RU2643175C1 - Способ получения импульсов тормозного излучения со сложными амплитудно-временными параметрами и устройство для его осуществления - Google Patents

Способ получения импульсов тормозного излучения со сложными амплитудно-временными параметрами и устройство для его осуществления Download PDF

Info

Publication number
RU2643175C1
RU2643175C1 RU2017102293A RU2017102293A RU2643175C1 RU 2643175 C1 RU2643175 C1 RU 2643175C1 RU 2017102293 A RU2017102293 A RU 2017102293A RU 2017102293 A RU2017102293 A RU 2017102293A RU 2643175 C1 RU2643175 C1 RU 2643175C1
Authority
RU
Russia
Prior art keywords
pulses
accelerating
pulse
radiation
pulse voltage
Prior art date
Application number
RU2017102293A
Other languages
English (en)
Inventor
Роман Викторович Протас
Борис Николаевич Лаврентьев
Равиль Нурахметович Мунасыпов
Виктор Васильевич Перешитов
Реваль Рашадович Хафизов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом"), Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority to RU2017102293A priority Critical patent/RU2643175C1/ru
Application granted granted Critical
Publication of RU2643175C1 publication Critical patent/RU2643175C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Изобретение относится к мощной ускорительной технике, предназначено для получения импульсов тормозного излучения со сложными амплитудно-временными параметрами (импульсы сложной формы) и может быть использовано для проведения радиационно-физических исследований и испытаний радиоэлектронной аппаратуры. Способ получения импульсов тормозного излучения сложной формы включает подачу двух импульсов высокого напряжения различной величины и формы на ускоряющее устройство, состоящее из двух ускорительных трубок, при этом импульсы напряжения формируются двумя синхронизированными во времени генераторами импульсных напряжений, каждый из которых срабатывает на отдельную ускорительную трубку. Способ осуществляется при помощи устройства, содержащего два генератора импульсных напряжений, обостряющий и коммутирующий разрядники, а также ускоряющее устройство, при этом для запуска генераторов импульсных напряжений с определенным временным интервалом используется схема синхронизации, а ускоряющее устройство включает две ускорительные трубки. Техническим результатом является обеспечение стабильности генерации импульсов тормозного излучения сложной формы. 2 н.п. ф-лы, 3 ил.

