RU2643701C1 - Измеритель напряженности электростатического поля - Google Patents

Измеритель напряженности электростатического поля Download PDF

Info

Publication number
RU2643701C1
RU2643701C1 RU2016143644A RU2016143644A RU2643701C1 RU 2643701 C1 RU2643701 C1 RU 2643701C1 RU 2016143644 A RU2016143644 A RU 2016143644A RU 2016143644 A RU2016143644 A RU 2016143644A RU 2643701 C1 RU2643701 C1 RU 2643701C1
Authority
RU
Russia
Prior art keywords
amplifier
electrode
vibrating electrode
vibrating
frequency
Prior art date
Application number
RU2016143644A
Other languages
English (en)
Inventor
Анатолий Николаевич Филиппов
Николай Моисеевич Пушкин
Кирилл Владимирович Лакшин
Original Assignee
Акционерное общество "Научно-производственное объединение измерительной техники"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение измерительной техники" filed Critical Акционерное общество "Научно-производственное объединение измерительной техники"
Priority to RU2016143644A priority Critical patent/RU2643701C1/ru
Application granted granted Critical
Publication of RU2643701C1 publication Critical patent/RU2643701C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R5/00Instruments for converting a single current or a single voltage into a mechanical displacement
    • G01R5/28Electrostatic instruments

