RU2638073C1 - Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов - Google Patents
Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов Download PDFInfo
- Publication number
- RU2638073C1 RU2638073C1 RU2016140016A RU2016140016A RU2638073C1 RU 2638073 C1 RU2638073 C1 RU 2638073C1 RU 2016140016 A RU2016140016 A RU 2016140016A RU 2016140016 A RU2016140016 A RU 2016140016A RU 2638073 C1 RU2638073 C1 RU 2638073C1
- Authority
- RU
- Russia
- Prior art keywords
- bridge
- turns
- transformer
- stray currents
- primary winding
- Prior art date
Links
- 238000005422 blasting Methods 0.000 title claims abstract description 6
- 238000004804 winding Methods 0.000 claims abstract description 27
- 239000011162 core material Substances 0.000 claims abstract description 15
- 229910000889 permalloy Inorganic materials 0.000 claims abstract description 5
- 230000035699 permeability Effects 0.000 claims abstract description 5
- 239000002775 capsule Substances 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000002360 explosive Substances 0.000 description 10
- 230000000977 initiatory effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 101100328536 Mus musculus Cntd1 gene Proteins 0.000 description 1
- 241000566515 Nedra Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/11—Perforators; Permeators
- E21B43/116—Gun or shaped-charge perforators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/10—Initiators therefor
- F42B3/12—Bridge initiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42C—AMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
- F42C19/00—Details of fuzes
- F42C19/08—Primers; Detonators
- F42C19/12—Primers; Detonators electric
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Air Bags (AREA)
Abstract
Изобретение относится к средствам инициирования и предназначено для инициирования детонирующего шнура, шашечных зарядов взрывчатых веществ и т.п. в негерметичной прострелочно-взрывной аппаратуре, использующейся преимущественно при геологоразведке и разработке нефтяных и газовых месторождений. Устройство включает капсюль-детонатор и электровоспламенитель, снабженный трансформатором, обеспечивающим защиту от блуждающих токов. Трансформатор представляет собой сердечник из магнитодиэлектрического материала на основе Mo-пермаллоя, на который намотаны две обмотки. Первичная обмотка подключается к линии электропитания, вторичная замкнута на мостик накаливания электровоспламенителя. Количество витков в первичной обмотке W1 определяется соотношением W1≥(50000/μ)0,5, где μ - начальная магнитная проницаемость материала сердечника, а соотношение витков первичной и вторичной обмоток составляет не менее 2 и не более 4. Повышается гидробаростойкость электродетонатора, что обеспечивает возможность применения его в более глубоких скважинах. 1 табл., 1 ил.
Description
Изобретение относится к средствам инициирования и предназначено для инициирования детонирующего шнура, шашечных зарядов взрывчатых веществ и т.п. в составе негерметичной прострелочно-взрывной аппаратуры (ПВА), использующейся при геологоразведке и разработке нефтяных и газовых месторождений. Функционирование ПВА происходит в скважинах на глубине несколько километров, что обуславливает воздействие высокой температуры и давления.
Известен патрон герметичный ПГ-170 [1]. В его состав входит капсюль-детонатор (КД) и электровоспламенитель (ЭВ) с мостиком накаливания, на который нанесен воспламенительный состав. Мостик непосредственно подключается к линии электропитания - геофизическому кабелю. КД представляет собой оболочку, содержащую инициирующий и основной заряды взрывчатого вещества.
Функционирует патрон ПГ-170 следующим образом.
При подаче переменного или постоянного электрического тока за счет джоулева тепла происходит разогрев мостика накаливания ЭВ и воспламенение состава, нанесенного на мостик. Форс газообразных продуктов воспламеняет инициирующий заряд КД, что приводит к его взрыву и инициированию основного заряда. Последний создает взрывной импульс, обеспечивающий выполнение возложенных на патрон функций.
Патрон ПГ-170 обладает высокими эксплуатационными характеристиками (термостойкость 170°C, гидробаростойкость150 МПа). Однако применение его ограничено из-за низкой стойкости к блуждающим токам различного происхождения (гальванического, электростатического, токов утечки и наводки). Безопасный ток патрона (значение тока, не вызывающего срабатывание изделия) составляет 0,2 А при сопротивлении мостика от 1 до 4 Ом, что соответствует минимально допустимому уровню, принятому для ЭД промышленного назначения [2].
Следствием низкого уровня защиты от блуждающих токов являются и дополнительные издержки при ведении прострелочно-взрывных работ. Они обусловлены тем, что согласно Правилам безопасности [3] при использовании изделий, чувствительных к блуждающим токам, необходимо обесточивать близкорасположенное электрооборудование и осветительные приборы на время спуска ПВА в скважину. Время спуска ПВА на геофизическом кабеле составляет несколько часов, количество спусков не ограничено, поэтому работа на соседних скважинах может прекращаться на длительное время.
