RU2642008C1 - Противообледенительно-аэростатный ветрогенератор - Google Patents

Противообледенительно-аэростатный ветрогенератор Download PDF

Info

Publication number
RU2642008C1
RU2642008C1 RU2017106736A RU2017106736A RU2642008C1 RU 2642008 C1 RU2642008 C1 RU 2642008C1 RU 2017106736 A RU2017106736 A RU 2017106736A RU 2017106736 A RU2017106736 A RU 2017106736A RU 2642008 C1 RU2642008 C1 RU 2642008C1
Authority
RU
Russia
Prior art keywords
wind
balloon
icing
shell
generator
Prior art date
Application number
RU2017106736A
Other languages
English (en)
Inventor
Александр Владимирович Губанов
Original Assignee
Александр Владимирович Губанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Владимирович Губанов filed Critical Александр Владимирович Губанов
Priority to RU2017106736A priority Critical patent/RU2642008C1/ru
Application granted granted Critical
Publication of RU2642008C1 publication Critical patent/RU2642008C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/06Controlling wind motors  the wind motors having rotation axis substantially perpendicular to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Изобретение относится к области ветроэнергетики. Противообледенительно-аэростатный ветрогенератор, содержащий воздухоплавательный модуль в составе мягкой газонаполненной аэростатной оболочки положительной плавучести, усиленной меридианными лентами, ниже расположенной рамной подвески с ветросиловым блоком из ветряных роторов и электрогенератора, причальный узел, на поворотной платформе которого установлены подветренно две соосные лебедки и диаметрально им кабельная бухта. Противообледенительно-аэростатный ветрогенератор дополнен жестко-корпусным баллонетом, расположенным внутри аэростатной оболочки и частично выступающим снизу за ее пределы, на этой выступающей части баллонета закреплена к его днищу рамная подвеска с ветросиловым блоком и установлен на консольной платформе, выдвинутой в подветренную сторону, компрессор, обвязанный шланговым коллектором с автоматическим клапанами, срабатывающими от сигнализаторов внешнего обледенения аэростатной оболочки так, что осуществляются принудительные перетоки части легкого газа между оболочкой и баллонетом. Изобретение направлено на разрушение обледенения и пространственную устойчивость ветрогенератора. 2 ил.