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для измерения напряженности электростатического поля при геофизических исследованиях атмосферы и космического пространства. Техническим результатом является повышение надежности работы измерителя и стабилизация точности измерений при воздействии дестабилизирующих факторов и при разбросе резонансной механической частоты вибрирующего электрода в процессе серийного производства. Измеритель напряженности электрического поля вибрационного типа содержит чувствительный электрод, подключенный через измерительный усилитель к измерительному входу фазового детектора, вибрационный электромагнитный возбудитель резонансного типа, включающий в себя катушку возбуждения, вибрирующий электрод из ферромагнитного материала, закрепленный на упругой подвеске, и установленный с возможностью изменения электростатической связи чувствительного электрода с измеряемым полем, генератор, состоящий из усилителя, выпрямителя и регулируемого сопротивления, подключенного к инвертирующему входу усилителя. Дополнительно введены датчик скорости колебательного движения, дополнительный усилитель, фильтр нижних частот, источник тока, источник опорного напряжения и компаратор. Частота среза фильтра нижних частот установлена равной (1,1-1,8) Fм, где Fм - частота механического резонанса вибрирующего электрода. Датчик скорости колебательного движения вибрирующего электрода выполнен в виде дополнительной катушки индуктивности, установленной соосно с катушкой возбуждения на общем каркасе в разных секциях, которые разделены короткозамкнутым металлическим немагнитным экраном, и постоянного магнита, установленного в зоне колебаний вибрирующего электрода у дополнительной катушки индуктивности. 1 з.п. ф-лы. 4 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для измерения напряженности электростатического поля при геофизических исследованиях атмосферы и космического пространства.
Известен вибрационный измеритель напряженности электрического поля двухблочной конструкции, состоящий из датчика и преобразователя. Датчик измерителя содержит чувствительный электрод, подключенный к предусилителю, и электромагнитный вибрационный возбудитель резонансного типа, состоящий из катушки возбуждения и ферромагнитного стержня, закрепленного на упругой подвеске и механически связанного с чувствительным электродом. Чувствительный электрод электростатически связан с измеряемым электрическим полем через отверстие в корпусе датчика. Внутри корпуса преобразователя установлены автогенератор, усилитель и фазовый детектор. Датчик и преобразователь измерителя соединены кабелем для того, чтобы обеспечить подключение автогенератора к катушке возбуждения и выход предусилителя с входом усилителя, который подключен к измерительному входу фазового детектора. Управляющий вход фазового детектора подключен к автогенератору (патент US 3611127 A, МПК G01R 31/02, 1971 г.). Электрическая частота автогенератора устанавливается равной механической частоте вибрации ферромагнитного стержня. В результате чувствительный электрод, механически связанный с вибрирующим электродом, также начинает вибрировать, периодически удаляясь и приближаясь к отверстию в металлическом корпусе датчика. Это приводит к изменению степени электростатической связи чувствительного электрода с измеряемым полем Е0 и, как известно, к изменению величины индуцированного на нем заряда q, которое равно:
Figure 00000001
где q0 - величина индуцированного заряда, когда чувствительный электрод неподвижен,
Δq - приращение величины индуцированного заряда,
Е0 - напряженность электрического поля в зоне чувствительного электрода, когда он неподвижен,
ΔЕ - изменение напряженности электрического поля у чувствительного электрода,
S0 - площадь чувствительного электрода,
εε0 - абсолютная диэлектрическая проницаемость среды.
Так как для вибрационных измерителей электрического поля S0 и εε0 являются постоянными величинами, а изменение приращения напряженности электрического поля у чувствительного электрода ΔЕ происходит по синусоидальному закону, то величина тока, протекающая по входному сопротивлению предусилителя датчика, будет равна:
Figure 00000002
где ΔЕ0 - амплитуда изменения приращения напряженности электрического поля Е0 у чувствительного электрода,
ω=2π⋅Fм, Fм - частота колебаний чувствительного электрода.
Ток i преобразуется предусилителем, усилителем и фазовым детектором в постоянное напряжение, модуль которого пропорционален напряженности измеряемого электрического поля Е0, а знак - соответствует полярности электрического поля Е0.
Измерители напряженности электрического поля вибрационного типа, работающие на механическом резонансе, имеют малые габариты и вес и большой ресурс работы и поэтому получили широкое распространение при исследованиях атмосферы и космического пространства и самих летательных аппаратов, где упомянутые характеристики являются решающими. Кроме того, реализация данного измерителя в виде двух блоков - датчика и преобразователя, соединенных кабелем, - позволяет значительно расширить диапазон его применения и, в частности, позволяет устанавливать датчик, являющийся собственно измерительной частью измерителя, в труднодоступных местах летательных аппаратов. Поэтому в настоящее время измерители электрического поля в виде двухблочной конструкции практически вытеснили измерители электрического поля, реализованные в одноблочной конструкции.
Необходимо отметить, что в измерителях напряженности электрического поля вибрационного типа амплитуда приращения напряженности электрического поля в зоне чувствительного электрода значительно меньше напряженности измеряемого электрического поля Е0, и поэтому:
Figure 00000003
где Х0 - амплитуда колебаний вибрирующего электрода датчика, k - коэффициент пропорциональности между приращением электрического поля ΔЕ0 и амплитуды колебаний вибрирующего электрода х0, выражение (2) для наведенного тока i можно записать в виде:
Figure 00000004
Из выражения (4) видно, что для датчиков, имеющих различные механические резонансные частоты вибрирующих электродов Fм и амплитуды колебаний Х0, величина тока i, а следовательно, и чувствительности датчиков будут различными. Причем чем больше разброс частот Fм и амплитуд колебаний Х0, тем больше разброс чувствительностей этих датчиков.
В связи с тем, что электромагнитный возбудитель данного измерителя вибрирует на резонансной механической частоте Fм, требования к точности и стабильности частоты переменного напряжения Fэ, вырабатываемого автогенератором, очень высоки. Это объясняется тем, что вибрирующий электрод электромагнитного возбудителя является резонансной механической системой, имеющей высокую добротность Q, равную 100-200. А как известно, добротность Q связана с полосой пропускания колебательной системы соотношением:
