RU2645233C1 - Способ крепления продуктивного пласта-коллектора газовой скважины - Google Patents

Способ крепления продуктивного пласта-коллектора газовой скважины Download PDF

Info

Publication number
RU2645233C1
RU2645233C1 RU2016138905A RU2016138905A RU2645233C1 RU 2645233 C1 RU2645233 C1 RU 2645233C1 RU 2016138905 A RU2016138905 A RU 2016138905A RU 2016138905 A RU2016138905 A RU 2016138905A RU 2645233 C1 RU2645233 C1 RU 2645233C1
Authority
RU
Russia
Prior art keywords
reservoir
well
gas
binder composition
tetraethoxysilane
Prior art date
Application number
RU2016138905A
Other languages
English (en)
Inventor
Валентина Петровна Казарян
Сергей Олегович Оводов
Вера Юрьевна Хвостова
Евгений Михайлович Шилов
Михаил Владимирович Свинцов
Original Assignee
Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" filed Critical Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ"
Priority to RU2016138905A priority Critical patent/RU2645233C1/ru
Application granted granted Critical
Publication of RU2645233C1 publication Critical patent/RU2645233C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор. В способе крепления продуктивного пласта-коллектора газовой скважины в скважину закачивают связующий состав, представляющий собой смесь реагентов, содержащую 60-80 мас.% модифицированного тетраэтоксисилана и 20-40 мас.% водного раствора кислотного катализатора. Продавливают его в пласт-коллектор газообразным агентом, выбранным из группы газов: азот, выхлопные газы двигателя внутреннего сгорания, углекислый газ. При этом газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа. После этого осуществляют выдержку скважины в технологическом отстое в течение по меньшей мере двух суток. Техническим результатом является снижение водонасыщенности призабойной зоны пласта и повышение продуктивности эксплуатационных газовых скважин при однократной обработке пласта-коллектора. 3 ил., 3 табл.