Description

Применяется для генерации энергии ветра в электроэнергию малых и средних мощностей, достигаемых в скоростных слоях атмосферы.
Настоящий ветрогенератор относится к энергетическим установкам, имеющим горизонтальную ось вращения ветряного ротора, перпендикулярную направлению ветра.
Известно, что силовые блоки ветряных установок могут быть подняты до скоростных ветров в составе воздухоплавательных модулей, аэростатные оболочки которых наполнены легким газом в объемах, создающих устойчивую и продолжительную плавучесть высотной части энергетической системы. Без применения таких систем ветроэнергетика имеет мало практического смысла там, где низовые ветра слабы для генерации промышленных мощностей или имеют место пылевые бури, геоподоснова не пригодна для сооружения тяжелых опор ВЭУ, происходят сейсмические явления и атмосферные катаклизмы.
Наиболее распространенными видами привязных аэростатов являются наполненные легким газом шаровидные оболочки и их сигарообразные модификации (патенты RU 2046734 С1, 13.06.1991; US 20090152391 А1, 04.03.2006), к которым снизу при помощи строп подвешены корзины (патент RU 2026238 С1, 21.11.1991). Однако эти аэростаты не предназначены для ветроэнергетических целей, поднимают в атмосферу и удерживают на высоте прежде всего системы видео наблюдения, метеорологические приборы ретрансляторы и т.п. иное оборудование.
Приспособлению к ветроэнергетическим целям служит ветряная электростанция (патент DE 2524360 А1, 02.06.1975), в одной из модификаций которой (фиг. 17) ветросиловой блок подвешен к аэростатной оболочке перевернутой каплевидной формы на стропах, гибкость которых создает пространственную неустойчивость воздухоплавательного модуля в целом. Отличительной особенностью от этой станции другой высотной ветросиловой установки (патент SU 8970 А1, 11.08.1927) является использование жесткой рамной подвески, закрепленной на днище аэростатной оболочки и служащей опорной конструкцией для по меньшей мере одного ветросилового блока.
В надземной ветрогенераторной системе (патент RU 2457358 С1, 27.07.2012) используется ротор с неортогональными лопастями Савониуса, горизонтальная ось вращения которого перпендикулярна направлению ветра. Перпендикулярная ориентация оси вращения ротора на ветер является неизменным качеством устройства. Вместе с тем в этой системе ротор располагается в продольном отверстии горизонтально-вытянутой аэростатной оболочки или в щели между двумя горизонтальными оболочками, либо в зазоре между элементами, соединяющими оболочки. В следствии таких конструктивных особенностей системы атмосферные потоки будут скорее огибать воздухоплавательный модуль, чем воздействовать на его ротор.
Известен ветродвигатель (патент SU 1509560 А1, 02.09.1987), оснащенный ортогонально-лопастными роторами с горизонтальными осями вращения, перпендикулярными направлению ветра. Однако все роторы данного ветродвигателя приподняты над уровнем аэростатных оболочек, центр тяжести воздухоплавательного модуля смещен вверх, в устройстве отсутствуют элементы поддержания как продольной, так и поперечной стабильности модуля, оптимальной ориентации оси вращения его роторов в воздушном пространстве.
В большей мере требованиям пространственной устойчивости и надежности эффективного положения осей вращения роторов относительно ветра отвечают ветрогенератор (патент RU 2576103 С1, 27.01.2015) и ветроэнергетическая система (патент RU 2594827 С1, 15.10.2015), указанные положительные качества которых достигаются однако за счет большой материалоемкости двух или более аэростатных оболочек, входящих в составы воздухоплавательных модулей.
Все существующие аэростатно-плавательные ветроэнергетические устройства не приспособлены к эксплуатации в условиях обледенения. Это оправданно в большинстве климатических зон, где в зимние время не создаются или создаются исключительно редко и кратковременно периоды благоприятной для обледенения погоды, а именно с температурой от -5°С до -10°С при влажности воздуха более 85%. В противных же случаях при негативных особенностях климата наличие противообледенительной (ПО) системы в составе воздухоплавательных модулей ветрогенераторов является необходимым и обязательным. Без ПО-систем потребуется прекращать работу установок на время частого и продолжительного обледенения, опускать воздухоплавательный модуль к наземному причальному узлу, тем или иным способом, например тепловыми пушками, удалять ледяные образования с аэростатных поверхностей.
Для борьбы с обледенением летательных аппаратов их лобовые сопротивления минимизируются, применяются механические, физико-химические и тепловые ПО-системы. Разновидностью механического метода является пневматическая система, имеющая небольшую массу и энергоемкость, что делает ее предпочтительной в низко-скоростных потоках воздуха. При этом на защищаемой поверхности закрепляются сигнализаторы обледенения и эластичные пневмокамеры. Когда обледенение достигает толщины в 4-5 мм, внутрь камер подается воздух, они раздуваются и раскалывают лед, который уносится ветром с защищаемой поверхности. Цикл очистки завершается стравливанием воздуха из объемов камер. Однако покрытие всей защищаемой поверхности пневмокамерами утяжеляет летательный аппарат и чаще всего технически возможно не повсеместно, в результате чего на защищаемых поверхностях остаются места и зоны, с которых удаление льда не происходит.
Наряду с этим из области практического воздухоплавания известен действующий германский полужесткий дирижабль Zeppelin NT LZ-N07, внутри газонаполненной оболочки которого размещены для поддержания неизменяемости сигарообразной внешней формы аппарата мягкие емкости - баллонеты, наполняемые воздухом из внешней окружающей среды.
Сущность технического решения состоит в том, что камерой изменяемой наполняемости является вся мягкая аэростная оболочка, из которой при обледенении ее внешней поверхности в среднем 1/5 доля легкого газа принудительно перетекает в жестко-корпусной баллонет, являющийся внутренним элементом упомянутой мягкой оболочки, частично выступающим снизу за ее пределы. Аэростатическая подъемная сила оболочки не изменяется, положительная плавучесть воздухоплавательного модуля ветрогенератора сохраняется. В то же время мягкая аэростатная оболочка несколько теряет первоначальную форму, ее поверхность сморщивается, ледяная корка ломается, отрывается по всей внешней поверхности оболочки и уносится ветром. По завершении цикла противообледенительной очистки легкий газ из баллонета принудительно перетекает в том же количестве назад в оболочку, которая тем самым восстанавливает свою первоначальную обтекаемую форму и низкое лобовое сопротивление.