Известен электродетонатор Dynawell 1423HNS [4], выпускаемый фирмой DYNAenergetics Gmbh & Со. Данный электродетонатор по конструкции и механизму функционирования аналогичен патрону ПГ-170 за тем отличием, что в его электрическую цепь последовательно мостику включен резистор, увеличивающий общее сопротивление изделия до (50±2) Ом. Безопасный ток при этом составляет также 0,2 А, но безопасное значение разности потенциалов увеличивается более чем в 10 раз. Тем самым вероятность несанкционированного срабатывания под действием блуждающих токов уменьшается.
Еще более безопасным является патрон герметичный нечувствительный ПГН-150 [5], принятый за прототип настоящего изобретения. Его конструкция включает КД и ЭВ с мостиком накаливания, снабженный трансформатором, выполняющим функции узла защиты от блуждающих токов. Трансформатор состоит из кольцевого сердечника из феррита марки НМ 2000, первичной обмотки из 6 витков и вторичной обмотки из 2 витков. Концы вторичной обмотки присоединены к мостику накаливания ЭВ. Концы первичной обмотки через токопроводящие элементы подключаются к линии электропитания. На мостик нанесен воспламенительный состав. КД представляет собой оболочку, содержащую инициирующий и основной заряды взрывчатых веществ. Патрон используется в составе системы, включающей прибор контроля ТЕСТ-ЭДТ-А и прибор взрывной высокочастотный ПВВ-1.
Механизм функционирования ПГН-150 следующий.
При подаче на первичную обмотку переменного напряжения в ней возникает электрический ток, создающий магнитный поток, пронизывающий витки вторичной обмотки и индуцирующий в них э.д.с. В мостике, замкнутом на вторичную обмотку, возникает ток. Если его величина достигает значения тока воспламенения, процесс развивается так же, как в аналогах: мостик разогревается, воспламеняет нанесенный на мостик состав, затем воспламеняется и взрывается инициирующий заряд КД, что приводит к детонации основного заряда КД. Если ток в мостике оказывается меньше безопасного тока, происходит отказ.
Величина индуцированного тока зависит от частоты. Как показано в работе [6], при частоте тока в линии электропитания до 1 кГц и более 10 МГц ток в мостике прототипа не может превысить безопасное значение. Таким образом, обеспечивается защита от блуждающих токов низкой частоты, в частности постоянных токов гальванического происхождения и токов утечки, имеющих, как правило, частоту 50 Гц, а также от блуждающих токов высокой частоты, наводимых электромагнитными полями.
Максимальные значения тока в мостике достигаются в диапазоне частот от 50 кГц до 500 кГц. Однако для подрыва ПГН-150 используют электрический сигнал меньшей частоты, так как с увеличением частоты увеличивается индуктивное сопротивление линии электропитания и уменьшается ток в первичной обмотке. При длине линии электропитания, составляющей 2-6 км, оптимален сигнал частотой 15 кГц, вырабатываемый прибором ПВВ-1. Сигнал частотой около 50 кГц используют для контроля сопротивления мостика, осуществляемого с помощью прибора ТЕСТ-ЭДТ-А, подключаемого непосредственно к контактам ПГН-150.
Эффективная защита от постоянных блуждающих токов, переменных токов низкой (менее 1 кГц) и высокой (более 10 МГц) частоты определяет широкое применение патрона ПГН-150. Однако недостаточная гидробаростойкость, составляющая 50 МПа, накладывает существенные ограничения. Учитывая, что плотность скважинной жидкости составляет до 2000 кг/м, давлению 50 МПа может соответствовать высота столба жидкости 2,5 км. Между тем глубина нефтяных и газовых скважин нередко превышает 5 км. Ограничение по гидробаростойкости обусловлено магнитоупругим эффектом, состоящим в изменении намагниченности магнетика под действием механических деформаций. С ростом давления деформация увеличивается, что приводит к снижению коэффициента полезного действия (КПД) трансформатора, уменьшению тока в мостике и вероятности срабатывания. Этому способствует оболочка, окружающая сердечник, обеспечивающая неравномерное распределение воздействующих на него усилий.
Цель настоящего изобретения состоит в повышении гидробаростойкости и, соответственно, расширении области применения ЭД с узлом защиты от блуждающих токов трансформаторного типа.
Поставленная цель достигается тем, что в качестве материала сердечника использован магнитодиэлектрик на основе Mo-пермаллоя, количество витков в первичной обмотке трансформатора W1 определяется соотношением W1≥(50000/μ)0,5, где μ - начальная магнитная проницаемость материала сердечника, а соотношение количества витков первичной и вторичной обмоток W1/W2 оставляет от 2 до 4.
