RU2638672C1 - Способ разбуривания скважинного оборудования с применением гибкой трубы - Google Patents
Способ разбуривания скважинного оборудования с применением гибкой трубы Download PDFInfo
- Publication number
- RU2638672C1 RU2638672C1 RU2016143776A RU2016143776A RU2638672C1 RU 2638672 C1 RU2638672 C1 RU 2638672C1 RU 2016143776 A RU2016143776 A RU 2016143776A RU 2016143776 A RU2016143776 A RU 2016143776A RU 2638672 C1 RU2638672 C1 RU 2638672C1
- Authority
- RU
- Russia
- Prior art keywords
- string
- well
- cutter
- downhole equipment
- drilled
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000012530 fluid Substances 0.000 claims abstract description 27
- 238000011010 flushing procedure Methods 0.000 claims abstract description 21
- 238000005086 pumping Methods 0.000 claims abstract description 16
- 230000008569 process Effects 0.000 claims abstract description 8
- 239000010802 sludge Substances 0.000 claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 230000008859 change Effects 0.000 claims description 3
- 238000004062 sedimentation Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000002347 injection Methods 0.000 abstract 2
- 239000007924 injection Substances 0.000 abstract 2
- 238000003892 spreading Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000004568 cement Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000011022 operating instruction Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 241000208202 Linaceae Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B29/00—Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B4/00—Drives for drilling, used in the borehole
- E21B4/02—Fluid rotary type drives
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Abstract
Изобретение относится к области ремонта скважин, в частности к способу для разбуривания скважинного оборудования. Способ включает сборку колонны труб с винтовым забойным двигателем - ВЗД и фрезой-долотом, спуск в скважину колонны труб с ВЗД и фрезой-долотом до достижения разбуриваемого скважинного оборудования, создание циркуляции закачкой промывочной жидкости по колонне труб через забойный двигатель, фрезу-долото и межколонное пространство в желобную емкость скважины, разбуривание скважинного оборудования, извлечение колонны труб с забойным двигателем и фрезой-долотом из скважины. В качестве колонны труб применяют гибкую трубу - ГТ, на устье скважины на нижний конец колонны ГТ сверху вниз монтируют ВЗД, осциллятор, фрезу-долото. Спускают колонну ГТ в скважину со скоростью 15 м/мин с разгрузкой не более 10000 Н и расхаживанием через каждые 50 м без закачки промывочной жидкости до достижения скважинного оборудования, подлежащего разбуриванию. Приподнимают колонну ГТ на 15 м. Запускают ВЗД закачкой промывочной жидкости в колонну ГТ при давлении на насосном агрегате 15,0-20,0 МПа с расходом для работы ВЗД и созданием циркуляции. Спускают в скважину колонны ГТ со скоростью 2 м/мин до достижения верхнего интервала скважинного оборудования в скважине. Разбуривают скважинное оборудование фрезой-долотом, не превышая максимально допустимую нагрузку на фрезу-долото и не превышая максимально допустимый дифференциальный перепад давлений. Прорабатывают внутренние стенки скважины в интервале разбуренного скважинного оборудования трехкратным спуском и подъемом колонны ГТ со скоростью 2 м/мин, не прекращая циркуляцию промывочной жидкости. Поднимают колонну ГТ со скоростью 5 м/мин на 400 м выше верхнего интервала разбуриваемого скважинного оборудования. Останавливают закачку промывочной жидкости и производят технологическую паузу в течение 2 ч для отстоя шлама. Во время технологической паузы расхаживают ГТ через каждые 20 мин. Шаблонируют эксплуатационную колонну скважины спуском колонны ГТ с ВЗД, осциллятором и фрезой-долотом без закачки технологической жидкости до глубины на 20 м ниже нижнего интервала разбуренного скважинного оборудования в скважине. Извлекают колонну ГТ с ВЗД, осциллятором и фрезой-долотом. Обеспечивается повышение эффективности и надежности реализации способа, расширение функциональных возможностей, увеличение механической скорости проходки разбуриваемого скважинного оборудования. 1 ил.
Description
Изобретение относится к ремонту скважин, в частности к способам для разбуривания скважинного оборудования: пробок, пакеров, муфт ступенчатого цементирования, клапанов-отсекателей, башмаков эксплуатационных колонн скважин.