Целью изобретения является использование ветрогенератора в условиях обледенения внешней поверхности мягкой аэростатной оболочки воздухоплавательного модуля, с помощью которого ветросиловой блок поднят на высоту скоростных ветров.
Поставленная цель достигается тем, что на внешней поверхности мягкой газонаполненной аэростатной оболочки воздухоплавательного модуля противообледенительно-аэростатного ветрогенератора установлены сигнализаторы обледенения, внутри оболочки содержится баллонет в жестко-корпусном исполнении, частично выступающий снизу за пределы этой же оболочки. Рамная подвеска с ветросиловым блоком крепится к днищу выступающей части баллонета, от которой также выдвинута в подветренную сторону консольная платформа с установленным на ней компрессором, обвязанным имеющим автоматические клапана шланговым коллектором, для осуществления принудительного перетока доли легкого газа из мягкой аэростатной оболочки в жесткий баллонет и того же количества газа в обратном порядке.
На фиг. 1 показан общий вид противообледенительно-аэростатного ветрогенератора; на фиг. 2 - вид на воздухоплавательный модуль того же устройства с наветренной стороны.
Устройство состоит из воздухоплавательного модуля и причального узла, связанных привязными тросами 1 и трос-кабелем 2. В свою очередь воздухоплавательный модуль включает в себя мягкую аэростатную оболочку 3 в форме газонаполненного шара на внешней поверхности оснащенного сигнализаторами обледенения и усиленного меридианными лентами 4. Внутри и частично выступая снизу за пределы оболочки располагается жестко-корпусной баллонет 5, на днище которого закреплена и свисает вниз рамная подвеска 6 с силовым блоком из ветряных роторов 7 и электрогенератора 8. От выступающей части баллонета выдвинута в подветренную сторону консольная платформа 9, на которой установлен компрессор 10, обвязанный шланговым коллектором с автоматическими клапанами 11.1 и 11.2 для принудительного перетока части легкого газа из оболочки в баллонет, а также 12.1 и 12.2 для обратного перетока того же количества легкого газа из баллонета в оболочку. То, как шланговый коллектор изображен на фиг. 1, сделано для наглядности, в действительности он полностью расположен на подветренной стороне аэростатной оболочки. Причальный узел устройства представляет из себя бетонную наземную тумбу 13 с поворотной платформой 14, где подветренно установлены две соосные лебедки 15 и диаметральная им кабельная бухта 16.
Противообледенительно-аэростатный ветрогенератор работает следующим образом. Мягкая аэростатная оболочка устройства заполняется легким газом в объеме, необходимом для придания оболочки стабильной шаровидной формы и достижения подъемной силы, достаточной для отрыва от земли и пространственной устойчивости воздухоплавательного модуля на высоте скоростных ветров, натяжения привязных тросовых связей с причальным узлом. Троса и трос кабель синхронно стравливаются с барабанов лебедок и кабельной бухты. В процессе подъема модуля до необходимой высоты он разворачивается воздушным потоком по круговой траектории вокруг места привязки, разворачивается через гибкие связи вместе с поворотной платформой причального узла и механизмами на ней. Ориентация модуля на ветер завершается после того, как горизонтальные оси вращения роторов становятся перпендикулярными направлению ветра. Скоростной напор ветра вращает роторы, механическая энергия подается в электрогенератор, где преобразуется в электрическую энергию, направляемую по трос-кабелю через контроллер, аккумуляторную батарею и инвертор к потребителям. При изменении направления ветра его напор воздействует на наветренную боковую поверхность аэростатной оболочки и ветросиловой блок, воздухоплавательный модуль совместно с поворотной платформой разворачиваются снова до тех пор, пока направленность привязных тросов и трос кабеля не совпадут с новым направлением ветра, а оси вращения роторов не займут перпендикулярного положения к ветру.
При известных неблагоприятных погодных условиях на внешней поверхности аэростатной оболочки образуется наледь, о которой, если слой льда достигает 2-3 мм, сообщают сигнализаторы обледенения. Включается компрессор и открываются автоматические клапана 11.1 и 11.2 коллектора для принудительного перетока части легкого газа из мягкой аэростатной оболочки в жестко-корпусной баллонет. Вследствие утраты аэростатной оболочкой своей первоначальной формы с гладкой поверхностью, появления на ней морщин и неравномерной волнистости обледенение разрушается и удаляется воздушным потоком. Изменение состояния оболочки фиксируется и передается сигнализаторами обледенения в виде команды на автоматические запорные устройства коллектора, из которых клапана 11.1 и 11.2 закрываются, а открываются клапана 12.1 и 12.2. Осуществляется обратный принудительный переток легкого газа в том же количестве около 20-30% от объема газонаполнения всей системы из баллонета в аэростатную оболочку. По завершении описанного цикла все клапана закрываются, а компрессор отключается.
В отличие от базовых устройств предлагаемый ветрогенератор комплектуется противообледенительными элементами: жестко-корпустным баллонетом, компрессором и коллектором, средствами автоматизации, что повышает массу воздухоплавательного модуля, менее значительно, но сказывается на его габаритах с соответствующим увеличением объема газонаполнения мягкой аэростатной оболочки. Таким образом решение об его использовании даже в северных странах должно быть основано на длительных наблюдениях климата и твердой уверенности в том, что на высотах скоростных ветров часто и на продолжительное время повторяется узкий погодный интервал образования обледенения на аэростатных поверхностях. Вместе с тем целесообразность применения ветрогенератора в противообледенительной модификации не вызывает сомнения для эксплуатации в арктических широтах.
Настоящий ветрогенератор имеет двойную мобильность: вертикальную, когда ветросиловой блок размещается в широком диапазоне высот (на практике достигнут уровень в 600 метров от причального узла); горизонтальную, когда установка может легко переноситься с места на место, менять климатические зоны размещения без ущерба для эффективной генерации от ВИЭ.

