RU2640320C1 - Способ регистрации импульсного ионизирующего излучения - Google Patents

Способ регистрации импульсного ионизирующего излучения Download PDF

Info

Publication number
RU2640320C1
RU2640320C1 RU2017104371A RU2017104371A RU2640320C1 RU 2640320 C1 RU2640320 C1 RU 2640320C1 RU 2017104371 A RU2017104371 A RU 2017104371A RU 2017104371 A RU2017104371 A RU 2017104371A RU 2640320 C1 RU2640320 C1 RU 2640320C1
Authority
RU
Russia
Prior art keywords
plate
coaxial cable
radiation
ionizing radiation
contact
Prior art date
Application number
RU2017104371A
Other languages
English (en)
Inventor
Владимир Иванович Зайцев
Original Assignee
Акционерное общество "Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований" (АО "ГНЦ РФ ТРИНИТИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований" (АО "ГНЦ РФ ТРИНИТИ") filed Critical Акционерное общество "Государственный научный центр Российской Федерации Троицкий институт инновационных и термоядерных исследований" (АО "ГНЦ РФ ТРИНИТИ")
Priority to RU2017104371A priority Critical patent/RU2640320C1/ru
Application granted granted Critical
Publication of RU2640320C1 publication Critical patent/RU2640320C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к области атомной физики и может быть использовано для регистрации ионизирующих излучений. Сущность изобретения заключается в том, что способ регистрации импульсного ионизирующего излучения дополнительно содержит этапы, на которых в качестве чувствительного элемента применяют пластину из диэлектрика с высокой энергетической ценой образования свободных носителей заряда ΔЕ, например стекла KU1 (ΔЕ~150 эВ), первый контакт, находящийся на стороне пластины, ориентированной навстречу ионизирующему излучению, заземляют, а возникающий на противоположной стороне пластины отклик отрицательного напряжения по коаксиальному кабелю транслируют к регистрирующей аппаратуре, например осциллографу, при этом один конец центрального проводника коаксиального кабеля соединяют со вторым контактом чувствительного элемента и первым выводом нагрузочного сопротивления, второй конец центрального проводника коаксиального кабеля соединяют с регистрирующей аппаратурой, а оплетку коаксиального кабеля и второй вывод нагрузочного сопротивления заземляют. Технический результат – повышение достоверности измерений больших интенсивностей излучения I≈(105÷107) МВт/см2, упрощение схемы измерений. 1 ил.