Description

Группа изобретений относится к мощной ускорительной технике и предназначена для получения импульсов тормозного излучения (ТИ) со сложными амплитудно-временными параметрами с целью проведения исследований и испытаний радиоэлектронной аппаратуры на стойкость к радиационному воздействию.
Известны способы получения одиночных импульсов ТИ длительностью десятки наносекунд и единицы микросекунд, а также устройства для их реализации (например, Диянков B.C., Ковалев В.П., Кормилицын А.И., Лаврентьев Б.Н. Мощные импульсные генераторы тормозного излучения и электронных пучков на основе индуктивных накопителей энергии. Известия высших учебных заведений "Физика", 1995, т. 38, №12, с. 84-92; Кормилицын А.И., Диянков B.C., Ведерников А.И. и др. Формирование импульсов тормозного излучения микросекундной длительности. ВАНТ, Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру, 1994, вып. 3-4, с. 11-14).
Способы основаны на подаче одиночных импульсов высокого напряжения длительностью десятки-сотни наносекунд или единицы микросекунд на ускорительную трубку (УТ), а устройства включают в себя генератор импульсных напряжений (ГИН), разрядник и УТ. Данные способы и устройства обеспечивают генерацию одиночных импульсов ТИ длительностью десятки наносекунд и единицы микросекунд, но не позволяют генерировать импульсы ТИ со сложными амплитудно-временными параметрами (импульс сложной формы), которые представляют собой суперпозицию вышеназванных одиночных импульсов ТИ.
Наиболее близким аналогом заявляемой группы изобретений, выбранным в качестве прототипа, является способ получения импульса ТИ сложной формы и устройство для его реализации (патент РФ №2113052 МПК 6 H03K 3/53, опубл. 1998 г.). Способ основан на подаче двух импульсов высокого напряжения различной величины и формы на одну ускорительную трубку. Устройство включает в себя два генератора импульсных напряжений, разрядники и ускоряющее устройство, содержащее одну УТ. Генераторы импульсных напряжений подключаются к УТ (общей нагрузке), при этом первый генератор подключается через обостряющий разрядник, а второй - через коммутирующий разрядник. Разрядники являются двухэлектродными - один из электродов в обоих разрядниках общий. Также заданы условия: величина зазора в коммутирующем разряднике меньше, чем в обостряющем, а ускорительная трубка выполнена с величиной зазора катод-анод, определяемой длительностью сложного импульса согласно установленному соотношению.
При подключении первого ГИН к УТ на ней формируется "короткий" импульс высокого напряжения, что приводит к генерации импульса ТИ длительностью десятки наносекунд. Появление на коммутирующем разряднике высокого потенциала приводит к его пробою и разряду второго ГИН на УТ, в результате этого на ней формируется "длинный" импульс высокого напряжения, что приводит к генерации импульса ТИ субмикросекундной длительности. Описанное выше срабатывание двух ГИН на одну УТ обеспечивает генерацию импульса ТИ сложной формы, параметры которого определяются характеристиками обоих ГИН, разрядников и ускорительной трубки.
Использование данных способа и устройства позволило получить импульсы ТИ сложной формы со следующими параметрами: наносекундная составляющая - длительность на полувысоте 20…50 нс, мощность экспозиционной дозы 1010 Р/с; субмикросекундная составляющая - длительность по основанию 0,3…0,7 мкс, мощность экспозиционной дозы 109 Р/с (Ведерников А.И., Касьянов Н.Ю., Кононенко В.Ю. и др. Формирование импульса тормозного излучения сложной формы на ускорителе ИГУР-3. ВАНТ, Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру, 1999. вып. 3-4, с. 130-131).
Однако прототип обладает рядом недостатков. Недостатком способа является подача двух импульсов высокого напряжения на одну УТ, что исключает оптимизацию геометрии катод-анодной системы (величины зазора, формы катода) для генерации составляющих импульса ТИ сложной формы. К тому же в данном случае в одном зазоре катод-анод формируются два последовательных импульса. При формировании первого импульса происходит изменение эффективного зазора катод-анод, эффективного размера катода и плотности анода за счет образования катод-анодной плазмы и ее распространения. Все это приводит к ограничению амплитудно-временных параметров импульса ТИ сложной формы. Отметим, что максимальная длительность импульса ТИ сложной формы по основанию, полученная в прототипе, составляет 0,7 мкс и определяется эффективной величиной зазора катод-анод, а также скоростью распространения катод-анодной плазмы в зазоре. При этом для проведения радиационно-физических исследований аппаратуры практический интерес представляют импульсы длительностью ≥ 1 мкс.
Недостатками устройства являются:
- включение двух ГИН на общую нагрузку (УТ). В данном случае из-за существования емкостных связей между двумя генераторами через общую нагрузку каждый из них разряжается не только на УТ, но и частично в контур соседнею генератора. Таким образом, при срабатывании двух ГИН на одну УТ эффективно использовать запасенную в каждом генераторе энергию невозможно, что приводит к снижению радиационных параметров составляющих импульса ТИ сложной формы;