Claims (1)

  1. Противообледенительно-аэростатный ветрогенератор, содержащий воздухоплавательный модуль в составе мягкой газонаполненной аэростатной оболочки положительной плавучести, усиленной меридианными лентами, ниже расположенной рамной подвески с ветросиловым блоком из ветряных роторов и электрогенератора, причальный узел, на поворотной платформе которого установлены подветренно две соосные лебедки и диаметрально им кабельная бухта, отличающийся тем, что противообледенительно-аэростатный ветрогенератор дополнен жестко-корпусным баллонетом, расположенным внутри аэростатной оболочки и частично выступающим снизу за ее пределы, на этой выступающей части баллонета закреплена к его днищу рамная подвеска с ветросиловым блоком и установлен на консольной платформе, выдвинутой в подветренную сторону, компрессор, обвязанный шланговым коллектором с автоматическим клапанами, срабатывающими от сигнализаторов внешнего обледенения аэростатной оболочки так, что осуществляются принудительные перетоки части легкого газа между оболочкой и баллонетом.
RU2017106736A 2017-03-01 2017-03-01 Противообледенительно-аэростатный ветрогенератор RU2642008C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017106736A RU2642008C1 (ru) 2017-03-01 2017-03-01 Противообледенительно-аэростатный ветрогенератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017106736A RU2642008C1 (ru) 2017-03-01 2017-03-01 Противообледенительно-аэростатный ветрогенератор

Publications (1)