Figure 00000005
где Fм - резонансная частота системы,
ΔFм - полоса пропускания системы на уровне 0,7.
С учетом того, что электромагнитные возбудители работают на частотах от 100 до 500 Гц, из соотношения (5) вытекает, что полоса пропускания ΔFм не превышает (1-2) Гц. Поэтому отклонение частоты переменного напряжения Fэ от резонансной механической частота возбудителя Fм не должно быть более 0,1%, так как в противном случае происходит сначала уменьшение амплитуды механических колебаний, а затем и прекращение вибрации. А так как уменьшение амплитуды механических колебаний вибрирующего электрода приводит к уменьшению амплитуды изменения приращения электрического поля ΔЕ0, то из соотношения (2) видно, что чувствительность измерителя уменьшается, и при прекращении вибрации возбудителя измеритель становится неработоспособным. Кроме того, исполнение измерителя в виде двух отдельных блоков - датчика и преобразователя - накладывает значительные трудности на его серийное изготовление. Это объясняется тем, что электромеханические возбудители отдельных экземпляров датчиков имеют значительный разброс механических резонансных частот, доходящий до 30%, и настройка электрической частоты автогенератора Fэ, находящегося в блоке преобразования, на определенное значение в процессе изготовления неэффективна, так как заранее неизвестно, с каким именно датчиком будет использоваться данный преобразователь. Это приводит к тому, что далеко не каждый из изготовленных датчиков сможет возбудиться, а, следовательно, и быть работоспособным с конкретным преобразователем. Аналогичные устройства приведены так же в патенте RU №2414717 от 20.03.11 г. и авторском свидетельстве SU №781717 от 23.11.80 г.
Наиболее близким по технической сущности и положительному эффекту, достигаемому при использовании, к заявляемому устройству, является измеритель напряженности электрического поля вибрационного типа - патент US 3851247 МПК G01R 29/12, G01R 5/28, 1974 г. Он состоит из двух блоков - датчика и преобразователя. Датчик измерителя содержит чувствительный электрод, подключенный к предусилителю, и электромагнитный возбудитель резонансного типа, состоящий из катушки возбуждения и ферромагнитного стержня, закрепленного на упругой подвеске и механически связанного с чувствительным электродом. Чувствительный электрод электростатически связан с измеряемым электрическим полем через отверстие в металлическом корпусе датчика.
Внутри корпуса преобразователя установлены автогенератор, усилитель, фазовый детектор, подключенный к регистратору. Автогенератор выполнен по схеме резонансного LC-генератора с оптронной цепью стабилизации амплитуды выходного напряжения, питающего катушку возбуждения вибрационного возбудителя, которая одновременно используется как индуктивность LC-генератора. Благодаря этому возникают наиболее благоприятные условия самовозбуждения автогенератора на резонансной механической частоте Fм вибрирующего электрода, что обеспечивает его надежное самовозбуждение при относительном разбросе резонансных механической Fм и электрической Fэ частот до 5%. При возбуждении вибрации ферромагнитного стержня начинает вибрировать и механически связанный с ним чувствительный электрод. При этом чувствительный электрод периодически то удаляется, то приближается к отверстию в металлическом корпусе датчика, что приводит к изменению степени электростатической связи чувствительного электрода с измеряемым электрическим полем и возникновению на нем переменного заряда, который, стекая по входному сопротивлению предусилителя, создает на нем переменное напряжение. Это переменное напряжение преобразуется предусилителем, усилителем и фазовым детектором в постоянное напряжение, модуль которого пропорционален напряженности измеряемого электрического поля Е0, а знак соответствует его полярности.
Оптронная цепь отрицательной обратной связи в автогенераторе стабилизирует амплитуду переменного тока в катушке возбуждения, благодаря чему стабилизируется амплитуда колебаний вибрирующего электрода не только при воздействии температуры, но и при замене одного датчика другими, имеющими различные резонансные механические частоты, если, конечно, этот разброс частот не превышает 5%. В противном случае оптимальные условия для самовозбуждения резонансного LC-генератора на механической резонансной частоте датчика нарушаются и измеритель становится неработоспособным. Это объясняется тем, что коэффициент передачи цепи положительной обратной связи
Figure 00000006
автогенератора данного измерителя мало зависит от вносимого сопротивления Zвн, которое обусловлено вибрацией подвижного электрода (A.M. Туричин. Электрические измерения неэлектрических величин). В самом деле, из эквивалентной схемы этого генератора, показанной на фиг. 4, видно, что коэффициент цепи положительной обратной связи равен:
Figure 00000007
где
Figure 00000008
- комплексное напряжение на входе цепи положительной обратной связи, образованной резистором R1, комплексным сопротивлением электрического контура автогенератора Rэл и комплексным вносимым сопротивлением Zвн, обусловленным вибрацией подвижного электрода ПЭ,
Figure 00000009
- комплексное напряжение на выходе цепи положительной обратной связи, являющееся одновременно входным напряжением
Figure 00000010
усилителя ДА1.
Максимальное значение
Figure 00000006
имеет тогда, когда Zвн не равно нулю, то есть когда происходит вибрация подвижного электрода ПЭ. Так как без электрических колебаний автогенератора не происходит механической вибрации подвижного электрода ПЭ, то, очевидно, необходимо, чтобы электрическая Fэл и механическая Fм частоты были равны. Если Fэл не равна Fм, то механическая вибрация не возникает, при этом Zвн равно нулю, и коэффициент передачи цепи положительной обратной связи уменьшается до значения:
Figure 00000011
Учтя, что в реальных конструкциях Zэл≈Zвн≈R1, получим отношение минимального
Figure 00000012
и максимального
Figure 00000013
значений коэффициентов передачи цепи положительной обратной связи равными:
Figure 00000014
Как видно из (8), различие между
Figure 00000015
и
Figure 00000016
составляет всего 25%, поэтому если даже вибрация подвижного электрода ПЭ отсутствует, автогенератор будет вырабатывать электрические колебания с частотой Fэл, так как оптронная цепь регулирования, выполненная на светодиоде DV1, диоде DV2, фототранзисторе R2 и резисторах R3, R4, автоматически увеличит коэффициент усиления усилителя ДА1 до значения
Figure 00000017
, обеспечив тем самым необходимые условия для самовозбуждения автогенератора на частоте Fэл. Очевидно, что отсутствие механических колебаний Fм вибрирующего электрода ПЭ при наличии электрических колебаний автогенератора делает данный измеритель неработоспособным.