Description

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа (ПХГ) и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор.
Известен способ крепления призабойной зоны пласта-коллектора скважины, который включает закачку в прискважинную зону пласта пористого тампонажного раствора, представляющего собой смесь кремнийсодержащего вещества, карбамидоформальдегидного концентрата, солей металлов и воды, с предварительной закачкой вспененного полимерного раствора, содержащего анионный водорастворимый полимер, поверхностно-активное вещество, карбамидоформальдегидный концентрат, соли металлов (см. патент РФ №2467156, кл. Е21В 33/13, 2012).
Недостаток известного способа состоит в том, что при его реализации на скважинах подземных хранилищ газа в режиме однократной обработки пласта-коллектора нельзя повысить продуктивность газовых скважин.
Проведенные патентные исследования показывают, что в патентно-информационных фондах ведущих стран мира отсутствуют технические решения, являющиеся наиболее близкими к предлагаемому способу обработки призабойной зоны продуктивного пласта-коллектора газовой скважины по достигаемому техническому результату.
Технический результат, на получение которого направлено предлагаемое изобретение, заключается в снижении водонасыщенности призабойной зоны пласта и повышении продуктивности эксплуатационных газовых скважин при однократной обработке пласта-коллектора.
Данный технический результат достигается за счет того, что способ крепления продуктивного пласта-коллектора газовой скважины заключается в том, что в скважину закачивают связующий состав, представляющий собой смесь реагентов, содержащую 60-80% масс. модифицированного тетраэтоксисилана и 20-40% масс. водного раствора кислотного катализатора, и продавливают его в пласт-коллектор газообразным агентом, выбранным из группы газов: азот, выхлопные газы двигателя внутреннего сгорания, углекислый газ, при этом газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа, после этого осуществляют выдержку скважины в технологическом отстое в течение по меньшей мере двух суток.
Сущность предлагаемого изобретения поясняется данными, приведенными в Таблицах 1, 2 и 3, а также фиг. 1, 2 и 3. В Таблице 1 приведены результаты работ по креплению продуктивного пласта-коллектора на скважинах Северо-Ставропольского ПХГ (далее - ССПХГ) связующим составом при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора 80% масс. : 20% масс. В Таблице 2 показаны результаты работ по креплению продуктивного пласта-коллектора на скважинах ССПХГ связующим составом при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора 60% масс. : 40% масс. В Таблице 3 приведены данные сравнения фильтрационно-емкостных свойств образцов песчаника в результате химического крепления.
На фиг. 1 показана схема процесса цементирования газовой скважины, используемая при реализации предлагаемого способа. При этом на данной схеме показаны эксплуатационная колонна 1, насосно-компрессорные трубы (далее - НКТ) 2, пласт-коллектор 3, цементировочный агрегат 4 и компрессор 5.
На фиг. 2 приведены точки графика зависимости величины сцепления частиц песчаника в зависимости от значения растягивающего напряжения, которая получена для скважин ССПХГ. На фиг. 3 показаны точки графика зависимости величины угла внутреннего трения частиц песчаника в зависимости от значения растягивающего напряжения.
Принцип, лежащий в основе предлагаемого технического решения, заключается в том, что при реализации данного способа сохраняются фильтрационно-емкостные свойства пласта скважины по газу. В этом случае связующий состав используется для химического крепления пласта-коллектора газовой скважины с целью борьбы с выносом песка. Кроме того, связующий состав может применяться при проведении водоизоляционных, а также для ограничения водопритока в газовых и нефтяных скважинах. В этом случае скрепленный связующим составом материал не смачивается водой, оставаясь газо- и паропроницаемым. Всего по предлагаемому способу выполнено более 20 обработок.
Рассмотрим пример практической реализации предлагаемого способа при проведении работ по обработке продуктивного пласта-коллектора на Северо-Ставропольском ПХГ связующим составом, содержащим модифицированный тетраэтоксисилан и водный раствор катализатора (в данном случае используется неорганическая кислота), для крепления продуктивного пласта-коллектора.
Приготовление и закачка связующего состава осуществлялись с использованием стандартного оборудования, которое включает цементировочный агрегат 4 и компрессор 5 (см. фиг. 1). В данном случае проведение работ производилось в следующей последовательности:
1. При приготовлении связующего состава на основе модифицированного тетраэтоксисилана и водного раствора катализатора компоненты смешивали непосредственно перед закачкой состава в газовую скважину. Приготовление связующего состава на скважине производили в мерной емкости цементировочного агрегата 4 (см. фиг. 1). Емкость предварительно очищали, пропаривали и высушивали.
2. В модифицированный тетраэтоксисилан при перемешивании вводили водный раствор катализатора на основе неорганической кислоты. Смесь интенсивно перемешивали в течение 10-15 минут до получения однородной прозрачной жидкости.
3. Перед закачиванием связующего состава в колонну насосно-компрессорных труб 2 (см. фиг. 1) в качестве буфера закачивали раствор 2% соляной кислоты в количестве 1000 л и продавливали в пласт-коллектор 3 выхлопными газами от компрессора 5 до выравнивания давления в НКТ 2 и затрубном пространстве между эксплуатационной колонной 1 и НКТ 2 (фиг. 1). После выдержки скважины в покое в течение 10-15 минут отработали скважину на факельную линию с целью удаления продуктов реакции.
4. Приготовленный связующий состав закачивали насосом цементировочного агрегата 4 в насосно-компрессорные трубы 2. При этом закачку реагента, как и далее его продавку, в пласт-коллектор 3 производили при максимальном значении расхода насоса, не допуская роста давления закачивания выше допустимого давления на эксплуатационную колонну 1.
5. После этого связующий состав продавливали в пласт-коллектор 3 газом из шлейфа (для ПХГ) или выхлопными газами от компрессора 5 (фиг. 1). В этом случае газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа,
6. После выравнивания давления в трубном и затрубном пространствах закачку продавливающего агента продолжили в течение 3-4 часов. Затем скважину закрывали и выдерживали в состоянии покоя 48 часов для реагирования связующего состава.
7. По истечении времени проводили предварительную продувку скважины до чистого газа на факельную линию.
8. До окончательного реагирования связующего состава скважину закрывали и выдерживали в состоянии покоя 5 суток. После окончательного формирования структуры производили окончательную отработку скважины на факельную линию с допустимой депрессией. Вследствие того, что для продавливания связующего состава в пласт-коллектор 3 использовали газ, время отработки скважины было сокращено, что позволило уменьшить общее количество выбросов в окружающую среду.
Сведения о работе скважин ССПХГ после проведения их обработки связующим составом приведены в таблицах 1 и 2.
Согласно полученным результатам после выполненных работ выноса песка не наблюдалось, вырос дебит (который обозначается Q, тыс. м3) эксплуатационных скважин. В целом это свидетельствует о сцеплении слабосцементированного песка, увеличении прочности породы с сохранением фильтрационно-емкостных свойств пласта-коллектора.
Для определения механических и фильтрационно-емкостных свойств скрепленной породы до и после обработки связующим составом были проведены лабораторные и промысловые эксперименты, примеры реализации которых описаны ниже.
Рассмотрим, каким образом в лабораторных условиях осуществляется определение прочностных свойств слабосцементированных образцов песчаника.
