RU2643891C1 - Винтовой компрессор - Google Patents

Винтовой компрессор Download PDF

Info

Publication number
RU2643891C1
RU2643891C1 RU2017120013A RU2017120013A RU2643891C1 RU 2643891 C1 RU2643891 C1 RU 2643891C1 RU 2017120013 A RU2017120013 A RU 2017120013A RU 2017120013 A RU2017120013 A RU 2017120013A RU 2643891 C1 RU2643891 C1 RU 2643891C1
Authority
RU
Russia
Prior art keywords
rotors
compressor
gas forces
radial
housing
Prior art date
Application number
RU2017120013A
Other languages
English (en)
Inventor
Юрий Александрович Паранин
Ольга Юрьевна Паранина
Original Assignee
Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" filed Critical Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа"
Priority to RU2017120013A priority Critical patent/RU2643891C1/ru
Application granted granted Critical
Publication of RU2643891C1 publication Critical patent/RU2643891C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Abstract

Изобретение относится к области компрессоростроения, а именно к винтовым компрессорам малой производительности. Винтовой компрессор содержит корпус 1 с рабочей камерой, установленные в корпусе 1 ведущий ротор 2 и ведомый ротор, находящиеся в зацеплении с возможностью вращения на опорных подшипниках качения 4, 5 и устройствах компенсации радиальных газовых сил, элементы компенсации осевых газовых сил, состоящие по меньшей мере из двух радиально-упорных подшипников качения 6, 7 с осевым предварительным натягом, установленных на каждый ротор и разгрузочного поршня 8, установленного по меньшей мере на один из роторов. Каждое устройство компенсации выполнено в виде сегментной нагрузочной колодки 9, 10, работающей по принципу подшипника скольжения жидкостного трения. Каждая колодка 9, 10 упирается в одну из цилиндрических шеек роторов и установлена в корпусе 1 с образованием нагрузочной полости, предназначенной для сообщения с источником давления со стороны, противоположной действию радиальных газовых сил. Изобретение направлено на повышение надежности и долговечности опорных подшипников, а также на повышение КПД компрессора. 3 ил.