Экспериментально было установлено, что различие частот Fэл и Fм более чем на 4% приводит к срыву колебаний вибрирующего электрода ПЭ, хотя его автогенератор продолжает вырабатывать электрические колебания с частотой Fэл. Кроме того, из выражения (5), полученного выше, видно, что чувствительности датчиков, имеющих различные механические частоты Fм, будут неодинаковыми, что также является существенным недостатком данного измерителя.
Технической проблемой, решение которой обеспечивается при использовании изобретения, является повышение надежности работы измерителя и стабилизация точности измерений при воздействии дестабилизирующих факторов и при разбросе резонансной механической частоты вибрирующего электрода в процессе серийного производства посредством стабилизации линейной скорости колебательного движения вибрирующего электрода измерителя.
Технический результат достигается тем, что в измеритель напряженности электрического поля вибрационного типа, содержащий чувствительный электрод, подключенный через измерительный усилитель к измерительному входу фазового детектора, вибрационный электромагнитный возбудитель резонансного типа, включающий в себя катушку возбуждения, вибрирующий электрод из ферромагнитного материала, закрепленный на упругой подвеске и установленный с возможностью изменения электростатической связи чувствительного электрода с измеряемым полем, генератор, состоящий из усилителя, выпрямителя и регулируемого сопротивления, подключенного к инвертирующему входу усилителя, введены датчик скорости колебательного движения, дополнительный усилитель, фильтр нижних частот, источник тока, источник опорного напряжения и компаратор, выход датчика скорости колебательного движения подключен к неинвертирующему входу усилителя, соединенного с входом фильтра нижних частот, частота среза которого установлена равной (1,1-1,8) Fм, где Fм - частота механического резонанса вибрирующего электрода, выход фильтра нижних частот через источник тока подключен к катушке возбуждения, кроме того, выход датчика скорости колебательного движения через компаратор подключен к управляющему входу фазового детектора, а через выпрямитель - к одному из входов дополнительного усилителя, другой вход которого подключен к источнику опорного напряжения, выход дополнительного усилителя соединен с управляющим входом регулируемого сопротивления, причем датчик скорости колебательного движения вибрирующего электрода выполнен в виде дополнительной катушки индуктивности, установленной соосно с катушкой возбуждения на общем каркасе в разных секциях, разделенных короткозамкнутым металлическим немагнитным экраном, и постоянного магнита, установленного в зоне колебаний вибрирующего электрода у дополнительной катушки индуктивности.
Функциональная схема предлагаемого устройства приведена на фиг. 1. На фиг. 2, 4 изображены эквивалентные схемы генераторов и электромагнитных возбудителей соответственно заявленного измерителя и прототипа. На фиг. 3 приведена конструкция электромагнитного возбудителя, датчика линейной скорости вибрирующего электрода и электрическая схема заявленного измерителя.
Измеритель напряженности электрического поля вибрационного типа (фиг. 1) содержит чувствительный электрод 1, подключенный через измерительный усилитель 2 к измерительному входу фазового детектора 3, вибрационный электромагнитный возбудитель резонансного типа 4 и генератор 5. Вибрационный возбудитель 4 состоит из вибрирующего электрода 6, выполненного из ферромагнитного материала и закрепленного на упругой подвеске 7, и катушки возбуждения 8. Кроме того, измеритель содержит датчик линейной скорости колебательного движения 9, установленный в зоне вибрации вибрирующего электрода 6. Генератор 5 включает в себя усилитель 10, фильтр низких частот 11, дополнительный усилитель 12, выпрямитель 13, регулируемое сопротивление 14, источник тока 15, источник опорного напряжения 16 и компаратор 17. Выход датчика скорости колебательного движения 9 подключен к неинвертирующему входу усилителя 10, к выпрямителю 13 и к компаратору 17. Выход выпрямителя 13 подключен к одному из входов дополнительного усилителя 12, другой вход которого подключен к источнику опорного напряжения 16. Выход дополнительного усилителя 12 через источник тока 15 подключен к катушке возбуждения 8. Выход компаратора 17 подключен к управляющему входу фазового детектора 3. Частота среза фильтра нижних частот 11 установлена равной (1,1-1,8) Fм, где Fм - частота механического резонанса вибрирующего электрода 6, которая является верхней в диапазоне резонансных частот вибрирующих электродов серийно изготавливаемых датчиков.
Измеритель состоит из двух блоков - датчика и преобразователя. В корпусе датчика установлены чувствительный электрод 1, электромагнитный возбудитель 4 и датчик линейной скорости 9. Внутри корпуса преобразователя установлены усилитель 2, фазовый детектор 3 и генератор 5.
Измеритель напряженности электрического поля вибрационного типа работает следующим образом.
При помещении датчика измерителя в исследуемое электрическое поле, имеющее напряженность Е0, на его чувствительный электрод 1 наводится переменный электрический заряд q, обусловленный колебаниями вибрирующего электрода 6. Переменный заряд q, протекая по входному сопротивлению измерительного усилителя 2, создает ток i, величина которого соответствует выражениям (2) и (4). Этот переменный ток i преобразуется усилителем 2 и фазовым детектором 3 в постоянное напряжение, модуль которого пропорционален напряженности измеряемого электрического поля Ео, а знак - полярности электрического поля.
В режиме, когда процесс колебаний вибрирующего электрода 6 уже установился, на выходе датчика линейной скорости 9 вырабатывается переменное напряжение, амплитуда которого равна выходному напряжению источника опорного напряжения 16. Равенство напряжений на выходах источника опорного напряжения 16 и датчика скорости 9 обеспечивается цепью автоматической регулировки усиления, охватывающей усилитель 10. Она образована датчиком линейной скорости 9, выпрямителем 13, дополнительным усилителем 12 и регулируемым сопротивлением 14. При воздействии дестабилизирующих факторов, приводящих к изменению амплитуды колебаний Х0 вибрирующего электрода 6, а, следовательно, и его линейной скорости V, которая равна:
Figure 00000018