Известен способ углубления забоя скважины с использованием эффекта «БИТ» с компоновкой низа бурильной колонны (заявка на изобретение №2010102350, МПК Е21В 4/02, опубл. в бюл. №21 от 27.07. 2011 г.), включающий долото, винтовой забойный двигатель (ВЗД), утяжеленные бурильные трубы (УБТ), бурильные трубы с промывкой жидкостью. Для увеличения механической скорости проходки максимально увеличивают гидравлическую силу на долото от перепада давления на нижнем конце колонны бурильных труб в долоте и в гидравлическом забойном двигателе путем использования равнопроходных бурильных труб с наружной высадкой с приваренными замками с максимальным внутренним диаметром, близким внутреннему диаметру тела труб с соотношением диаметра долота Дд к наружному диаметру бурильных труб Дб.т. наружн. Дд:Дб.т. наружн. = 1,5:1,7, УБТ используют с внутренним диаметром не меньше внутреннего диаметра бурильных труб и в соотношении: Дд:Ду.б.т. наружн. = 1,2:1,3, при этом долотные насадки подбирают из расчета создания максимального допустимого давления в системе нагнетания буровых насосов, а нагрузку на долото создают весом растянутой гидравлической силы от перепада давления на нижней части колонны бурильных труб и сжатой их частью. Нагрузку на долото создают весом растянутой гидравлической силы от перепада давления на нижней части колонны бурильных труб и сжатой их частью, а в качестве дополнительного волнового разделителя между УБТ и бурильной трубой устанавливают 25 м легкосплавных бурильных труб из сплава Д16Т с протекторным утолщением и с внутренним проходным отверстием не меньше проходного отверстия бурильных труб.
Недостатками способа являются:
- во-первых, низкая эффективность разбуривания цементного моста ввиду отсутствия динамических нагрузок на долото и высокого коэффициента трения колонны труб о внутренние стенки скважины;
- во-вторых, низкая надежность, так как при наращивании бурильных труб ВЗД забивается шламом и грязью вследствие их оседания, что приводит к отказу ВЗД в работе с последующим подъемом и ревизией ВЗД;
- в-третьих, высокие нагрузки, создаваемые на колонну труб, вследствие увеличения гидравлической силы на долото от перепада давления на нижнем конце колонны бурильных труб в долоте и в гидравлическом забойном двигателе путем использования равнопроходных бурильных труб с наружной высадкой с приваренными замками с максимальным внутренним диаметром;
- в-четвертых, низкая механическая скорость проходки при разбуривании, обусловленная потерей времени на наращивание колонны труб и остановку циркуляции;
- в-пятых, ограниченные функциональные возможности ввиду невозможности проработки и шаблонирования ствола скважины после углубления забоя;
- в-шестых, сложная технология реализации, связанная с применением УБТ, волнового разделителя и легкосплавных бурильных труб из сплава Д16Т с протекторным утолщением.
Наиболее близким по технической сущности и достигаемому результату является способ разбуривания цементного моста в скважине с помощью гидродинамического устройства (патент RU №2007535, МПК Е21В 4/02, опубл. 15.02.1994 г.). Согласно данному способу колонну бурильных труб с ВЗД и долотом спускают в скважину до касания долотом верхней поверхности цементного моста или разбуриваемого скважинного оборудования, подлежащего разбуриванию, приподнимают колонну бурильных труб с долотом над цементной пробкой, затем создают циркуляцию закачкой промывочной жидкости по колонне бурильных труб через гидродинамическое устройство, долото и межколонное пространство скважины в желобную емкость, производят разбуривание цементного моста в скважине, извлекают колонну бурильных труб с гидродинамическим устройством и долотом из скважины.
Недостатками способа являются:
- во-первых, низкая эффективность разбуривания скважинного оборудования ввиду отсутствия динамических нагрузок на долото и высокого коэффициента трения колонны труб о внутренние стенки скважины;
- во-вторых, низкая надежность реализации способа, связанная с высокой вероятностью прихвата колонны труб в скважине разбуренным шламом. Кроме того, при наращивании колонны труб вследствие остановки ВЗД он забивается оседающим шламом и грязью;
- в-третьих, ограниченные функциональные возможности, так как при реализации способа невозможны проработка и шаблонирование скважины в интервале разбуренного цементного моста в скважине. Для этого необходимы дополнительные спускоподьемные операции;
- в-четвертых, низкая механическая скорость проходки при разбуривании, обусловленная потерей времени на наращивание колонны труб и остановку циркуляции.
