RU2637484C1 - Линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью - Google Patents

Линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью Download PDF

Info

Publication number
RU2637484C1
RU2637484C1 RU2016141521A RU2016141521A RU2637484C1 RU 2637484 C1 RU2637484 C1 RU 2637484C1 RU 2016141521 A RU2016141521 A RU 2016141521A RU 2016141521 A RU2016141521 A RU 2016141521A RU 2637484 C1 RU2637484 C1 RU 2637484C1
Authority
RU
Russia
Prior art keywords
line
odd
delays
modes
minimum
Prior art date
Application number
RU2016141521A
Other languages
English (en)
Inventor
Тальгат Рашитович Газизов
Роман Сергеевич Суровцев
Александр Вячеславович Носов
Сергей Петрович Куксенко
Тимур Тальгатович Газизов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники"
Priority to RU2016141521A priority Critical patent/RU2637484C1/ru
Application granted granted Critical
Publication of RU2637484C1 publication Critical patent/RU2637484C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/30Time-delay networks
    • H03H7/32Time-delay networks with lumped inductance and capacitance
    • H03H7/325Adjustable networks

Landscapes

  • Pulse Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Изобретение относится к средствам для защиты радиоэлектронной аппаратуры от сверхкоротких импульсов. Техническим результатом является увеличение длительности СКИ (сверхкороткий импульс), который может быть полностью разложен в витке меандровой линии задержки. Технический результат достигается за счет выбора параметров линии. Линия задержки состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечиваются равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия, значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию, отличающаяся тем, что выбором параметров поперечного сечения линии также обеспечивается равенство удвоенного значения минимальной из погонных задержек четной и нечетной мод линии значению максимальной из этих задержек. 3 ил.