напряжение на выходе датчика скорости 9 изменяется. Это приводит к соответствующему изменению напряжения на выходе выпрямителя 13 и увеличению разностного сигнала на выходах дополнительного усилителя 12. Этот разностный сигнал, усиленный дополнительным усилителем 12, управляет величиной регулируемого сопротивления 14, что вызывает пропорциональное изменение коэффициента усиления усилителя 10, а, следовательно, и величины тока, вырабатываемого источником тока 15, который питает катушку возбуждения 8. Так как механическая сила, приводящая вибрирующий электрод 6 в движение, изменяется прямо пропорционально силе тока, протекающего по катушке возбуждения 8, то амплитуда колебаний последнего изменяется в сторону, противоположную воздействующим факторам до тех пор, пока амплитуда напряжения на выходе датчика скорости 9 не установится равной величине напряжения источника опорного напряжения 16. Аналогично при замене одного датчика другим, имеющим резонансную частоту Fм, отличную от предыдущего датчика, например, превышающую ее на 30%, за счет цепи автоматической регулировки усиления происходит уменьшение амплитуды колебаний Х0 вибрирующего электрода 6 на 30%, однако согласно выражению (6) линейная скорость V вибрирующего электрода 6 при этом остается постоянной, и поэтому в соответствии с формулой (5) величина тока i, протекающего по входному сопротивлению измерительного усилителя 2, не изменяется.
Коэффициент передачи цепи положительной обратной связи электрического генератора данного измерителя (фиг. 2) равен:
Figure 00000019
где -
Figure 00000020
- комплексная амплитуда напряжения на выходе датчика линейной скорости 9,
Figure 00000021
- комплексная амплитуда тока на выходе источника тока 15, питающего катушку возбуждения 8,
Zвн - вносимое сопротивление, обусловленное вибрацией подвижного электрода 6,
Z8 - полное сопротивление катушки возбуждения 8, равное сумме активного R8 и индуктивного Х8 сопротивлений.
Учтя, что
Figure 00000022
где а - коэффициент пропорциональности, а ток возбуждения
Figure 00000023
равен (фиг. 2):
Figure 00000024
где В0 - магнитная индукция в зазоре магнитной системы электромагнитного возбудителя,
s - геометрические параметры обмотки возбуждения 8,
и подставив выражения (11) и (12) в (10), получим:
Figure 00000025
Как видно из уравнения (13), при неподвижном вибрирующем электроде 6, когда Zвн равно нулю, коэффициент передачи
Figure 00000026
также равен нулю. То есть возникновение электрических колебаний генератора происходит только при подвижном вибрирующем электроде 6, причем лишь на собственной резонансной механической частоте конкретного вибрирующего электрода для всех серийно изготавливаемых датчиков измерения. Это объясняется тем, что в генераторе имеется лишь одна колебательная система - механическая, которая характеризуется на эквивалентной схеме вносимым сопротивлением Zвн, имеющим амплитудно-частотную характеристику в виде резонансной кривой с максимумом на резонансной механической частоте Fм.
Частота среза фильтра нижних частот 11 установлена равной (1,1-1,8) Fм для того чтобы, с одной стороны, исключить возможность самовозбуждения генератора 5 на второй и других высших гармониках частоты Fм и тем самым обеспечить неискаженный синусоидальный ток возбуждения
Figure 00000027
и гармонические колебания вибрирующего электрода 6, необходимые для получения точных измерений, а с другой стороны, сохранить условие баланса фаз, необходимое для самовозбуждения генератора 5 со всеми серийно изготавливаемыми датчиками, имеющими разброс резонансных частот вибрирующих электродов до 30%.
Конструкция электромагнитного возбудителя 4, датчика скорости 9 и электрическая схема генератора 5 могут быть выполнены, например, так как показано на фиг. 3.
Вибрирующий электрод 6 выполнен в виде ферромагнитного стержня, укрепленного на упругой подвеске 7. Упругая подвеска 7 выполнена в виде плоской пружины, концы которой закреплены в корпусе датчика, и образует вместе с вибрирующим электродом 6 крестообразную, сбалансированную, упругую систему, имеющую резонансную механическую частоту колебаний Fм=(150-200) Гц. Один конец вибрирующего электрода 6 имеет отверстие, охватывающее чувствительный электрод 1, другой конец электрода 6 установлен внутри катушек возбуждения 8 и дополнительной 18 между полюсами постоянного магнита 19. При протекании переменного тока по катушке возбуждения 8 возникающее переменное магнитное поле намагничивает ферромагнитный стержень 6, который, взаимодействуя с полем постоянного магнита 19, начинает вибрировать, изменяя тем самым глубину погружения чувствительного электрода 1 в отверстие вибрирующего электрода 6, а, следовательно, и величину напряженности электрического поля на чувствительном электроде 1. Конструктивно датчик линейной скорости вибрирующего электрода 9 выполнен индукционным в виде дополнительной катушки 18, расположенной с катушкой возбуждения 8 соосно на общем каркасе в разных секциях, разделенных короткозамкнутым алюминиевым экраном, и постоянного магнита 19. Короткозамкнутый алюминиевый экран обеспечивает минимальную индуктивную связь между катушкой возбуждения 8 и дополнительной катушкой 18.
Усилитель 10 и фильтр нижних частот 11 выполнены на операционном усилителе 20, резисторах 21, 22 и конденсаторе 23. Частота среза фильтра нижних частот 11 установлена равной 250 Гц. Дополнительный усилитель 12 выполнен на операционном усилителе 24, резисторах 25, 26 и конденсаторах 27, 28. Выпрямитель 12 построен на операционном усилителе 29, диоде 30 и конденсаторе 31 по схеме «идеального» диода, которая обеспечивает выпрямление сигналов датчика линейной скорости 9, имеющих малую амплитуду, способствуя тем самым высокой точности поддержания линейной скорости вибрирующего электрода 6 на уровне, заданном источником опорного напряжения 16. Регулируемое сопротивление 14 выполнено на полевом транзисторе 32 и резисторе 33 и обеспечивает пределы регулирования коэффициента усиления усилителя 10 от 20 до 2. Источник тока 15 выполнен на операционном усилителе 34 и резисторах 35-39 по схеме источника тока с заземленной нагрузкой, который является катушка возбуждения 8. Компаратор 17 выполнен на операционном усилителе 40 и формирует из синусоидального напряжения датчика скорости 9 прямоугольные импульсы напряжения, управляющие работой фазового детектора 3.
Экспериментально было установлено, что заявленный измеритель напряженности электрического поля вибрационного типа надежно работает и обеспечивает сохранение точности измерений при разбросе механических резонансных частот вибрирующих электродов разных датчиков, достигающем 35%, и в диапазоне температур от минус 40°С до плюс 90°С. В то время как прототип надежно работает и сохраняет точность измерения при разбросе механических частот вибрирующих электродов разных датчиков равном 4% и в диапазоне температур от минус 10°С до +45°С. Кроме того, было установлено, что в процессе серийного производства измерителя разброс резонансной механической частоты вибрирующего электрода доходит до 30%, поэтому введение и соответствующее соединение новых элементов обеспечивает надежность работы и сохранение чувствительности измерителя при разбросе резонансной механической частоты вибрирующего электрода достигающего 35%, то, очевидно, что тем самым обеспечивается серийная пригодность заявленного измерителя.