Техническими задачами изобретения являются повышение эффективности и надежности реализации способа, расширение функциональных возможностей способа при разбуривании скважинного оборудования, а также увеличение механической скорости проходки.
Поставленные технические задачи решаются способом разбуривания скважинного оборудования с применением гибкой трубы, включающим сборку колонны труб с винтовым забойным двигателем - ВЗД и фрезой-долотом, спуск в скважину колонны труб с ВЗД и фрезой-долотом до достижения разбуриваемого скважинного оборудования, создание циркуляции закачкой промывочной жидкости по колонне труб через забойный двигатель, фрезу-долото и межколонное пространство в желобную емкость скважины, разбуривание скважинного оборудования, извлечение колонны труб с забойным двигателем и фрезой-долотом из скважины.
Новым является то, что в качестве колонны труб применяют гибкую трубу - ГТ, на устье скважины на нижний конец колонны ГТ сверху вниз монтируют ВЗД, осциллятор, фрезу-долото, спускают колонну ГТ в скважину со скоростью 15 м/мин с разгрузкой не более 10000 Н и расхаживанием через каждые 50 м без закачки промывочной жидкости до достижения скважинного оборудования, подлежащего разбуриванию, затем приподнимают колонну ГТ на 15 м, запускают ВЗД закачкой промывочной жидкости в колонну ГТ при давлении на насосном агрегате 15,0-20,0 МПа с расходом для работы ВЗД и созданием циркуляции, далее начинают спуск в скважину колонны ГТ со скоростью 2 м/мин до достижения верхнего интервала скважинного оборудования в скважине, после чего разбуривают скважинное оборудование фрезой-долотом, не превышая максимально допустимую нагрузку на фрезу-долото и не превышая максимально допустимый дифференциальный перепад давлений, в случае превышения одного из двух показателей поднимают ГТ с ВЗД, осциллятором и фрезой-долотом на устье скважины на ревизию, при необходимости меняют ВЗД или фрезу-долото, вновь спускают в скважину колонну ГТ с ВЗД, осциллятором и фрезой-долотом и продолжают разбуривание, по окончании разбуривания скважинного оборудования прорабатывают внутренние стенки скважины в интервале разбуренного скважинного оборудования трехкратным спуском и подъемом колонны ГТ со скоростью 2 м/мин, не прекращая циркуляции промывочной жидкости, поднимают колонну ГТ со скоростью 5 м/мин на 400 м выше верхнего интервала разбуриваемого скважинного оборудования, останавливают закачку промывочной жидкости и производят технологическую паузу в течение 2 ч для отстоя шлама, при этом во время технологической паузы расхаживают ГТ через каждые 20 мин, затем шаблонируют эксплуатационную колонну скважины спуском колонны ГТ с ВЗД, осциллятором и фрезой-долотом без закачки технологической жидкости до глубины на 20 м ниже нижнего интервала разбуренного скважинного оборудования в скважине, после чего извлекают колонну ГТ с ВЗД, осциллятором и фрезой-долотом.
На чертеже изображен предлагаемый способ разбуривания скважинного оборудования с применением ГТ.
Предлагаемый способ реализуют следующим образом.
В качестве колонны труб применяют ГТ 1, например, диаметром 44,45 мм. На устье скважины на нижний конец колонны ГТ 1 сверху вниз собирают ВЗД 2, например, марки Д-106.7/8.33, осциллятор 3, фрезу-долото 4, например, диаметром 144 мм.
Спускают колонну ГТ 1 в скважину 5, закрепленную эксплуатационной колонной диаметром 168 мм с толщиной стенки 9 мм, т.е. с внутренним диаметром скважины 168 мм - (9 мм ⋅ 2)=150 мм, со скоростью 15 м/мин и разгрузкой не более 10000 Н = 1 т с расхаживанием через каждые 50 м без закачки промывочной жидкости до достижения верхнего интервала 6 скважинного оборудования 7, подлежащего разбуриванию.
В скважине 5 в интервале L=1150-1175 м сверху вниз находится скважинное оборудование 7, подлежащее разбуриванию: муфта ступенчатого цементирования, клапан-отсекатель низа колонны и башмак эксплуатационной колонны.