В этом случае образцы для обработки связующим составом на основе модифицированного тетраэтоксисилана и водного раствора катализатора представлены песчаником мелкозернистым, алевритистым низко-глинистым, который относится к коллекторам 1 класса согласно классификации А.А. Ханина (см. кн. А.А. Ханин, Породы-коллекторы нефти и газа и их изучение, М., Недра, 1969, с. 234, таблица 18).
В металлическую полую цилиндрическую форму размерами - 50 мм высотой и 30 мм диаметром, смазанную солидолом, насыпали песок размером 0,2-0,4 мм и утрамбовывали в течение 1 ч. После утрамбовывания заливали в формы связующий раствор до полного смачивания песка. Затем формы сушили при температуре t=60-65°С, измеряли время, через которое происходило схватывание песка и отверждение образца.
Типичное время потери подвижности связующего состава на основе модифицированного тетраэтоксисилана и водного раствора катализатора (соотношение 80% масс. : 20% масс.) и закрепления песка при t=60°С составило 60 мин, при t=20°С - 150 мин. При уменьшении концентрации модифицированного тетраэтоксисилана и увеличении концентрации водного раствора катализатора в связующем составе время потери подвижности состава увеличивается и падает прочность образовавшегося геля.
Для проверки механических свойств связующего состава были проведены экспериментальные работы в лаборатории с использованием методики по исследованию прочностных свойств слабосцементированных образцов песчаника на индикаторе механических свойств ИСМ-190 «Викинг». Получаемые с использованием данной установки данные механические свойства связующего состава полностью соответствуют процедурам, регламентированным ГОСТ 24941-81 Породы горные. Методы определения механических свойств нагружением сферическими инденторами, М., 1981. Растягивающее напряжение образца σр, МПа, определяли из эксперимента по разрушению образца в процессе сжатия сферическими инденторами индикатора механических свойств ИСМ-190 «Викинг». Исходя из конкретных полученных при этом данных рассчитывали значения величины сцепления частиц песчаника и угла внутреннего трения.
На фиг. 2 и 3 представлены графики зависимостей значений величины сцепления частиц песчаника и величины угла внутреннего трения частиц песчаника в зависимости от значения растягивающего напряжения контрольного образца песчаника без обработки (БО) и после обработки образцов связующими составами с различным соотношением реагентов в смеси - составом 1 (С1), составом 2 (С2) и составом 3 (С3).
Состав 1 (С1) приготовлен при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора: 60% масс. на 40% масс., соответственно, состав 2 (С2) - при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора: 70% масс. на 30% масс., соответственно, и состав 3 (С3) - при соотношении модифицированного тетраэтоксисилана и водного раствора катализатора: 80% масс. на 20% масс., соответственно.
Согласно результатам проведенной проверки механических свойств связующего состава (см. фиг. 2 и 3), после обработки образцов песчаника каждым из составов 1, 2 и 3 происходит рост сцепления и увеличение прочности на разрыв по сравнению с образцами песчаника до обработки этим же составом, и наблюдается тенденция к упрочнению структуры песчаника в результате обработки связующим составом.
В среднем увеличение происходит в 1,5-2,0 раза. Значение величины угла внутреннего трения испытанных образцов практически не зависит от растягивающего напряжения.
Определение фильтрационно-емкостных свойств образцов слабосцементированного песчаника в лабораторных условиях осуществляется следующим образом.
В качестве контрольного образца использовали образец, который не подвергался обработке. В металлическую форму размерами 50 мм высотой и 30 мм диаметром, смазанную солидолом, насыпали песок, утрамбовывали в течение 1 часа. Далее в форму заливали связующий состав до полного смачивания песка. Затем формы сушили при температуре t=60-65°С. После этого образец слабосцементированного песчаника помещали в кернодержатель модернизированного стенда УИПК (установка по исследованию проницаемости керна) в соответствии с ГОСТ 26450.0-85 - ГОСТ 26450.2-85 «Породы горные. Методы определения коллекторских свойств».
Затем производили поверхностный обжим образца давлением, значение которого равно 0,5 МПа (данное значение давления соответствует давлению герметизации образца в кернодержателе), а после этого через образец пропускали газ при разных значениях давления, величины которого изменялись в пределах значений от 0,01 МПа до 0,5 МПа. При проведении этих мероприятий определялось значение давления, при котором происходит разрушение образца. В реальных условиях функционирующей скважины это соответствует процессу выноса из нее песка.
Для исследования свойств обработанного связующим составом слабосцементированного песчаника были изготовлены три образца, полученные в результате использования составов при различном соотношении концентрации исходных реагентов в смеси:
- модифицированный тетраэтоксисилан 60% масс. и водный раствор катализатора 40% масс.;
- модифицированный тетраэтоксисилан 70% масс. и водный раствор катализатора 30% масс.;
- модифицированный тетраэтоксисилан 80% масс. и водный раствор катализатора 20% масс.
Для сравнения свойств образцов слабосцементированного песчаника до и после обработки связующим составом подготовлен контрольный образец, который не подвергался обработке. Для контрольного образца пористость составила 31,5%, проницаемость - 660 мД.
В Таблице 3 приведены данные по изменению пористости и проницаемости образцов слабосцементированного песчаника до и после обработки связующим составом с различным соотношением реагентов в смеси. Образцы слабосцементированного песчаника имеют разные значения пористости и проницаемости до обработки связующим составом, что связано с погрешностью измерения этих параметров и микронеоднородностью породы.
Приведенные результаты также показывают, что после обработки образцов №№1, 2 и 3 связующим составом на основе модифицированного тетраэтоксисилана и водного раствора катализатора вынос песка не наблюдался, фильтрационно-емкостные свойства изменились незначительно. Это свидетельствует о том, что использование предлагаемого связующего состава эффективно.
Однако время потери подвижности связующего состава с увеличением концентрации водного раствора катализатора и уменьшением концентрации модифицированного тетраэтоксисилана в составе значительно возросло. Оптимальным составом для проведения работ на скважине является состав, в котором соотношение модифицированного тетраэтоксисилана и водного раствора катализатора - 80% масс. : 20% масс.
Таким образом, предлагаемый способ позволяет с использованием физико-химических методов воздействия производить крепление пласта-коллектора скважины, повышая тем самым надежность эксплуатации газовых скважин и используя при этом незначительный объем связующего состава на основе модифицированного тетраэтоксисилана и водного раствора катализатора (например, в качестве водного раствора катализатора можно использовать выпускаемый промышленностью реагент «Тесил 133», ТУ 2435-006-98942484-2008, который производится компанией ООО «НПФ Техносилоксаны», г. Москва). При этом данный способ снижает водонасыщенность призабойной зоны пласта и повышает продуктивность эксплуатационных газовых скважин при однократной обработке пласта-коллектора. Он также позволяет увеличить продолжительность работы скважины, при которой вынос песка отсутствует и, кроме того, позволяет сократить затраты на многократные обработки газовых скважин с целью снижения выноса песка из скважины.
В результате предлагаемый способ позволяет решить проблемы выноса песка, что способствует увеличению дебита газовых скважин, обеспечению качественного функционирования скважин и уменьшению затрат на текущий и капитальный ремонт.
Figure 00000001
Figure 00000002
Figure 00000003