Description

Изобретение относится к области компрессоростроения, а именно к винтовым компрессорам малой производительности, работающим на больших перепадах давления.
Известен винтовой компрессор, содержащий корпус с рабочей камерой и полостями для всасывания и нагнетания газа, ведущий и ведомый роторы, находящиеся в зацеплении и вращающиеся на опорных подшипниках скольжения, элементы компенсации осевых сил, состоящие из радиально-упорных подшипников качения и вращающихся с небольшим зазором в корпусе компрессора разгрузочных поршней, расположенных между опорными подшипниками скольжения и радиально-упорными подшипниками качения. Нагрузочные полости перед разгрузочными поршнями сообщены с источником давления и расположены противоположно действию осевых газовых сил [Двухроторные винтовые и прямозубые компрессоры. Теория, расчет и проектирование. И.Г. Хисамеев, В.А. Максимов. Издательство «ФЭН», Казань, 2000 г. - С. 21, 22].
Недостатком известного технического решения является небольшая сила осевой разгрузки в результате действия давления на небольшую кольцевую поверхность разгрузочных поршней, ограниченной малыми диаметрами шеек роторов под опорными подшипниками скольжения.
Наиболее близким к предложенному является винтовой компрессор, содержащий корпус с рабочей камерой и полостями для всасывания и нагнетания газа, ведущий и ведомый роторы, находящиеся в зацеплении и вращающиеся на опорных подшипниках скольжения, элементы компенсации осевых сил, состоящие из радиально-упорных подшипников качения и вращающихся с небольшим зазором в корпусе компрессора разгрузочных поршней, расположенных на консолях роторов в нагрузочных полостях с обеспечением действия давления на полную их круговую рабочую поверхность противоположно действию осевых газовых сил [RU 2446314, опубл. 27.03.2012].
Недостатком данного технического решения, применительно к винтовым компрессорам малой производительности, работающим на больших перепадах давления, также является низкая несущая способность опорных подшипников скольжения, связанная с малыми диаметрами шеек роторов под опорными подшипниками скольжения и низкой скоростью вращения роторов. Это обуславливает возможность прогиба роторов от действия радиальных газовых сил. Кроме этого подшипники скольжения имеют высокие зазоры, что неприемлемо для обеспечения высокого КПД винтовых компрессоров малой производительности. Для данного вида компрессоров необходимо обеспечить небольшие профильные зазоры, которые должны оставаться стабильными на протяжении всей работы компрессора.
Задачей, на решение которой направлено заявленное изобретение, является повышение КПД винтового компрессора малой производительности, работающего на больших перепадах давления, а также повышение надежности и долговечности опорных подшипников роторов компрессора, за счет повышения эффективности компенсации радиальных газовых сил и обеспечения стабильности требуемых профильных зазоров роторов в течение всего срока службы компрессора.
Технический результат достигается тем, что винтовой компрессор, содержащий корпус с рабочей камерой и полостями для всасывания и нагнетания газа, установленные в корпусе ведущий и ведомый роторы, находящиеся в зацеплении с возможностью вращения на опорных подшипниках, элементы компенсации осевых газовых сил, состоящие, по меньшей мере, из установленных на каждый ротор двух радиально-упорных подшипников качения с осевым предварительным натягом и разгрузочного поршня, установленного по меньшей мере на один из роторов, дополнительно снабжен устройством компенсации радиальных газовых сил, выполненным в виде сегментных нагрузочных колодок, установленных на каждом из роторов на обеих его цилиндрических шейках с возможностью работы по принципу подшипника скольжения жидкостного трения, причем каждая из колодок установлена в корпусе с образованием нагрузочной полости, сообщенной со стороны, противоположной действию радиальных газовых сил, с источником давления, при этом в качестве опорных подшипников применены радиальные подшипники качения.
Применение опорных подшипников качения обеспечивает минимальные зазоры роторов при работе компрессора. Кроме того, в предлагаемой конструкции радиальные подшипники качения осуществляют совместную работу с устройствами компенсации радиальных газовых сил.
Наличие устройства компенсации радиальных газовых сил, выполненного в виде сегментных нагрузочных колодок, установленных на каждом из роторов на обоих его цилиндрических шейках с возможностью работы по принципу подшипника скольжения жидкостного трения, причем каждая из колодок установлена в корпусе с образованием нагрузочной полости, сообщенной со стороны, противоположной действию радиальных газовых сил, с источником давления позволяет конструктивно просто «разгрузить» роторы в радиальном направлении в соответствии с величинами их радиальных сил, в результате чего уменьшить прогибы роторов от действия данных сил в результате сближения опор, а также обеспечить стабильность профильных зазоров роторов в течение всего срока службы компрессора.
Сущность изобретения поясняется чертежами, где:
- на фиг. 1 представлено продольное сечение винтового компрессора;
- на фиг. 2 - поперечное сечение А-А на фиг. 1 (стрелка Г показывает место подвода масла от источника давления для обеспечения гидродинамического трения в нагрузочных колодках 9 (10);
- на фиг. 3 - вид Б фиг. 2 (вид на нагрузочную полость Д).
Винтовой компрессор содержит корпус 1 с рабочей камерой и полостями для всасывания и нагнетания газа, установленные в корпусе 1 ведущий 2 и ведомый 3 роторы, находящиеся в зацеплении с возможностью вращения на опорных подшипниках 4, 5, являющихся подшипниками качения, и устройствах компенсации радиальных газовых сил, элементы компенсации осевых газовых сил, состоящие, по меньшей мере, из двух радиально-упорных подшипников 6, 7 качения с предварительным осевым натягом, установленных на каждый ротор 2, 3, и разгрузочного поршня 8, установленного, по меньшей мере, на один из роторов 2, 3. Нагрузочные полости разгрузочного поршня 8 сообщены с источником давления (масло, находящееся под давлением нагнетания РH). Устройство компенсации радиальных газовых сил выполнено в виде сегментных нагрузочных колодок 9, 10, установленных на цилиндрических шейках ведущего и ведомого роторов 2, 3. Каждая из колодок 9, 10 упирается в соответствующую цилиндрическую шейку одного из роторов 2, 3 (фиг. 2), работает по принципу подшипника скольжения жидкостного трения и установлена в корпусе 1 с образованием нагрузочной полости Д (см. фиг. 3) площадью F1(F2), ограниченной по периметру уплотнительным элементом 11, вектор нагрузки которой R1(R2) направлен против действия радиальных газовых сил Q1(Q2). Нагрузочные полости Д сообщены с источником давления (газ или масло, находящиеся под давлением нагнетания РH). Величина площади F1(F2) нагрузочной полости Д рассчитывается исходя из заданной долговечности опорного подшипника качения.
Сегментная нагрузочная колодка 9, 10 изготавливается из материала с хорошей теплопроводностью, на рабочую сторону колодки наносится слой баббита, на поверхность баббитового слоя, с целью исключения схватывания шейки ротора с баббитовым слоем при малых зазорах, выполнены шабрением канавки Релея. Колодки монтируется в корпус компрессора 1, с небольшим диаметральным зазором, исключающий заклинивание колодки, при помощи технологических болтов 12, 13 (фиг. 1). После установки роторов болты 12, 13 демонтируются, отверстия под болты используются для сообщения с источником давления полостей Д.
Требуемые профильные зазоры роторов при работе компрессора обеспечиваются применением опорных подшипников качения.
Работа винтового компрессора осуществляется следующим образом.
Газ через всасывающий патрубок корпуса компрессора 1 поступает в рабочую камеру, образованную винтовыми поверхностями сопряженных впадин роторов 2, 3 и поверхностями расточки корпуса, и сжимается за счет уменьшения ее объема. В момент, определенный необходимыми параметрами рабочего процесса, газ через окно нагнетания вытесняется из компрессора.
В момент пуска компрессора возникают осевые силы, направленные против осевых газовых сил P1(P2), которые воспринимаются подшипниками 7. Далее, по мере набора давления нагнетания РH осевая нагрузка на подшипники 7 исчезает, появляются осевые газовые силы P1(P2) и радиальные газовые силы Q1(Q2) Осевые газовые силы воспринимаются радиально-упорными подшипниками качения 6 и разгрузочными поршнями 8, радиальные газовые силы воспринимаются подшипниками 4, 5 и сегментными нагрузочными колодками 9, 10. При этом несущая способность нагрузочных колодок со стороны шеек роторов создается за счет вращения роторов и гидродинамического давления, развивающегося в смазочном слое, а со стороны нагрузочных полостей, одновременно с набором давления РH, возникают радиальные нагрузочные статические силы R1=PH⋅F1(R2=PH⋅F2), которые разгружают опорные подшипники 4, 5. При изменении режима работы компрессора (изменении РH) пропорционально изменяются осевые и радиальные газовые силы Р12) и Q1(Q2) и соответственно изменяются осевые нагрузочные силы от разгрузочного поршня и радиальные нагрузочные силы R1(R2). В процессе эксплуатации компрессора при износе рабочих элементов опорных подшипников 4, 5 качения сегментные нагрузочные колодки 9, 10 будут обеспечивать стабильность профильных зазоров роторов компрессора. Оптимальный подбор типоразмеров опорных подшипников качения 4, 5, площади F1(F2) нагрузочных полостей Д сегментных колодок 9, 10, а также давления масла (газа) в нагрузочных полостях Д сегментных колодок 9, 10 позволяет обеспечить надежную «разгрузку» обоих роторов в радиальном направлении, тем самым уменьшая прогибы роторов в результате сближения опор, а также обеспечить стабильность профильных зазоров роторов в течение всего срока службы компрессора.
Таким образом, предлагаемое техническое решение позволяет повысить надежность и долговечность опорных подшипников роторов винтового компрессора малой производительности, работающего на больших перепадах давления, а также повысить КПД компрессора.