Расхаживание колонны ГТ 1 производят в процессе спуска через каждые 50 м трехкратным подъемом колонны ГТ 1 вверх на 2 м от интервала нахождения фрезы-долота 4 в скважине 5 и спуском в данный интервал. Таким образом, в интервалах 50, 100, 150, 200 м и т.д. до достижения верхнего интервала 6 (на глубине 1150 м) скважинного оборудования 7 в скважине 5 через каждые 50 м производят подъем три раза (до интервала 48, 98, 148, 198 м) и спуск (в интервалы 50, 100, 150, 200 м) колонны ГТ 1 соответственно.
После достижения верхнего интервала 6 разбуривамого скважинного оборудования 7 приподнимают колонну ГТ 1 на высоту 11=15 м выше верхнего интервала 6.
Запускают ВЗД 2 закачкой промывочной жидкости в колонну ГТ 1, например пресной воды плотностью 1000 кг/м3 с добавлением 0,1% поверхностно-активного вещества МЛ-81Б, при давлении на насосном агрегате 8, равном Р=15,0 МПа, и с расходом для работы ВЗД 2, создают циркуляцию промывочной жидкости по колонне ГТ 1 через ВЗД 2, осциллятор 3, фрезу-долото 4 и межколонное пространство 9 в желобную емкость 10 скважины 5.
Для каждого типа ВЗД расход подбирают согласно инструкции по эксплуатации или паспорту на ВЗД. Согласно инструкции по эксплуатации для ВЗД марки Д-106.7/8.33 расход составляет 6-12 л/с.
Далее начинают спуск в скважину 5 колонны ГТ 1 со скоростью 2 м/мин до достижения верхнего интервала 6 (на глубине 1150 м) скважинного оборудования 7.
Затем разбуривают скважинное оборудование 7 фрезой-долотом 4 в интервале 1150-1175 м с расходом 6-12 л/с, не превышая максимально допустимую нагрузку на фрезу-долото и не превышая максимально допустимый дифференциальный перепад давлений. Оба этих показателя указаны в инструкции по эксплуатации или паспорте на ВЗД.
В процессе разбуривания скважинного оборудования 7 осциллятор 3 создает динамическую нагрузку на фрезу-долото 4 путем осцилляции низкочастотных продольных колебаний, снижающих коэффициент трения колонны ГТ 1 о внутренние стенки скважины 5.
Согласно инструкции по эксплуатации для ВЗД марки Д-106.7/8.33 максимально допустимая нагрузка на фрезу-долото составляет 100000 Н=10 т, а максимально допустимый дифференциальный перепад давлений Рд=4,6 МПа.
Дифференциальный перепад давлений - это разница между рабочим давлением Рр и давлением холостого хода (Рх) ВЗД:
Рд=Рр-Рх,
где Рх - давление холостого хода ВЗД (при запуске ВЗД), например, 15 МПа;
Рр - давление рабочего хода ВЗД (при разбуривании).
Подставляя в формулу:
4,6 МПа=Рp-15,0 МПа;
Рр=15,0 МПа + 4,6 МПа=19,6 МПа.
В случае превышения одного из этих показателей, так при разбуривании скважинного оборудования 7 давление на насосном агрегате 8 повысилось на Рд1=5,5 МПа, а так как при запуске ВЗД 2 давление на насосном агрегате составляло 15,0 МПа, то Рр1=15,0 МПа + 5,5 МПа = 20,5 МПа.
Происходит превышение максимально допустимого дифференциального перепада давления Рд1 больше Рд, т.е. 5,5 МПа больше чем 4,6 МПа.
Превышение нагрузки на фрезу-долото 4 (свыше 10 т) так же, как и превышение дифференциального перепада давления (4,6 МПа) для данной марки ВЗД 2, приводит к заклиниванию фрезы-долота 4, увеличению износа ВЗД 2 и в конечном итоге к отсутствию механической проходки разбуриванием фрезой-долотом 4 скважинного оборудования 7.
В этом случае извлекают колонну ГТ 1 с ВЗД 2 осциллятором 3 и фрезой-долотом 4 на устье скважины на ревизию. При необходимости меняют ВЗД 2 или фрезу-долото 4, например в результате ревизии выявлен износ фрезы-долота, и заменяют его.