Claims (1)

  1. Способ крепления продуктивного пласта-коллектора газовой скважины, заключающийся в том, что в скважину закачивают связующий состав, представляющий собой смесь реагентов, содержащую 60-80 мас.% модифицированного тетраэтоксисилана и 20-40 мас.% водного раствора кислотного катализатора, и продавливают его в пласт-коллектор газообразным агентом, выбранным из группы газов: азот, выхлопные газы двигателя внутреннего сгорания, углекислый газ, при этом газообразный агент подают в скважину при давлении, превышающем значение давления пласта-коллектора не менее чем на 1,0 МПа, после этого осуществляют выдержку скважины в технологическом отстое в течение по меньшей мере двух суток.
RU2016138905A 2016-10-03 2016-10-03 Способ крепления продуктивного пласта-коллектора газовой скважины RU2645233C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016138905A RU2645233C1 (ru) 2016-10-03 2016-10-03 Способ крепления продуктивного пласта-коллектора газовой скважины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016138905A RU2645233C1 (ru) 2016-10-03 2016-10-03 Способ крепления продуктивного пласта-коллектора газовой скважины

Publications (1)

Publication Number Publication Date
RU2645233C1 true RU2645233C1 (ru) 2018-02-19

Family

ID=61227106

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016138905A RU2645233C1 (ru) 2016-10-03 2016-10-03 Способ крепления продуктивного пласта-коллектора газовой скважины

Country Status (1)