Description

В настоящее время актуальной задачей является защита радиоэлектронной аппаратуры (РЭА) от сверхкоротких импульсов (СКИ) наносекундного и субнаносекундного диапазона, которые способны проникать в различные узлы РЭА, минуя электромагнитные экраны устройств. Традиционными схемотехническими средствами защиты от таких импульсов являются фильтры, устройства развязки, ограничители помех, разрядные устройства, а конструктивными - защитные экраны и методы повышения однородности экранов, заземление и методы уменьшения импедансов цепей питания. Известно, что включаемые на входе аппаратуры устройства защиты обладают рядом недостатков (малая мощность, недостаточное быстродействие, паразитные параметры), затрудняющих защиту от мощных СКИ. Эффективная защита в широком диапазоне воздействий требует сложных многоступенчатых устройств. Между тем, наряду с высокими характеристиками, практика требует простоты и дешевизны устройств защиты, поэтому необходима разработка новых устройств защиты от СКИ.
Наиболее близкой к заявляемому устройству является микрополосковая линия задержки, защищающая от сверхкоротких импульсов [Surovtsev R.S., Nosov A.V., Zabolotsky A.M. Simple Method of Protection against UWB Pulses Based on a Turn of Meander Microstrip Line Proc. of 16-th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices / R.S. Surovtsev, A.V. Nosov, A.M. Zabolotsky // Novosibirsk State Technical University. - Erlagol, Altai - 29 June - 3 Jule, 2015, pp. 175-177], которая состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии, одновременно обеспечивающих: равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия; значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию; минимальную амплитуду сигнала на выходе линии.
Недостатком устройства-прототипа является малая длительность СКИ, от которого может быть обеспечена защита РЭА.
Заявляется линия задержки, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечиваются равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия, значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию, отличающаяся тем, что выбором параметров поперечного сечения линии также обеспечивается равенство удвоенного значения минимальной из погонных задержек четной и нечетной мод линии значению максимальной из этих задержек.
Достоинством заявляемого устройства, в отличие от устройства-прототипа, является увеличенная длительность СКИ, защита от которого может быть обеспечена.
Техническим результатом является увеличение длительности СКИ, который может быть полностью разложен в витке меандровой линии задержки. Технический результат достигается за счет разноса по времени импульсов четной и нечетной моды на значение, равное произведению удвоенной длины линии и минимальной из погонных задержек четной или нечетной мод линии. Это обеспечивается равенством удвоенного значения минимальной из погонных задержек четной и нечетной мод линии значению максимальной из этих задержек. Обеспечение этого условия позволяет увеличить длительность исходного импульса, разлагаемого на последовательность импульсов с меньшей амплитудой. Первые три импульса (импульс перекрестной наводки и импульсы четной и нечетной мод) разнесены друг относительно друга по времени на одинаковое значение, равное удвоенному произведению длины линии и минимального из значений погонной задержки четной и нечетной мод. Позже, к концу линии будут приходить импульсы чередующейся полярности, вызванные отражениями, и отстоящие от первых трех импульсов и друг относительно друга на значение, равное удвоенному произведению длины линии и минимального из значений погонной задержки четной и нечетной мод. Таким образом, за счет разложения исходного импульса на последовательность импульсов меньшей амплитуды обеспечивается защита от СКИ, а за счет разноса этих импульсов на величину, равную удвоенному произведению длины линии и минимального из значений погонной задержки четной и нечетной мод, обеспечивается увеличенная (по сравнению с устройством-прототипом) длительность СКИ, который может быть разложен в такой линии. При этом максимальная длительность полностью разлагаемого СКИ соответствует удвоенному произведению длины линии и значения наименьшей из погонных задержек четной или нечетной мод линии. Приведенные выше качественные оценки достижимости технического результата подтверждаются ниже количественными оценками, полученными в результате моделирования.
На фиг. 1а приведено поперечное сечение заявляемой линии, со следующими параметрами: w и t - ширина и толщина проводников соответственно, s- расстояние между проводниками, h - толщина диэлектрической подложки, εr - относительная диэлектрическая проницаемость подложки. На фиг. 1б приведена эквивалентная схема заявляемой линии. Она состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников длиной l=45 мм каждый, находящихся на диэлектрической подложке и соединенных между собой на одном конце. Один из проводников линии соединен с источником импульсных сигналов, представленным на схеме идеальным источником эдс. ЕГ и внутренним сопротивлением RГ. Форма эдс источника имеет форму трапеции с длительностью плоской вершины 100 пс, а фронта и спада по 50 пс. Другой проводник линии соединен с приемным устройством, представленным на схеме сопротивлением RН.
Значения RГ и RН для минимизации отражения сигнала на концах проводников линии приняты равными среднему геометрическому волновых сопротивлений четной и нечетной мод линии
Figure 00000001
где Z11 и Z12 - соответствующие коэффициенты матрицы импедансов Z.
Параметры поперечного сечения на фиг. 2б выбраны так, чтобы выполнялись условия
Figure 00000002
Figure 00000003
Figure 00000004
где τmax и τmin - наибольшее и наименьшее из значений погонных задержек четной и нечетной мод соответственно, a tr, td и
Figure 00000005
- длительности фронта, плоской вершины и спада импульса соответственно.
Выполнение условия (2) обеспечивает приход основного импульса сигнала к концу линии по окончании ближней перекрестной наводки от фронта сигнала. Условие (3) обеспечивает полное разложение импульса основного сигнала в конце линии на импульсы четной и нечетной мод. Наконец, выполнение условия (4) обеспечивает разложение СКИ с большей длительностью (до 2⋅l⋅τmin), в отличие от устройства-прототипа.
Для доказательства реализуемости заявляемого устройства сначала рассмотрим устройство-прототип - линию задержки со следующими параметрами поперечного сечения: w=300 мкм, t=105 мкм, s=23 мкм, d=900 мкм, h=510 мкм, εr=10. Длина линии l=45 мм. Вычисленные матрицы погонных параметров
Figure 00000006
Figure 00000007
Figure 00000008
Значения сопротивлений RН и RГ, вычисленные по (1) с помощью соответствующих коэффициентов матрицы Z, получились равными 32,06 Ом.
Погонные задержки четной и нечетной мод для симметричной, относительно опорного проводника, структуры связанных линий передачи вычисляются как [Малютин Н.Д. Многосвязные полосковые структуры и устройства на их основе / Н.Д. Малютин. - Томск: Изд-во Том. ун-та, 1990. - 164 с.]
Figure 00000009
где С11 и С12, L11 и L12 - соответствующие элементы матриц (коэффициентов электростатической и электромагнитной индукции) L и С.
По выражению (5) с помощью соответствующих коэффициентов матриц С и L получим τe=8,10нс/м, τo=5,46 нс/м. Так как погонная задержка нечетной моды имеет наименьшее значение, то ее произведение на удвоенную длину линии составляет 491,4 пс. Сумма длительностей фронта, плоской вершины и спада импульсного сигнала составляет 200 пс. Таким образом, условие (2) выполняется с запасом. Произведение модуля разности погонных задержек четной и нечетной мод линии на ее удвоенную длину составляет 237,6 пс. Таким образом, условие (3) выполняется. Однако не выполняется условие (4), поскольку удвоенное значение погонной задержки нечетной моды не равно значению погонной задержки четной моды.
Форма сигнала в конце такой линии при воздействии импульсом в виде трапеции с длительностью 200 пс представлена на фиг 2а. Как видно, при длительности воздействующего сигнала 200 пс его прохождение по витку меандровой линии приводит к разложению сигнала на три основных импульса (импульс перекрестной наводки на ближнем конце и импульсы четной и нечетной мод сигнала). Амплитуда этих импульсов составляет около 40% от амплитуды сигнала в начале линии. Позже к концу линии приходят импульсы разной полярности и меньшей амплитуды, вызванные отражениями. При увеличении длительности воздействующего сигнала до 500 пс его прохождение по витку меандровой линии приводит к разложению исходного сигнала лишь на два основных импульса: импульс перекрестной наводки на ближнем конце и импульс, который является результатом суперпозиции импульсов четной и нечетной мод сигнала. При этом амплитуда сигнала увеличивается до 80% от амплитуды сигнала в начале линии. Таким образом, устройство не обеспечивает должную защиту от СКИ с длительностями более 200 пс.
Теперь рассмотрим заявляемую линию, поперечное сечение которой соответствует фиг. 1а. Для обеспечения выполнения условий (2)-(4) параметры поперечного сечения выбраны следующими: w=300 мкм, t=205 мкм, s=17 мкм, d=900 мкм, h=510 мкм, εr=30. Длина линии l=45 мм. Вычисленные матрицы
Figure 00000010
Figure 00000011
Figure 00000012
Значения сопротивлений RН и RГ, вычисленные по (1) с помощью соответствующих коэффициентов матрицы Z, получились равными 17,67 Ом.
По выражению (5) с помощью соответствующих коэффициентов матриц С и L получим τе=13,16 нс/м, τo=6,57 нс/м. Погонная задержка нечетной моды имеет наименьшее значение, а ее произведение на удвоенную длину линии составляет 591,3 пс. Сумма длительностей фронта, плоской вершины и спада импульсного сигнала составляет 200 пс. Таким образом, условие (2) выполняется с запасом. Произведение модуля разности погонных задержек четной и нечетной мод линии на ее удвоенную длину составляет 591,3 пс. Таким образом, условие (3) также выполняется. Наконец, выполняется условие (4) поскольку отношение задержек четной и нечетной мод составляет 2,003. Таким образом, условие (4) выполняется с точностью до второго знака.
На фиг. 3 приведены формы сигнала на выходе заявляемого устройства при воздействии импульсом в виде трапеции с длительностью 200 и 500 пс. Как видно из фиг. 3а, при воздействии импульсом с малой длительностью (200 пс) его прохождение по витку меандровой линии также приводит к разложению сигнала на три основных импульса (импульс перекрестной наводки и импульсы четной и нечетной мод сигнала), однако эти импульсы имеют разную амплитуду. Максимальная амплитуда выходного сигнала в отличие от устройства-прототипа составляет около 50% от амплитуды сигнала в начале линии. Из фиг. 3б видно, что прохождение по витку меандровой линии импульса с длительностью 500 пс также приводит к его разложению на три основных импульса, а максимальная амплитуда выходного сигнала также составляет 50% от амплитуды сигнала в начале линии. Таким образом, показан технический результат, на достижение которого направлена заявляемая линия - увеличение длительности СКИ, защита от которого может быть обеспечена.

