagaing City, Myanmar from Long-Period Microtremor Array Records
Shragge This issue of Geophysics

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181208

NF4A Reinstatement of patent

Effective date: 20201124

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210226

Effective date: 20210226