- отсутствие схемы синхронизации двух ГИН, что исключает возможность управления их срабатыванием и. тем самым, снижает надежность генерации импульсов ТИ сложной формы. Отметим, что в прототипе запуск ГИН, формирующего "длинный" импульс высокого напряжения, осуществляется напряжением "короткого" импульса высокого напряжения, который формируется на УТ. В результате происходит пробой коммутирующего разрядника и далее неуправляемый пробой разрядников ГИН, формирующего "длинный" импульс высокого напряжения.
Единой задачей, решаемой данными изобретениями, является повышение достоверности радиационной стойкости испытуемых объектов, а также повышение надежности генерации импульсов ТИ сложной формы.
Единый технический результат, получаемый при использовании предлагаемой группы изобретений, - обеспечение стабильной генерации импульсов ТИ сложной формы, представляют их практический интерес при проведении радиационно-физических исследований и испытаний.
Указанный технический результат при осуществлении группы изобретений по объекту - способ получения импульсов ТИ достигается тем, что в способе получения импульсов ТИ сложной формы, включающем подачу двух импульсов высокого напряжения различной величины и формы на ускоряющее устройство, особенностью является то, что импульсы формируются двумя синхронизированными во времени ГИН, каждый из которых срабатывает на отдельную УТ.
Всей совокупностью существенных признаков обеспечивается стабильная генерация импульсов ТИ сложной формы, представляющих практический интерес при проведении радиационно-физических исследований и испытаний. Таким образом, становится возможным проведение исследований и испытаний объектов на радиационную стойкость к воздействию импульсов ТИ сложной формы с требуемыми параметрами, что повышает достоверность радиационной стойкости объектов. Наряду с этим повышается надежность генерации импульсов ТИ сложной формы, что достигается синхронизацией обоих ГИН, а также отсутствием влияния на параметры импульса ТИ сложной формы процессов плазмообразования в УТ, происходящих при формировании «короткого» импульса высокого напряжения, так как каждый ГИН срабатывает на отдельную УТ.
Указанный единый технический результат при осуществлении группы изобретений по объекту - устройство формирования импульсов ТИ достигается тем, что устройство формирования импульсов ТИ сложной формы, содержащее два ГИН, один из которых подключен к ускоряющему устройству через обостряющий разрядник, а другой - через коммутирующий, дополнительно снабжено схемой синхронизации генераторов импульсных напряжений, которые подключены к упомянутой схеме, а ускоряющее устройство состоит из двух УТ, каждая из которых содержит вакуумную передающую линию (ВПЛ) с поворотом на угол 90°, при этом ВПЛ расположены таким образом, что образуют общую зону облучения.
Создание устройства для получения импульсов ТИ сложной формы указанным выше способом обеспечило контролируемый процесс формирования импульсов, представляющих практический интерес, а также исключило необходимость соблюдения условия согласования зазоров в обостряющем и коммутирующем разрядниках и условия выбора зазора катод-анод, учитывающего, что оба импульса формируются на одной УТ. Использование в устройстве двух ВПЛ с поворотом на угол 90° позволило создать зону облучения, где генерируются импульсы ТИ сложной формы. Таким образом, обеспечили надежную генерацию импульсов ТИ сложной формы, представляющих практический интерес при проведении радиационно-физических исследований и испытаний, и решили задачу повышение достоверности радиационной стойкости испытуемых объектов.
Заявленные изобретения взаимосвязаны настолько, что образуют единый изобретательский замысел. Действительно, при создании способа получения импульсов ТИ с требуемыми характеристиками было изобретено новое устройство для формирования указанных импульсов. Использование данного устройства позволяет успешно решить поставленную задачу с получением требуемого технического результата - обеспечение стабильной генерации импульсов ТИ сложной формы, представляющих практический интерес при проведении радиационно-физических исследований и испытаний. Следовательно, заявленные изобретения удовлетворяют требованию «единства».
При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленной группы изобретений, по обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам заявленной группы изобретений. Определение из перечня выявленных аналогов прототипов каждого изобретения, как наиболее близкого по совокупности существенных признаков аналога, позволило выявить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков для каждою из заявленных объектов группы, изложенных в формуле изобретения.
Следовательно, каждый из объектов группы изобретений соответствует условию «новизна».
Для проверки соответствия заявленной группы изобретений условию «изобретательский уровень» заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от выбранных прототипов признаками для каждого объекта заявленной группы изобретений. Результаты поиска показали, что каждый объект заявленной группы изобретений не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлены технические решения, содержащие в совокупности признаки, сходные с отличительными признаками каждого объекта заявляемой группы.