Claims (1)

  1. Винтовой компрессор, содержащий корпус с рабочей камерой и полостями для всасывания и нагнетания газа, установленные в корпусе ведущий и ведомый роторы, находящиеся в зацеплении с возможностью вращения на опорных подшипниках качения, элементы компенсации осевых газовых сил, состоящие, по меньшей мере, из установленных на каждый ротор двух радиально-упорных подшипников качения с осевым предварительным натягом и разгрузочного поршня, установленного по меньшей мере на один из роторов, отличающийся тем, что он дополнительно снабжен устройством компенсации радиальных газовых сил, выполненным в виде сегментных нагрузочных колодок, установленных на каждом из роторов на обеих его цилиндрических шейках с возможностью работы по принципу подшипника скольжения жидкостного трения, причем каждая из колодок установлена в корпусе с образованием нагрузочной полости, сообщенной со стороны, противоположной действию радиальных газовых сил, с источником давления, при этом в качестве опорных подшипников применены радиальные подшипники качения.
RU2017120013A 2017-06-07 2017-06-07 Винтовой компрессор RU2643891C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017120013A RU2643891C1 (ru) 2017-06-07 2017-06-07 Винтовой компрессор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017120013A RU2643891C1 (ru) 2017-06-07 2017-06-07 Винтовой компрессор