Claims (2)

1. Измеритель напряженности электрического поля вибрационного типа, содержащий чувствительный электрод, подключенный через измерительный усилитель к измерительному входу фазового детектора, вибрационный электромагнитный возбудитель резонансного типа, включающий в себя катушку возбуждения, вибрирующий электрод из ферромагнитного материала, закрепленный на упругой подвеске и установленный с возможностью изменения электростатической связи чувствительного электрода с измеряемым полем, генератор, состоящий из усилителя, выпрямителя и регулируемого сопротивления, подключенного к инвертирующему входу усилителя, отличающийся тем, что в него введены датчик скорости колебательного движения, установленный в зоне вибрации вибрирующего электрода, дополнительный усилитель, фильтр нижних частот, источник тока, источник опорного напряжения и компаратор, выход датчика скорости колебательного движения подключен к неинвертирующему входу усилителя, выход которого соединен с входом фильтра нижних частот, частота среза которого установлена равной (1,1-1,8)Fм, где Fм - частота механического резонанса вибрирующего электрода, выход фильтра нижних частот через источник тока подключен к катушке возбуждения, кроме того, выход датчика скорости колебательного движения через компаратор подключен к управляющему входу фазового детектора, а через выпрямитель - к одному из входов дополнительного усилителя, другой вход которого подключен к источнику опорного напряжения, выход дополнительного усилителя соединен с управляющим входом регулируемого сопротивления.
2. Измеритель напряженности электрического поля вибрационного типа по п. 1, отличающийся тем, что датчик линейной скорости вибрирующего электрода выполнен в виде дополнительной катушки индуктивности, установленной соосно с катушкой возбуждения на общем каркасе в разных секциях, разделенных короткозамкнутым металлическим немагнитным экраном, и постоянного магнита, установленного в зоне колебаний вибрирующего электрода у дополнительной катушки индуктивности.
RU2016143644A 2016-11-07 2016-11-07 Измеритель напряженности электростатического поля RU2643701C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016143644A RU2643701C1 (ru) 2016-11-07 2016-11-07 Измеритель напряженности электростатического поля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016143644A RU2643701C1 (ru) 2016-11-07 2016-11-07 Измеритель напряженности электростатического поля