Description

Изобретение относится к области атомной физики и может быть использовано для регистрации ионизирующих излучений, например для регистрации мощных потоков рентгеновского излучения в экспериментальных исследованиях. Предложено и применяются множество различных способов измерений параметров излучений [1], в большинстве случаев основанных на эффекте ионизации атомов под действием излучения. Исследования в области инерциального термоядерного синтеза поставили новые диагностические задачи [2], в частности разработки метода регистрации электромагнитного излучения плазмы, удовлетворяющего следующим основным требованиям:
1) рабочий диапазон измерений должен находиться в области энергий квантов (25-10000) эВ;
2) разрешение во времени не должно превышать 1 нс;
3) диапазон чувствительности должен находиться выше уровня мощности потока излучения I~1 МВт/см2.
Обычно для регистрации интенсивности импульсного рентгеновского излучения используются твердотельные полупроводниковые детекторы, чувствительность которых определяется затратой энергии ΔЕ, необходимой для образования пары носителей заряда. Детекторы, основанные на кремнии, требуют ΔЕ~3 эВ, основанные на алмазе - ΔЕ~13 эВ. Анализ показывает, что в исследованиях по инерциальному термоядерному синтезу для регистрации излучения в рабочем диапазоне чувствительности требуется удаление детектора (даже алмазного) в вакууме на расстояние нескольких десятков метров от источника излучения, что достаточно дорого и не всегда выполнимо в реальных условиях. Применение фильтров, ослабляющих интенсивность падающего излучения, одновременно искажает его спектральный состав, что не позволяет идентифицировать процессы, протекающие в термоядерной мишени.
Известен способ регистрации импульсного ионизирующего излучения [3], когда чувствительный к ионизирующему излучению элемент выполнен в виде пластины из алмаза с первым контактом и вторым контактом из золота, контакты нанесены на двух противоположных плоскостях пластины, имеющих большую площадь, причем толщина каждого контакта (30 нм) делает его прозрачным для ионизирующего излучения. Детектор на базе упомянутого чувствительного к излучению элемента устанавливают на пути регистрируемого ионизирующего излучения таким образом, что сторона пластины с первым контактом ориентирована навстречу ионизирующему излучению и прикладывают с помощью триаксиальной линии связи напряжение в диапазоне (50-400) В от внешнего источника питания ко второму контакту на алмазной пластине, а с первого контакта снимают сигналы, обусловленные ионизирующим излучением. Наружный экранирующий корпус алмазного детектора заземляют. При прохождении регистрируемого ионизирующего излучения через алмазную пластину в ней возникают импульсы тока, обусловленные ионизацией. Эти импульсы образуют во внешней цепи импульсы напряжения, которые регистрируются аппаратурой.
Недостатками данного способа в экспериментах по инерциальному термоядерному синтезу являются возникновение нелинейных эффектов при регистрации потоков мощного мягкого рентгеновского излучения I>0,5 МВт/см2, относительно большая стоимость и сложность технологии обработки чувствительного элемента (алмаза), а также необходимость в источнике питания детектора.
Техническим результатом данного изобретения является возможность достоверных измерений больших интенсивностей излучения I≈(105÷107) МВт/см2 при упрощении схемы измерений и снижении ее стоимости.
Для достижения указанного технического результата в известном способе регистрации импульсного ионизирующего излучения, при котором в процессе измерения электрического сигнала, возникающего под действием излучения в твердом чувствительном к излучению элементе, который выполнен в виде диэлектрической пластины с первым и вторым контактами из металла, контакты нанесены на двух противоположных плоскостях пластины, имеющих
Figure 00000001
площадь, причем толщина первого контакта делает его прозрачным для ионизирующего излучения, детектор на базе упомянутого чувствительного к излучению элемента устанавливают на пути регистрируемого ионизирующего излучения таким образом, что сторона пластины с первым контактом ориентирована навстречу ионизирующему излучению, электрический сигнал транслируют с помощью помехозащищенного кабеля к регистрирующей аппаратуре, предложено в качестве чувствительного элемента применять пластину из диэлектрика с высокой энергетической ценой образования свободных носителей заряда ΔЕ, например стекла KU1 (ΔЕ~150 эВ). Первый контакт, находящийся на стороне пластины, ориентированной навстречу ионизирующему излучению, заземляют, а возникающий на противоположной стороне пластины отклик отрицательного напряжения по коаксиальному кабелю транслируют к регистрирующей аппаратуре, например осциллографу. Один конец центрального проводника коаксиального кабеля соединяют со вторым контактом чувствительного элемента и первым выводом нагрузочного сопротивления, второй конец центрального проводника коаксиального кабеля соединяют с регистрирующей аппаратурой, а оплетку коаксиального кабеля и второй вывод нагрузочного сопротивления заземляют.
Предлагаемый способ регистрации импульсного ионизирующего излучения основан на новом физическом эффекте генерации ЭДС (электродвижущая сила) в контакте изолятор - металл под действием мегаваттного потока рентгеновского излучения [4], обнаруженном в ходе исследований на термоядерной установке Ангара-5-1. Источником излучения (полная пиковая мощность до 1013 Вт) служила плазма мегаамперного Z-пинча. Основными особенностями предлагаемого способа регистрации импульсного ионизирующего излучения являются:
- интенсивность потока излучения, падающего на детектор, может достигать 107 Вт/см2;
- отсутствие внешнего источника питания;
- в качестве чувствительного элемента используются диэлектрики с большой энергетической ценой образования свободных носителей заряда (ΔЕ), например аморфное стекло с ΔЕ~150 эВ.
На чертеже приведена принципиальная схема одного из возможных вариантов реализации способа.
Поток излучения (hν) попадает на сторону пластины с первым контактом 1. Контакт представляет собой тонкий слой металла, например алюминия толщиной 30 нм, нанесенный на стеклянную пластину 2. Потери энергии излучения при прохождении через первый контакт 1 не превышают 5%. Затем происходит поглощение ионизирующего излучения в прилегающем к первому контакту 1 тонком (~1 мкм) слое стекла пластины 2. Образовавшиеся при этом электроны благодаря высокому градиенту плотности за сравнительно короткое время (td<0,1 нс) покидают пограничную с заземленным первым контактом 1 область стеклянной пластины 2. В слое поглощения ионизирующего излучения формируется положительный заряд, а на противоположной стороне пластины 2 (где размещен контакт 3) возникает отклик отрицательного электрического напряжения. Импульс электрического напряжения по коаксиальному кабелю транслируют к регистрирующей аппаратуре, например осциллографу 5, при этом один конец центрального проводника коаксиального кабеля соединяют со вторым контактом 3 чувствительного элемента и первым выводом нагрузочного сопротивления 4, второй конец центрального проводника коаксиального кабеля соединяют с регистрирующей аппаратурой 5, а оплетку коаксиального кабеля и второй вывод нагрузочного сопротивления 4 заземляют.
Основные преимущества предлагаемого способа по сравнению с прототипом.
1. Линейная область чувствительности расположена в области значительно больших интенсивностей излучения I≈(105÷107) МВт/см2.
2. Чувствительным элементом является дешевый диэлектрик (стекло), поддающийся достаточно простой обработке.
3. Отсутствует необходимость в источнике питания детектора.
Приведем один из конкретных примеров реализации способа.
Первый контакт 1 - Al-покрытие толщиной 30 нм; пластина 2 (чувствительный элемент) - стекло KU1 толщиной 0,5 мм; контакт 3 - Al-покрытие толщиной 50 нм; нагрузочное сопротивление 4-50 Ом; регистрирующая аппаратура 5 - осциллограф TDS 2024, полоса 200 МГц. При интенсивности I регистрируемого рентгеновского излучения ~2 МВт/см2 между металлизированными плоскостями диэлектрика (стекло KU1) возникает импульсная разность потенциалов ~10 В.
Источники использованной информации
1. Калашникова В.И., Козодаев М.С. Детекторы элементарных частиц. - М.: Наука. 1966.
2. Диагностика плотной плазмы / Под ред. Н.Г. Басова. - М: Наука. 1989.
3. Амосов В.Н., Емельянов А.И., Крисько Н.И., Родионов Н.Б. Алмазный детектор. Патент РФ №2522772 // Изобретения, полезные модели. Официальный бюллетень Федеральной службы по интеллектуальной собственности, патентам и товарным знакам. - 2014. - №20.
4. Зайцев В.И., Барыков И.А., Карташов А.В., Терентьев О.В., Родионов Н.Б. Радиационно-индуцированный гальванический эффект, наблюдаемый в интерфейсе металл-диэлектрик // Письма в ЖТФ. - 2016. - Т. 42. - Вып. 22. - С. 72-78.