Publication Number Publication Date
RU2642008C1 true RU2642008C1 (ru) 2018-01-23

Family

ID=61023824

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017106736A RU2642008C1 (ru) 2017-03-01 2017-03-01 Противообледенительно-аэростатный ветрогенератор

Country Status (1)

Country Link
RU (1) RU2642008C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679060C1 (ru) * 2018-02-15 2019-02-05 Александр Владимирович Губанов Аэроветроэнергостат противообледенительный
RU2703863C1 (ru) * 2019-02-01 2019-10-22 Александр Владимирович Губанов Аэроэнергостат

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1211449A1 (ru) * 1984-04-02 1986-02-15 Chernopyatov Boris Ветроэнергетическа установка
RU2196072C2 (ru) * 2001-02-27 2003-01-10 Пикуль Вадим Николаевич Способ подвода энергии к аэростату "юпи-2"
US6890152B1 (en) * 2003-10-03 2005-05-10 General Electric Company Deicing device for wind turbine blades
RU98490U1 (ru) * 2010-03-04 2010-10-20 Евгений Владимирович Основин Переносная ветроэнергоустановка
CN104295453A (zh) * 2014-09-19 2015-01-21 阿俩艾·穆罕穆德·弗基·穆罕穆德·埃布加拜伦 一种高空风能捕捉系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1211449A1 (ru) * 1984-04-02 1986-02-15 Chernopyatov Boris Ветроэнергетическа установка
RU2196072C2 (ru) * 2001-02-27 2003-01-10 Пикуль Вадим Николаевич Способ подвода энергии к аэростату "юпи-2"
US6890152B1 (en) * 2003-10-03 2005-05-10 General Electric Company Deicing device for wind turbine blades
RU98490U1 (ru) * 2010-03-04 2010-10-20 Евгений Владимирович Основин Переносная ветроэнергоустановка
CN104295453A (zh) * 2014-09-19 2015-01-21 阿俩艾·穆罕穆德·弗基·穆罕穆德·埃布加拜伦 一种高空风能捕捉系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679060C1 (ru) * 2018-02-15 2019-02-05 Александр Владимирович Губанов Аэроветроэнергостат противообледенительный
RU2703863C1 (ru) * 2019-02-01 2019-10-22 Александр Владимирович Губанов Аэроэнергостат

Similar Documents

Publication Publication Date Title
US11370522B2 (en) High altitude gravity energy storage
US20060091678A1 (en) Hovering Wind Turbine
US20120235410A1 (en) Lighter than air wind and solar energy conversion system
CN102092471B (zh) 系留热气飞艇浮空平台
US9030038B2 (en) Tethered airborne wind power generator system
US8985499B2 (en) Stratosphere tethered platform for multiple uses
RU2662101C1 (ru) Аэростат ветроэнергетический
US20140377066A1 (en) Portable Self-Inflating Airborne Wind Turbine System
CN1118414C (zh) 高空飞船的发射
RU2642008C1 (ru) Противообледенительно-аэростатный ветрогенератор
CN201781447U (zh) 一种平流层悬浮充气平台太阳能发电站
US20130285385A1 (en) Methods and devices for generating electricity from high altitude wind sources
RU2679060C1 (ru) Аэроветроэнергостат противообледенительный
CN202435309U (zh) 利用平流层物理条件进行太阳能发电的装置
NO831859L (no) Oppblaasbar anordning for konsentrering av vindkraft
JPH0321592A (ja) 高空係留浮上装置と浮上方法
RU2572469C1 (ru) Аэроплавательный виндротор
US8985498B2 (en) Stratosphere tethered photovoltaic power platform
RU2612492C1 (ru) Наземно - генераторный воздухоплавательный ветродвигатель
KR20110026314A (ko) 비행선 탑재형 풍력발전시스템
CN1470432A (zh) 在高空平流层搭建作业平台的方法
RU2637589C1 (ru) Виндроторный аэростатно-плавательный двигатель
RU2729306C1 (ru) Аэроэнергостат катамаранный
KR101757275B1 (ko) 비행선을 이용한 고고도 발전설비
RU2762471C1 (ru) Мобильный модуль аэроэнергостата