Publications (1)

Publication Number Publication Date
RU2643701C1 true RU2643701C1 (ru) 2018-02-05

Family

ID=61173695

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016143644A RU2643701C1 (ru) 2016-11-07 2016-11-07 Измеритель напряженности электростатического поля

Country Status (1)

Country Link
RU (1) RU2643701C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918999A (zh) * 2018-06-28 2018-11-30 中国人民解放军陆军工程大学 电场敏感型智能材料响应时间测试系统及方法
RU198171U1 (ru) * 2019-05-28 2020-06-22 Акционерное Общество "Центр Прикладной Физики Мгту Им. Н.Э. Баумана" Устройство для исследования электростатических полей
CN115792416A (zh) * 2022-11-04 2023-03-14 深圳市华众自动化工程有限公司 一种静电检测及消除的装置及方法
CN117665419A (zh) * 2023-12-07 2024-03-08 北京信息科技大学 一种抗离子流干扰的谐振式静电场传感器及测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851247A (en) * 1972-07-06 1974-11-26 R Vosteen Electrometer arrangement with amplitude stabilized oscillator drive means for detector element
SU771570A1 (ru) * 1976-09-13 1980-10-15 Ростовский-на-Дону институт инженеров железнодорожного транспорта Устройство измерени напр женности электростатического пол
SU781717A1 (ru) * 1975-11-14 1980-11-23 Вильнюсский Ордена Трудового Красного Знамени Государственный Университет Им.В.Капсукаса Устройство дл измерени электрического потенциала зар женной поверхности
SU881628A1 (ru) * 1979-10-05 1981-11-15 Предприятие П/Я А-3759 Датчик электростатического пол
SU1285404A1 (ru) * 1985-04-10 1987-01-23 Институт Ионосферы Ан Казсср Способ измерени вектора напр женности электрического пол атмосферы
US6242911B1 (en) * 1996-03-29 2001-06-05 Hubertus Maschek Field sensor and device and process for measuring electric and/or magnetic fields
RU2414717C1 (ru) * 2010-01-18 2011-03-20 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный университет (НГУ) Датчик электростатического поля и способ измерения электростатического поля