Claims (1)

  1. Способ регистрации импульсного ионизирующего излучения, включающий измерение электрического сигнала, возникающего под действием излучения в твердом чувствительном к излучению элементе, который выполнен в виде диэлектрической пластины с первым и вторым контактами из металла, контакты нанесены на двух противоположных плоскостях пластины, имеющих
    Figure 00000002
    площадь, причем толщина первого контакта делает его прозрачным для ионизирующего излучения, детектор на базе упомянутого чувствительного к излучению элемента устанавливают на пути регистрируемого ионизирующего излучения таким образом, что сторона пластины с первым контактом ориентирована навстречу ионизирующему излучению, электрический сигнал транслируют с помощью помехозащищенного кабеля к регистрирующей аппаратуре, отличающийся тем, что в качестве чувствительного элемента применяют пластину из диэлектрика с высокой энергетической ценой образования свободных носителей заряда ΔЕ, например стекла KU1 (ΔЕ~150 эВ), первый контакт, находящийся на стороне пластины, ориентированной навстречу ионизирующему излучению, заземляют, а возникающий на противоположной стороне пластины отклик отрицательного напряжения по коаксиальному кабелю транслируют к регистрирующей аппаратуре, например осциллографу, при этом один конец центрального проводника коаксиального кабеля соединяют со вторым контактом чувствительного элемента и первым выводом нагрузочного сопротивления, второй конец центрального проводника коаксиального кабеля соединяют с регистрирующей аппаратурой, а оплетку коаксиального кабеля и второй вывод нагрузочного сопротивления заземляют.
RU2017104371A 2017-02-09 2017-02-09 Способ регистрации импульсного ионизирующего излучения RU2640320C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017104371A RU2640320C1 (ru) 2017-02-09 2017-02-09 Способ регистрации импульсного ионизирующего излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017104371A RU2640320C1 (ru) 2017-02-09 2017-02-09 Способ регистрации импульсного ионизирующего излучения