Publications (1)

Publication Number Publication Date
RU2643891C1 true RU2643891C1 (ru) 2018-02-06

Family

ID=61173782

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017120013A RU2643891C1 (ru) 2017-06-07 2017-06-07 Винтовой компрессор

Country Status (1)

Country Link
RU (1) RU2643891C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702812C1 (ru) * 2019-05-30 2019-10-11 Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Подшипниковый узел ротора винтового компрессора
RU213633U1 (ru) * 2022-04-12 2022-09-20 Леонид Григорьевич Кузнецов Однороторный винтовой компрессор

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227755A (en) * 1977-10-24 1980-10-14 Stal Refrigeration Ab Bearing arrangement for shaft of rotary compressor
SU1041752A1 (ru) * 1981-04-17 1983-09-15 Предприятие П/Я А-3884 Винтовой компрессор
US5411388A (en) * 1991-11-13 1995-05-02 Svenska Rotor Maskiner Ab Rotary screw machine with thrust balanced bearings
RU2076246C1 (ru) * 1994-02-18 1997-03-27 Товарищество с ограниченной ответственностью "ЭКМОТО" Пароводяной детандер
RU2446314C2 (ru) * 2009-08-05 2012-03-27 Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Винтовой компрессор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227755A (en) * 1977-10-24 1980-10-14 Stal Refrigeration Ab Bearing arrangement for shaft of rotary compressor
SU1041752A1 (ru) * 1981-04-17 1983-09-15 Предприятие П/Я А-3884 Винтовой компрессор
US5411388A (en) * 1991-11-13 1995-05-02 Svenska Rotor Maskiner Ab Rotary screw machine with thrust balanced bearings
RU2076246C1 (ru) * 1994-02-18 1997-03-27 Товарищество с ограниченной ответственностью "ЭКМОТО" Пароводяной детандер
RU2446314C2 (ru) * 2009-08-05 2012-03-27 Закрытое акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Винтовой компрессор

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702812C1 (ru) * 2019-05-30 2019-10-11 Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Подшипниковый узел ротора винтового компрессора
RU213633U1 (ru) * 2022-04-12 2022-09-20 Леонид Григорьевич Кузнецов Однороторный винтовой компрессор

Similar Documents

Publication Publication Date Title
JP6373372B2 (ja) ラジアル軸シール
GB2477777A (en) Lubrication of screw machines
EP3091231B1 (en) Open type compressor
WO2012144067A1 (ja) スクロール圧縮機
RU2465463C2 (ru) Винтовой компрессор с впрыском текучей среды
CN101418796A (zh) 螺杆流体机械
CN103410732A (zh) 旋转式平动活塞压缩机
RU2643891C1 (ru) Винтовой компрессор
CN109690087B (zh) 具有推力平衡负载的单螺杆式压缩机及相关方法
US4743180A (en) Reversible gear-type pump
CN102959259B (zh) 静液压机,尤其是轴向活塞机
US4989997A (en) Radial load reducing device, and sliding bearing and screw compressor using the device
RU2722222C1 (ru) Реверсивный упорный подшипник скольжения (варианты)
RU2214513C1 (ru) Героторная машина
WO2017150603A1 (ja) 流体機械
CN101936434B (zh) 旋转接头
RU2643572C1 (ru) Винтовой компрессор
CN109779906B (zh) 一种具有密封作用的双螺杆压缩机径向轴承组合结构
ITMI20140164U1 (it) Giunto rotante per fluido ad alta pressione
RU2298117C1 (ru) Гидростатический подшипник
RU2450164C1 (ru) Винтовой компрессор
EP3449129B1 (en) Modular thrust-compensating rotor assembly
GB2438702A (en) Efficiency maintenance apparatus for a mechanical assembly
US10634152B2 (en) Multi-bearing design for shaft stabilization
RU76403U1 (ru) Шестеренный насос