Далее вновь спускают в скважину колонну ГТ 1 с ВЗД 2, осциллятором 3 и фрезой-долотом 4 и продолжают разбуривание скважинного оборудования 7 в интервале 1150-1175 м.
По окончании разбуривания скважинного оборудования 7, о чем свидетельствует снижение давления на манометре насосного агрегата 8 до давления холостого хода ВЗД 2, т.е. как указано выше 15,0 МПа, трехкратным спуском и подъемом колонны ГТ 1 со скоростью 2 м/мин прорабатывают внутренние стенки скважины в интервале разбуренного скважинного оборудования 7 (1150-1175 м), не прекращая циркуляции промывочной жидкости.
Поднимают колонну ГТ 1 со скоростью 5 м/мин на глубину 400 м выше верхнего интервала 6 (1150 м) разбуренного скважинного оборудования 7 в скважине 5, т.е. до глубины 1150 м - 400 м=750 м.
Глубина 400 м получена опытным путем и исключает прихват колонны ГТ 1 в скважине 5 при разубуривании скважинного оборудования 7.
Останавливают закачку промывочной жидкости насосным агрегатом 8, т.е. прекращают циркуляцию.
Производят технологическую паузу в течение 2 ч для отстоя шлама (частиц разбуренного скважинного оборудования 7). Во время технологической паузы расхаживают ГТ 1 через каждые 20 мин.
Расхаживание производят трехкратным подъемом колонны ГТ 1 вверх на 5 м от глубины (750 м) нахождения фрезы-долота 4, т.е. 750 м - 5 м = 745 м с последующим спуском на данную глубину (750 м).
Повышается надежность реализации способа, так как гарантированно исключается прихват колонны ГТ 1 в скважине разбуренным шламом вследствие подъема на безопасную глубину колонны ГТ с ее последующим расхаживанием через каждые 20 мин в течение технологической паузы.
Затем шаблонируют скважину 5 спуском колонны ГТ 1 с ВЗД 2, осциллятором 3 и фрезой-долотом 4 (144 мм) без закачки технологической жидкости на глубину l2=20 м ниже нижнего интервала 11 разбуренного скважинного оборудования 7, т.е. до глубины 1175 м + 20 м = 1195 м.
При реализации предлагаемого способа расширяются функциональные возможности, так как за один спуск ГТ 1 после разбуривания скважинного оборудования производят проработку (с циркуляцией промывочной жидкости), что позволяет очистить внутренние стенки скважины от осевшего на них шлама и произвести шаблонирование (без циркуляции промывочной жидкости) скважины в интервале разбуренного скважинного оборудования. Это исключает дополнительные спускоподъемные операции.
После чего извлекают колонну ГТ 1 с ВЗД 2, осциллятором 3 и фрезой-долотом 4.
Повышается эффективность разбуривания скважинного оборудования 7, так как осциллятор 3 создает динамическую нагрузку на фрезу-долото 4 путем осцилляции низкочастотных продольных колебаний, снижающих коэффициент трения колонны ГТ 1 о внутренние стенки скважины 5, благодаря чему увеличивается нагрузка непосредственно на фрезу-долото 4 и снижается усилие на колонну ГТ 1, создаваемое с устья скважины.
В предлагаемом способе благодаря применению ГТ 1 и осциллятора 3 механическая скорость проходки увеличивается в 2-3 раза по сравнению с работами с использованием бурильной колонны труб так, как описано в прототипе, в связи с чем исключаются потери времени на наращивание колонны труб и остановку циркуляции, снижаются финансовые затраты на разбуривание скважинного оборудования 7.
Предлагаемый способ разбуривания скважинного оборудования с применением гибкой трубы позволяет:
- повысить эффективность и надежность реализации способа;
- расширить функциональные возможности способа;
- увеличить механическую скорость проходки разбуриваемого скважинного оборудования.