Следовательно, каждый из объектов заявленной группы изобретений соответствует условию «изобретательский уровень».
На фиг. 1 показана блок-схема заявляемого устройства.
На фиг. 2 приведена схема установки, в которой реализована заявленная группа изобретений.
На фиг. 3 представлен импульс тормозного излучения сложной формы.
Устройство, реализующее заявляемый способ, содержит схему синхронизации 1, два ГИН 2 и 3, обостряющий и коммутирующий разрядники 4 и 5, соответственно, и ускоряющее устройство, которое состоит из двух ускорительных трубок 6 (6а и 6b) с вакуумными передающими линиями (ВПЛ) 7 (7а и 7b) с поворотом на угол 90° (фиг. 1). ГИН 2 и 3 подключены к УТ 6: ГИН 2 через обостряющий разрядник 4 к УТ 6а; ГИН 3 через коммутирующий разрядник 5 к УТ 6b. При этом оба ГИН 2 и 3 подключены к схеме синхронизации 1. Каждая УТ 6а и 6b также содержит высоковольтные изоляторы и вакуумные диоды. Вакуумные передающие линии 7а и 7b с поворотом на угол 90° предназначены для создания зоны облучения 8, где генерируется импульс тормозного излучения сложной формы. Схема синхронизации предназначена для управляемого запуска ГИН 2 и 3.
Способ осуществляют следующим образом.
В блоке временных задержек схемы синхронизации 1 устанавливается необходимый временной интервал между срабатываниями двух ГИН 2 и 3. Выставляются зазоры в обостряющем 4 и коммутирующем 5 разрядниках, а также зазоры в вакуумных диодах обеих УТ 6а и 6b. Выбор параметров ГИН, величин зазоров в разрядниках и вакуумных диодах осуществляется, исходя из требуемых параметров импульса ТИ сложной формы, определяемых условиями радиационных испытаний.
При запуске схемы синхронизации 1 сначала срабатывает ГИН 2, в результате чего на УТ 6а формируется "короткий" импульс высокого напряжения и обеспечивается генерация наносекундной (десятки наносекунд) составляющей импульса ТИ сложной формы. В момент подачи импульса высокого напряжения на УТ 6а срабатывает ГИН 3, и на УТ 6b формируется "длинный'" импульс высокого напряжения, что приводит к генерации импульса ТИ микросекундной длительности. Таким образом, на ускоряющее устройство подаются два импульса высокого напряжения различной величины и формы, которые формируются синхронизированными во времени ГИН 2 и 3, каждый из которых срабатывает на отдельную УТ.
При этом в общей для двух УТ зоне облучения 8, создаваемой ВПЛ 7, формируется импульс ТИ сложной формы, являющийся суперпозицией наносекундного и микросекундного импульсов излучения.
Рассмотрим пример реализации заявляемых способа и устройства в радиационно-физической установке, состоящей из двух сильноточных импульсных ускорителей электронов 9 и 10, схема которой приведена на фиг. 2, импульс ТИ сложной формы, полученный на данной установке, представлен на фиг. 3.
Генератор импульсных напряжений 2 первого ускорителя 9 установки (фиг. 2) основан на индуктивно-емкостном накопителе энергии (11 - управляемый разрядник; 12 - емкостной накопитель энергии, собранный по схеме Аркадьева-Маркса; 13 - индуктивный накопитель энергии) и электрически взрывающихся проводниках 14, используемых в качестве прерывателя тока. Генератор 2 позволяет сформировать на УТ 6а импульс напряжения до 5 MB длительностью десятки и сотни наносекунд. Регулировка длительности обеспечивается изменением зазора в обостряющем разряднике 4 в диапазоне от 25…150 мм. Первый ускоритель 9 генерирует импульсы ТИ длительностью на полувысоте ~ 35…125 нс (фиг. 3).
Генератор импульсных напряжений 3 второго ускорителя 10 установки (фиг. 2) основан на емкостном накопителе энергии, собранном по схеме Аркадьева-Маркса. Генератор 3 позволяет сформировать на УТ 6b импульс напряжения до 1,5 MB длительностью - 5 мкс, что приводит к генерации импульсов ТИ длительностью по основанию ~ 1…2 мкс (фиг. 3). Регулировка длительности микросекундных импульсов осуществляется за счет изменения зазора катод-анод вакуумного диода УТ 6b в диапазоне 50…130 мм, при этом длительность импульса ограничена временем перемыкания зазора диода катод-анодной плазмой, распространяющейся со скоростью ~ 5...6 см/мкс.
Синхронизация ускорителей 9 и 10 обеспечивается схемой 1, импульсы с которой с заданным временным интервалом подаются на управляемые разрядники 11 генераторов Аркадьева-Маркса 12 обоих ускорителей 9 и 10.
Импульсы ТИ сложной формы (фиг. 3) формируются в общей зоне облучения 8 обоих ускорителей 9 и 10, создаваемой двумя ВПЛ 7а и 7b с поворотом на угол 90°. Получены импульсы ТИ со следующими радиационными параметрами: наносекундная составляющая - до ~ 1012 Р/с; микросекундная составляющая - до ~ 1010 Р/с.
Таким образом, представленные сведения свидетельствуют о выполнении при использовании заявляемой группы изобретений следующей совокупности условий;
- средство, воплощающее заявленное устройство при его осуществлении, воспроизводит заявленный способ, предназначенный для использования в ускорительной технике для формирования импульсов тормозного излучения сложной формы;
- для заявляемой группы изобретений в том виде, в котором она охарактеризована в формуле изобретения, подтверждена возможность ее осуществления с помощью описанных в заявке и известных до даты приоритета устройств.
Следовательно, заявляемая труппа изобретений соответствует условию «промышленная применимость».