Publications (1)

Publication Number Publication Date
RU2640320C1 true RU2640320C1 (ru) 2017-12-27

Family

ID=63857361

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017104371A RU2640320C1 (ru) 2017-02-09 2017-02-09 Способ регистрации импульсного ионизирующего излучения

Country Status (1)

Country Link
RU (1) RU2640320C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003155A1 (en) * 1997-07-10 1999-01-21 The Regents Of The University Of Michigan High-resolution ionization detector and array of such detectors
RU2522772C1 (ru) * 2012-12-27 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Алмазный детектор
RU2573609C2 (ru) * 2010-10-07 2016-01-20 Коммиссариат А Л'Энержи Атомик Э Оз Энержи Альтернатив Способ детектирования с помощью электрохимически-ассистируемого детектора альфа-частиц, предназначенный для ядерных измерений в жидкой среде

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003155A1 (en) * 1997-07-10 1999-01-21 The Regents Of The University Of Michigan High-resolution ionization detector and array of such detectors
RU2573609C2 (ru) * 2010-10-07 2016-01-20 Коммиссариат А Л'Энержи Атомик Э Оз Энержи Альтернатив Способ детектирования с помощью электрохимически-ассистируемого детектора альфа-частиц, предназначенный для ядерных измерений в жидкой среде
RU2522772C1 (ru) * 2012-12-27 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Алмазный детектор

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Зайцев В.И., Барыков И.А., Карташов А.В., Терентьев О.В., Родионов Н.Б. Радиационно-индуцированный гальванический эффект, наблюдаемый в интерфейсе металл-диэлектрик // Письма в ЖТФ. - 2016 (Поступило в Редакцию 21 июня 2016 г.). - Т. 42. - Вып. 22. - С. 72-78. *

Similar Documents

Publication Publication Date Title
JP5815532B2 (ja) 放射線検出器によって供給される信号を処理するためのデバイス
Brambilla et al. CdTe linear pixel X-ray detector with enhanced spectrometric performance for high flux X-ray imaging
EP0180780B1 (en) Noncontact dynamic tester for integrated circuits
US5821539A (en) Fast operating radiation detector and method for operating same
Marinelli et al. Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors
Deconihout et al. Implementation of an optical TAP: preliminary results
De Angelis et al. High performance diagnostics for Time-Of-Flight and X ray measurements in laser produced plasmas, based on fast diamond detectors
Balovnev et al. Spectrometry of impulse high-current discharge-plasma X-rays
Artyomov et al. Temporal response of silicon EUV and soft X-ray detectors
RU2640320C1 (ru) Способ регистрации импульсного ионизирующего излучения
CN102636804B (zh) 测量γ/X辐射场强度的方法及电流型半导体探测结构
RU215606U1 (ru) Гальванический датчик импульсного рентгеновского излучения
CN112054087B (zh) 一种石墨烯半导体辐射探测器件及其制备方法
WO2013165665A1 (en) Device and method for monitoring x-ray generation
RU2813557C1 (ru) Позиционно-чувствительный детектор тепловых и холодных нейтронов на основе плоскопараллельной резистивной камеры
US2717964A (en) Sulfur crystal counter
Meng et al. High‐time‐resolution imaging of transient discharge processes without fixed triggering
Nedosekin et al. Review the space radiation CVD diamond multi-layer detector
Castoldi et al. Laser mapping of the inter-strip response in double sided silicon strip detectors for particle identification
RU91567U1 (ru) Газовый детектор для регистрации медленных и быстрых нейтронов в условиях интенсивной внешней радиации
KR20100091350A (ko) 고에너지 레이저 유도 중성자 측정을 위한 펄스잡음을 제거할 수 있는 고감도 중성자 측정장치
Giacomini et al. Evaluation of radiation hardness of semiconductor materials against alpha particles for an API detector
CN117388902A (zh) 一种超高剂量率中高能x射线剂量率探测器及其应用
Wen et al. An optimized online filter stack spectrometer
Prokůpek et al. Experimental test of TOF diagnostics for PW class lasers