Claims (1)
- Способ разбуривания скважинного оборудования с применением гибкой трубы, включающий сборку колонны труб с винтовым забойным двигателем - ВЗД и фрезой-долотом, спуск в скважину колонны труб с ВЗД и фрезой-долотом до достижения разбуриваемого скважинного оборудования, создание циркуляции закачкой промывочной жидкости по колонне труб через забойный двигатель, фрезу-долото и межколонное пространство в желобную емкость скважины, разбуривание скважинного оборудования, извлечение колонны труб с забойным двигателем и фрезой-долотом из скважины, отличающийся тем, что в качестве колонны труб применяют гибкую трубу - ГТ, на устье скважины на нижний конец колонны ГТ сверху вниз монтируют ВЗД, осциллятор, фрезу-долото, спускают колонну ГТ в скважину со скоростью 15 м/мин с разгрузкой не более 10000 Н и расхаживанием через каждые 50 м без закачки промывочной жидкости до достижения скважинного оборудования, подлежащего разбуриванию, затем приподнимают колонну ГТ на 15 м, запускают ВЗД закачкой промывочной жидкости в колонну ГТ при давлении на насосном агрегате 15,0-20,0 МПа с расходом для работы ВЗД и созданием циркуляции, далее начинают спуск в скважину колонны ГТ со скоростью 2 м/мин до достижения верхнего интервала скважинного оборудования в скважине, после чего разбуривают скважинное оборудование фрезой-долотом, не превышая максимально допустимую нагрузку на фрезу-долото и не превышая максимально допустимый дифференциальный перепад давлений, в случае превышения одного из двух показателей поднимают ГТ с ВЗД, осциллятором и фрезой-долотом на устье скважины на ревизию, при необходимости меняют ВЗД или фрезу-долото, вновь спускают в скважину колонну ГТ с ВЗД, осциллятором и фрезой-долотом и продолжают разбуривание, по окончании разбуривания скважинного оборудования прорабатывают внутренние стенки скважины в интервале разбуренного скважинного оборудования трехкратным спуском и подъемом колонны ГТ со скоростью 2 м/мин, не прекращая циркуляции промывочной жидкости, поднимают колонну ГТ со скоростью 5 м/мин на 400 м выше верхнего интервала разбуриваемого скважинного оборудования, останавливают закачку промывочной жидкости и производят технологическую паузу в течение 2 ч для отстоя шлама, при этом во время технологической паузы расхаживают ГТ через каждые 20 мин, затем шаблонируют эксплуатационную колонну скважины спуском колонны ГТ с ВЗД, осциллятором и фрезой-долотом без закачки технологической жидкости до глубины на 20 м ниже нижнего интервала разбуренного скважинного оборудования в скважине, после чего извлекают колонну ГТ с ВЗД, осциллятором и фрезой-долотом.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016143776A RU2638672C1 (ru) | 2016-11-08 | 2016-11-08 | Способ разбуривания скважинного оборудования с применением гибкой трубы |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016143776A RU2638672C1 (ru) | 2016-11-08 | 2016-11-08 | Способ разбуривания скважинного оборудования с применением гибкой трубы |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2638672C1 true RU2638672C1 (ru) | 2017-12-15 |
Family
ID=60718668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016143776A RU2638672C1 (ru) | 2016-11-08 | 2016-11-08 | Способ разбуривания скважинного оборудования с применением гибкой трубы |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2638672C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU184280U1 (ru) * | 2018-07-27 | 2018-10-22 | Роман Владимирович Литвинов | Устройство для бурения муфт гидравлического разрыва пласта в хвостовиках эксплуатационных колонн нефтегазодобывающих скважин малого диаметра |
RU2703013C1 (ru) * | 2019-01-18 | 2019-10-15 | Василий Николаевич Никитин | Способ разбуривания элементов технологического оборудования в скважине |
RU2730072C1 (ru) * | 2019-12-02 | 2020-08-17 | Публичное акционерное общество "Славнефть-Мегионнефтегаз" (ПАО "СН-МНГ") | Способ фрезерования муфт многостадийного гидравлического разрыва пласта с колонной гибких насосно-компрессорных труб на депрессии на скважинах действующего фонда с нетрадиционной закачкой газообразного азота |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2002024C1 (ru) * | 1991-04-05 | 1993-10-30 | Pokrovskaya Galina A | Способ бурени скважины |