Claims (2)

1. Способ получения импульсов тормозного излучения сложной формы, включающий подачу двух импульсов высокого напряжения различной величины и формы на ускоряющее устройство, отличающийся тем, что импульсы напряжения формируются двумя синхронизированными во времени генераторами импульсных напряжений, каждый из которых срабатывает на отдельную ускорительную трубку.
2. Устройство формирования импульсов тормозного излучения сложной формы, содержащее генераторы импульсных напряжений, один из которых подключен к ускоряющему устройству через обостряющий разрядник, а другой - через коммутирующий, отличающееся тем, что снабжено схемой синхронизации генераторов импульсных напряжений, которые подключены к упомянутой схеме, а ускоряющее устройство состоит из двух ускорительных трубок, каждая из которых содержит вакуумную передающую линию с поворотом на угол 90°, при этом вакуумные передающие линии расположены таким образом, что образуют общую зону облучения.
RU2017102293A 2017-01-24 2017-01-24 Способ получения импульсов тормозного излучения со сложными амплитудно-временными параметрами и устройство для его осуществления RU2643175C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017102293A RU2643175C1 (ru) 2017-01-24 2017-01-24 Способ получения импульсов тормозного излучения со сложными амплитудно-временными параметрами и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017102293A RU2643175C1 (ru) 2017-01-24 2017-01-24 Способ получения импульсов тормозного излучения со сложными амплитудно-временными параметрами и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2643175C1 true RU2643175C1 (ru) 2018-01-31