Country Link
RU (1) RU2645233C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769942C1 (ru) * 2021-01-13 2022-04-11 Акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" (АО "СевКавНИПИгаз") Способ крепления призабойной зоны продуктивности пласта газовых скважин
RU2769942C9 (ru) * 2021-01-13 2022-06-07 Акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" (АО "СевКавНИПИгаз") Способ крепления призабойной зоны продуктивного пласта газовых скважин

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157306A (en) * 1976-08-30 1979-06-05 Texaco Inc. Tertiary oil recovery process utilizing a preflush
RU2251615C2 (ru) * 2003-03-26 2005-05-10 Открытое акционерное общество "УПНП и КРС" Способ изоляции притока вод в скважинах
RU2305765C1 (ru) * 2006-02-27 2007-09-10 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Способ крепления призабойной зоны пласта
RU2467156C2 (ru) * 2010-10-29 2012-11-20 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ крепления призабойной зоны скважины
RU2490295C1 (ru) * 2012-03-26 2013-08-20 Общество с ограниченной ответственностью "Петрохим" Состав для изоляции водопритока в нефтяных скважинах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157306A (en) * 1976-08-30 1979-06-05 Texaco Inc. Tertiary oil recovery process utilizing a preflush
RU2251615C2 (ru) * 2003-03-26 2005-05-10 Открытое акционерное общество "УПНП и КРС" Способ изоляции притока вод в скважинах
RU2305765C1 (ru) * 2006-02-27 2007-09-10 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Способ крепления призабойной зоны пласта
RU2467156C2 (ru) * 2010-10-29 2012-11-20 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ крепления призабойной зоны скважины
RU2490295C1 (ru) * 2012-03-26 2013-08-20 Общество с ограниченной ответственностью "Петрохим" Состав для изоляции водопритока в нефтяных скважинах

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769942C1 (ru) * 2021-01-13 2022-04-11 Акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" (АО "СевКавНИПИгаз") Способ крепления призабойной зоны продуктивности пласта газовых скважин
RU2769942C9 (ru) * 2021-01-13 2022-06-07 Акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" (АО "СевКавНИПИгаз") Способ крепления призабойной зоны продуктивного пласта газовых скважин
RU2814948C2 (ru) * 2022-08-17 2024-03-06 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ структурного армирования терригенного коллектора (варианты)

Similar Documents

Publication Publication Date Title
CN109632510B (zh) 一种预测水化损伤页岩强度的方法
CN106837406B (zh) 一种含瓦斯煤体多级增透方法
CN102305735B (zh) 中渗透砂岩模拟岩心及其制备方法
CN101230261A (zh) 一种油井增产新方法及其释氢活性试剂组份
US20180065891A1 (en) Carbon dioxide-resistant portland based cement composition
RU2645233C1 (ru) Способ крепления продуктивного пласта-коллектора газовой скважины
RU2468187C1 (ru) Основа отверждаемого тампонажного раствора
CN1803695A (zh) 油井用防止二氧化碳腐蚀的水泥体系
RU2456431C1 (ru) Способ изоляции водопритока
CN111303851B (zh) 一种自聚固结抗压高渗耐温防砂剂
RU2637259C2 (ru) Термогазохимический бинарный состав и способ применения для обработки призабойной и удаленной зон нефтегазоносного пласта
RU2529080C1 (ru) Селективный состав для ремонтно-изоляционных работ в нефтяных и газовых скважинах
CN105888604A (zh) 一种适用于低压气田老井重复改造近井筒地层永久性封堵的方法
RU2323325C2 (ru) Способ изоляции зоны поглощения пласта
RU2360099C1 (ru) Способ ограничения водопритока в скважине
RU2769942C1 (ru) Способ крепления призабойной зоны продуктивности пласта газовых скважин
RU2554656C1 (ru) Способ обработки призабойной зоны продуктивного пласта-коллектора газовой скважины
Zhou et al. Corrosion Behavior and Mechanism Analysis of Oilwell Cement Under CO2 and H2S Conditions
RU2483093C1 (ru) Состав для изоляции водопритока и поглощающих зон в скважине и способ его применения
RU2561426C1 (ru) Состав для создания скважинного фильтра
KR20200043182A (ko) 모르타르 및 콘크리트용 고농도 co₂양생장치
Shimokawara et al. Influence of carbonated water-rock interactions on enhanced oil recovery in carbonate reservoirs: experimental investigation and geochemical modeling
RU2582143C1 (ru) Способ ремонтно-изоляционных работ с использованием суспензий тонкодисперсных минеральных вяжущих
RU2681716C1 (ru) Тампонажный раствор для цементирования нефтяных и газовых скважин
RU2157880C1 (ru) Состав для изоляции водопритоков в скважине