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851247A (en) * 1972-07-06 1974-11-26 R Vosteen Electrometer arrangement with amplitude stabilized oscillator drive means for detector element
SU781717A1 (ru) * 1975-11-14 1980-11-23 Вильнюсский Ордена Трудового Красного Знамени Государственный Университет Им.В.Капсукаса Устройство дл измерени электрического потенциала зар женной поверхности
SU771570A1 (ru) * 1976-09-13 1980-10-15 Ростовский-на-Дону институт инженеров железнодорожного транспорта Устройство измерени напр женности электростатического пол
SU881628A1 (ru) * 1979-10-05 1981-11-15 Предприятие П/Я А-3759 Датчик электростатического пол
SU1285404A1 (ru) * 1985-04-10 1987-01-23 Институт Ионосферы Ан Казсср Способ измерени вектора напр женности электрического пол атмосферы
US6242911B1 (en) * 1996-03-29 2001-06-05 Hubertus Maschek Field sensor and device and process for measuring electric and/or magnetic fields
RU2414717C1 (ru) * 2010-01-18 2011-03-20 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный университет (НГУ) Датчик электростатического поля и способ измерения электростатического поля

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918999A (zh) * 2018-06-28 2018-11-30 中国人民解放军陆军工程大学 电场敏感型智能材料响应时间测试系统及方法
CN108918999B (zh) * 2018-06-28 2020-10-09 中国人民解放军陆军工程大学 电场敏感型智能材料响应时间测试系统及方法
RU198171U1 (ru) * 2019-05-28 2020-06-22 Акционерное Общество "Центр Прикладной Физики Мгту Им. Н.Э. Баумана" Устройство для исследования электростатических полей
CN115792416A (zh) * 2022-11-04 2023-03-14 深圳市华众自动化工程有限公司 一种静电检测及消除的装置及方法
CN115792416B (zh) * 2022-11-04 2023-06-13 深圳市华众自动化工程有限公司 一种静电检测及消除的装置及方法
CN117665419A (zh) * 2023-12-07 2024-03-08 北京信息科技大学 一种抗离子流干扰的谐振式静电场传感器及测量装置
CN117665419B (zh) * 2023-12-07 2024-05-28 北京信息科技大学 一种抗离子流干扰的谐振式静电场传感器及测量装置

Similar Documents

Publication Publication Date Title
RU2643701C1 (ru) Измеритель напряженности электростатического поля
JP4993349B2 (ja) 電位測定装置、及び画像形成装置
EP0083144B1 (en) Improved method and apparatus for mass flow measurement
US7347097B2 (en) Servo compensating accelerometer
CN101799479A (zh) 用于转速传感器的振动补偿
RU2414717C1 (ru) Датчик электростатического поля и способ измерения электростатического поля
TWI531806B (zh) 兩用共振型磁力計
US2764019A (en) Vibration measuring device
RU2477501C1 (ru) Сейсмометр
JPH02501592A (ja) 磁力計
RU2473929C1 (ru) Сейсмометр
Stifter et al. MEMS micro-wire magnetic field detection method at CERN
CN109029593B (zh) 涡轮流量计和流量检测方法
Chistyakov Portable seismic sensor
CN209676103U (zh) 一种自适应垂直耦合振动传感器
US3391560A (en) Electroacoustic vibrator measuring system
RU162311U1 (ru) Виброконтактное измерительное устройство
RU2695111C1 (ru) Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля
TWI526703B (zh) 共振型磁力計
RU2564810C1 (ru) Линейный микроакселерометр с оптической системой
RU2341810C1 (ru) Вибрационный магнитометр
RU133665U1 (ru) Устройство имитации вихретоковых нагрузок
RU2159449C1 (ru) Сейсмометр
RU2647225C1 (ru) Измеритель напряженности электрического поля вибрационного типа
SU1041962A1 (ru) Устройство дл измерени напр женности электростатического пол