Family

ID=61173425

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017102293A RU2643175C1 (ru) 2017-01-24 2017-01-24 Способ получения импульсов тормозного излучения со сложными амплитудно-временными параметрами и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2643175C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2113052C1 (ru) * 1995-06-23 1998-06-10 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики Способ формирования импульса тормозного излучения сложной формы и устройство для его реализации
US20130221876A1 (en) * 2010-06-30 2013-08-29 Stephen Mark Iskander Switching arrangement
CN203340034U (zh) * 2013-06-18 2013-12-11 中国工程物理研究院应用电子学研究所 一种方波触发的薄膜电容Blumlein型脉冲形成系统
RU2553088C1 (ru) * 2014-04-03 2015-06-10 Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" Устройство для формирования импульсов тормозного излучения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2113052C1 (ru) * 1995-06-23 1998-06-10 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики Способ формирования импульса тормозного излучения сложной формы и устройство для его реализации
US20130221876A1 (en) * 2010-06-30 2013-08-29 Stephen Mark Iskander Switching arrangement
CN203340034U (zh) * 2013-06-18 2013-12-11 中国工程物理研究院应用电子学研究所 一种方波触发的薄膜电容Blumlein型脉冲形成系统
RU2553088C1 (ru) * 2014-04-03 2015-06-10 Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт технической физики имени академика Е.И. Забабахина" Устройство для формирования импульсов тормозного излучения

Similar Documents

Publication Publication Date Title
Qian et al. Analysis of polarity effects in the electrical breakdown of liquids
Yalandin et al. Limitation of runaway electron beam duration in air-filled gap with inhomogeneous field
Shao et al. Abnormal polarity effect in nanosecond-pulse breakdown of SF6 and nitrogen
US9398678B2 (en) Method and device for forming a plasma beam
Tarasenko et al. Transition of a diffuse discharge to a spark at nanosecond breakdown of high-pressure nitrogen and air in a nonuniform electric field
Beloplotov et al. Positive and negative streamers in air and nitrogen in a sharply inhomogeneous electric field under conditions of runaway electron generation
RU2643175C1 (ru) Способ получения импульсов тормозного излучения со сложными амплитудно-временными параметрами и устройство для его осуществления
Yalandin et al. A picosecond-jitter electron-beam-triggered high-voltage gas spark gap
Tie et al. Low-jitter discharge of a plasma-jet triggered gas switch at low working coefficients
US20220287171A1 (en) Method for generating high intensity electromagnetic fields
Tarasenko et al. Two-component structure of the current pulse of a ranaway electron beam generated during electric breakdown of elevated-pressure nitrogen
Milanese et al. Filaments in the sheath evolution of the dense plasma focus as applied to intense auroral observations
US3193722A (en) Method and means for control of a pulsed beam of charge carriers
Baksht et al. Experimental and numerical investigation of two mechanisms underlying runaway electron beam formation
Batrakov et al. Sources of pulsed low-energy electron beams and soft X-rays based on liquid-metal explosive-emission cathodes
Lisenkov et al. Numerical investigation of the parameters of a runaway electron beam generated in a gas-filled atmospheric-pressure hot-channel diode
RU2113052C1 (ru) Способ формирования импульса тормозного излучения сложной формы и устройство для его реализации
Qian et al. Model analysis of self-and laser-triggered electrical breakdown of liquid water for pulsed-power applications
Isaev et al. Collective acceleration of laser plasma in a nonstationary and nonuniform magnetic field
Martin et al. Proto-II-A short pulse water insulated accelerator
Yan et al. Statistical Analysis of Breakdown Delay of Pseudospark Discharge Triggered from Anode Side
Shirvani et al. Spatial-temporal investigation of breakdown of long air gaps by lightning voltages up to 2.4 MV
Ivanov et al. Initial stages of subnanosecond electric pulse breakdown in high-pressure gas discharge gaps
Zherlitsyn et al. Study of the Stability of Triggering of a Controlled Multigap Spark Switch for Capacitive Energy Storage with Charging Voltage up to 100 kV and Energy Release Time on the Order of 100 ns
Sampayan et al. Plasma‐cathode‐initiated vacuum gap closure