Пример предлагаемого ЭД представлен на фиг. 1. Он включает КД 1 и ЭВ 2, снабженный трансформатором, состоящим из кольцевого сердечника 3 из магнитодиэлектрика на основе Mo-пермаллоя с начальной магнитной проницаемостью μ, равной 140±10%, вторичной обмотки 4 из семи витков, замкнутой на мостик накаливания 5, и первичной обмотки 6 из двадцати одного витка, концы которой присоединены к гильзе 7 и штырю 8, являющимися токопроводящими элементами, подключаемыми к линии электропитания. На мостик нанесен воспламенительный состав 9. КД 1 содержит гильзу 7, снаряженную взрывчатыми веществами 10.
Механизм функционирования предлагаемого ЭД не отличается от прототипа, патрона ПГН-150. Как при малой (до 1 кГц), так и при большой (более 10 МГц) частоте тока в линии электропитания из-за очень низкого КПД трансформатора ток в мостике не превышает безопасное значение практически при любых значениях тока в линии питания (первичной обмотке). В областях, примыкающих к частоте 15 кГц, КПД трансформатора достаточно большой, что обеспечивает достижение тока воспламенения в мостике ЭВ при относительно небольших значениях тока в линии питания, например, при использовании прибора ПВВ-1.
Магнитная проницаемость сердечника из магнитодиэлектрика на основе Mo-пермаллоя при воздействии давления не изменяется. Ограничения по глубине применения ЭД, обусловленные магнитоупругим эффектом, присущим сердечнику пртотипа, снимаются, что позволяет вести прострелочно-взрывные работы с предлагаемым ЭД в более глубоких скважинах. Эксперименты проводились как на сердечниках в состоянии поставки, так и на сердечниках в составе ЭВ.
Количество витков в первичной обмотке трансформатора W1 определяется соотношением W1≥(50000/μ)0,5, основанным на расчетных и эмпирических данных, полученных для сердечников с типоразмерами, пригодными для использования в ЭД. При меньшем количестве витков в первичной обмотке индукционная связь между обмотками становится достаточно слабой. Это приводит к снижению надежности срабатывания ЭД до неприемлемого уровня (при использовании прибора ПВВ-1), а также к возрастанию погрешности измерений сопротивления мостика, выполняемых в процессе производства ЭД. Дефектные изделия могут попадать потребителю, а годные - в брак.
Соотношение количества витков первичной и вторичной обмоток W1/W2 должно составлять от 2 до 4. Как видно из данных таблицы 1, полученных для ЭД, представленного на фиг. 1, с мостиком накаливания сопротивлением (0,75±0,25) Ом, при частоте сигнала 15 кГц, это соотношение оптимально: ток воспламенения в мостике ЭВ достигается при минимальных значениях тока в первичной обмотке и линии питания.
Список литературы
1. Щукин Ю.Г., Лютиков Г.Г., Поздняков З.Г. Средства инициирования промышленных взрывчатых веществ. - М.: Недра, 1996. - 155 с.
2. Технический регламент Таможенного Союза «О безопасности взрывчатых веществ и изделий на их основе» (TP ТС 028/2012) - http://www.rospromtest.ru.
3. Федеральные нормы и правила в области промышленной безопасности «Правила безопасности при взрывных работах», утвержденные приказом Федеральной службы по экологическому, технологическому и атомному надзору от 16 декабря 2013 г. N 605 - http://docs.cntd.ru/document/499066484.
4. Dynaenergetics. Dynawell Technical Information. - http://www. dynawell.com.
5. Комплект конструкторской документации на патрон ПГН-150 ВПД-Н ДИШВ.773955.504. Инв. №16105 ФГУП НПП «Краснознаменец», 1995 г.
6. Агеев М.А., Климова А.А., Попов В.К. Защищенность электродетонаторов типа ПВПД-Н и ПГН от несанкционированного срабатывания. // Каротажник - 2013, - Вып.7 (229). - С. 47-56.