RU2007535C1 (ru) * | 1991-03-05 | 1994-02-15 | Анатолий Павлович Шарманов | Гидродинамическое устройство для разбуривания цементных мостов в скважине |
RU2010102350A (ru) * | 2010-01-25 | 2011-07-27 | Общество с ограниченной ответственностью "УПРАВЛЯЮЩАЯ КОМПАНИЯ "Татбурнефть" ООО "УК "Татбурнефть" (RU) | Способ углубления забоя скважины с использованием эффекта "бит" по диплому на научное открытие n366 |
RU126748U1 (ru) * | 2012-10-29 | 2013-04-10 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Альметьевский государственный нефтяной институт" | Компоновка низа бурильной колонны с усиленной динамической нагрузкой на долото |
-
2016
- 2016-11-08 RU RU2016143776A patent/RU2638672C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2007535C1 (ru) * | 1991-03-05 | 1994-02-15 | Анатолий Павлович Шарманов | Гидродинамическое устройство для разбуривания цементных мостов в скважине |
RU2002024C1 (ru) * | 1991-04-05 | 1993-10-30 | Pokrovskaya Galina A | Способ бурени скважины |
RU2010102350A (ru) * | 2010-01-25 | 2011-07-27 | Общество с ограниченной ответственностью "УПРАВЛЯЮЩАЯ КОМПАНИЯ "Татбурнефть" ООО "УК "Татбурнефть" (RU) | Способ углубления забоя скважины с использованием эффекта "бит" по диплому на научное открытие n366 |
RU126748U1 (ru) * | 2012-10-29 | 2013-04-10 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Альметьевский государственный нефтяной институт" | Компоновка низа бурильной колонны с усиленной динамической нагрузкой на долото |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU184280U1 (ru) * | 2018-07-27 | 2018-10-22 | Роман Владимирович Литвинов | Устройство для бурения муфт гидравлического разрыва пласта в хвостовиках эксплуатационных колонн нефтегазодобывающих скважин малого диаметра |
RU2703013C1 (ru) * | 2019-01-18 | 2019-10-15 | Василий Николаевич Никитин | Способ разбуривания элементов технологического оборудования в скважине |
RU2730072C1 (ru) * | 2019-12-02 | 2020-08-17 | Публичное акционерное общество "Славнефть-Мегионнефтегаз" (ПАО "СН-МНГ") | Способ фрезерования муфт многостадийного гидравлического разрыва пласта с колонной гибких насосно-компрессорных труб на депрессии на скважинах действующего фонда с нетрадиционной закачкой газообразного азота |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EA012199B1 (ru) | Установка и способ забивания обсадной или кондукторной трубы | |
RU2638672C1 (ru) | Способ разбуривания скважинного оборудования с применением гибкой трубы | |
CN108661597B (zh) | 一种井下作业一体化井筒处理工具及方法 | |
CN104563873B (zh) | 一种井下套管动力导向装置 | |
CN102425371A (zh) | 煤层气井裸眼复合造穴方法 | |
RU2320849C2 (ru) | Способ строительства и эксплуатации скважин | |
RU2410514C1 (ru) | Способ строительства скважины | |
RU131061U1 (ru) | Технологический комплекс для разбуривания и депрессионной очистки песчаной пробки | |
CN116066000B (zh) | 一种套管喷砂割缝造腔管柱及其整形作业方法 | |
RU2279522C2 (ru) | Способ строительства многозабойных скважин | |
RU2317404C1 (ru) | Способ создания гравийного фильтра в горизонтальной скважине | |
RU2225938C1 (ru) | Способ эксплуатации нефтяной добывающей скважины | |
RU2703013C1 (ru) | Способ разбуривания элементов технологического оборудования в скважине | |
RU2524089C1 (ru) | Способ строительства нефтедобывающей скважины | |
RU2510452C1 (ru) | Способ ремонта обсадной колонны в скважине с дефектным участком | |
RU2541978C1 (ru) | Способ строительства скважины | |
RU2444611C1 (ru) | Способ изоляции продуктивного пласта от притока подошвенной воды | |
RU2021477C1 (ru) | Способ строительства скважины | |
RU2001126020A (ru) | Способ разработки нефтяного месторождения | |
WO2015009213A1 (en) | Method for boring holes and installing collection pipes in holes | |
RU2714410C1 (ru) | Способ повышения устойчивости призабойной зоны скважины к разрушению | |
CN104533282B (zh) | 复式双循环欠平衡钻井工艺 | |
RU133557U1 (ru) | Буровая установка для сооружения скважин на воду в рыхлых водоносных горизонтах с напорами | |
RU2637254C2 (ru) | Способ создания депрессии на пласт при роторном бурении скважины | |
RU2736740C1 (ru) | Способ удаления уплотнённой пробки из скважины |