Claims (1)
- Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов, содержащий капсюль-детонатор и электровоспламенитель, снабженный трансформатором, состоящим из сердечника, первичной обмотки, подключаемой к линии электропитания, и вторичной обмотки, замкнутой на мостик накаливания электровоспламенителя, отличающийся тем, что в качестве материала сердечника использован магнитодиэлектрик на основе Мо-пермаллоя, количество витков в первичной обмотке трансформатора W1 определяется соотношением W1≥(50000/μ)0,5, где μ - начальная магнитная проницаемость материала сердечника, а соотношение витков первичной и вторичной обмоток составляет не менее 2 и не более 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016140016A RU2638073C1 (ru) | 2016-10-11 | 2016-10-11 | Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016140016A RU2638073C1 (ru) | 2016-10-11 | 2016-10-11 | Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2638073C1 true RU2638073C1 (ru) | 2017-12-11 |
Family
ID=60718531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016140016A RU2638073C1 (ru) | 2016-10-11 | 2016-10-11 | Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2638073C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1545624A (en) * | 1977-05-06 | 1979-05-10 | Ml Aviation Co Ltd | Ignition of explosive devices |
RU2028576C1 (ru) * | 1989-07-26 | 1995-02-09 | Научно-производственное объединение "Краснознаменец" | Система электровзрывания |
SU1745022A1 (ru) * | 1981-05-27 | 1996-03-10 | Научно-производственное объединение "Краснознаменец" | Электродетонатор |
RU2071029C1 (ru) * | 1992-06-18 | 1996-12-27 | Акционерное общество открытого типа "Ноябрьскнефтегазгеофизика" | Узел первичного инициирования |
RU2121654C1 (ru) * | 1996-04-29 | 1998-11-10 | Акционерное общество открытого типа "Ноябрьскнефтегазгеофизика" | Универсальный взрывной патрон для производства прострелочно-взрывных работ в нефтяных и газовых скважинах |
CN105423830A (zh) * | 2015-12-25 | 2016-03-23 | 安徽理工大学 | 一种无延期药的延期电雷管 |
-
2016
- 2016-10-11 RU RU2016140016A patent/RU2638073C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1545624A (en) * | 1977-05-06 | 1979-05-10 | Ml Aviation Co Ltd | Ignition of explosive devices |
SU1745022A1 (ru) * | 1981-05-27 | 1996-03-10 | Научно-производственное объединение "Краснознаменец" | Электродетонатор |
RU2028576C1 (ru) * | 1989-07-26 | 1995-02-09 | Научно-производственное объединение "Краснознаменец" | Система электровзрывания |
RU2071029C1 (ru) * | 1992-06-18 | 1996-12-27 | Акционерное общество открытого типа "Ноябрьскнефтегазгеофизика" | Узел первичного инициирования |
RU2121654C1 (ru) * | 1996-04-29 | 1998-11-10 | Акционерное общество открытого типа "Ноябрьскнефтегазгеофизика" | Универсальный взрывной патрон для производства прострелочно-взрывных работ в нефтяных и газовых скважинах |
CN105423830A (zh) * | 2015-12-25 | 2016-03-23 | 安徽理工大学 | 一种无延期药的延期电雷管 |
Non-Patent Citations (1)
Title |
---|
Комплект конструкторской документации Патрон ПГН-150ВПД-НДИШВ.773955.504 Инв. N16105 ФГУП НПП "КРАСНОЗНАМЕНЕЦ", 1995 г. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5279225A (en) | Attenuator for protecting an electroexplosive device from inadvertent RF energy or electrostatic energy induced firing | |
US4273051A (en) | Electric device | |
EP2550428B1 (en) | Spark gap isolated, rf safe, primary explosive detonator for downhole applications | |
US6470803B1 (en) | Blasting machine and detonator apparatus | |
CA1146806A (en) | Selectively actuable electrical circuit for electrically ignitable load | |
US3185093A (en) | High frequency immune squib | |
JPH0114517B2 (ru) | ||
RU2638073C1 (ru) | Электродетонатор для прострелочно-взрывных работ, защищенный от блуждающих токов | |
US9581419B2 (en) | Plasma gap detonator with novel initiation scheme | |
CA2224870C (en) | Blasting machine and method | |
FI76214C (fi) | Foerfarande foer laddning av ett borrhaol med en spraengaemnespelare. | |
CN104155686A (zh) | 用于矿井地震勘探法的本质安全型震源发爆同步触发装置 | |
EP0066390B1 (en) | Method and apparatus for indicating a time-break on a seismic record | |
CA1155689A (en) | Borehole charging method | |
GB2080856A (en) | Charging boreholes with explosives | |
CN204009093U (zh) | 一种用于矿井地震勘探法的本质安全型震源发爆同步触发装置 | |
RU2071029C1 (ru) | Узел первичного инициирования | |
RU2121654C1 (ru) | Универсальный взрывной патрон для производства прострелочно-взрывных работ в нефтяных и газовых скважинах | |
Kurokawa et al. | New Firing System by Cordless Detonator | |
EP0052675B1 (en) | A rocket firing system and a method of firing a rocket | |
GB2109933A (en) | Seismic recording | |
WO1994007107A1 (en) | Attenuator for protecting an electroexplosive device from inadvertent rf energy or electrostatic energy induced firing |