Claims (1)

  1. Линия задержки, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечиваются равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, в который включена линия, значения минимальной из погонных задержек четной и нечетной мод линии, а также модуля их разности, умноженных на длину линии, большие, чем сумма длительностей фронта, плоской вершины и спада импульса, подающегося в линию, отличающаяся тем, что выбором параметров поперечного сечения линии также обеспечивается равенство удвоенного значения минимальной из погонных задержек четной и нечетной мод линии значению максимальной из этих задержек.
RU2016141521A 2016-10-21 2016-10-21 Линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью RU2637484C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016141521A RU2637484C1 (ru) 2016-10-21 2016-10-21 Линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016141521A RU2637484C1 (ru) 2016-10-21 2016-10-21 Линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью

Publications (1)

Publication Number Publication Date
RU2637484C1 true RU2637484C1 (ru) 2017-12-04

Family

ID=60581579

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016141521A RU2637484C1 (ru) 2016-10-21 2016-10-21 Линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью

Country Status (1)

Country Link
RU (1) RU2637484C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784034C1 (ru) * 2022-04-22 2022-11-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" Двухотрезковая микрополосковая линия с заземленным проводником сверху, защищающая от сверхкоротких импульсов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014018A (en) * 1987-10-06 1991-05-07 Stanford University Nonlinear transmission line for generation of picosecond electrical transients
US6337609B1 (en) * 1997-07-17 2002-01-08 Tdk Corporation Delay compensation device, delay line component and manufacturing method of the delay line component
RU2597940C1 (ru) * 2015-06-01 2016-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" Линия задержки, защищающая от сверхкоротких импульсов
RU2600098C1 (ru) * 2015-09-02 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Меандровая линия задержки из двух витков, защищающая от сверхкоротких импульсов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014018A (en) * 1987-10-06 1991-05-07 Stanford University Nonlinear transmission line for generation of picosecond electrical transients
US6337609B1 (en) * 1997-07-17 2002-01-08 Tdk Corporation Delay compensation device, delay line component and manufacturing method of the delay line component
RU2597940C1 (ru) * 2015-06-01 2016-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" Линия задержки, защищающая от сверхкоротких импульсов
RU2600098C1 (ru) * 2015-09-02 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Меандровая линия задержки из двух витков, защищающая от сверхкоротких импульсов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784034C1 (ru) * 2022-04-22 2022-11-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" Двухотрезковая микрополосковая линия с заземленным проводником сверху, защищающая от сверхкоротких импульсов
RU2784037C1 (ru) * 2022-04-22 2022-11-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" Двухотрезковая микрополосковая линия с двумя боковыми заземленными проводниками, защищающая от сверхкоротких импульсов
RU2788187C1 (ru) * 2022-04-22 2023-01-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" Двухотрезковая микрополосковая линия с двумя симметричными проводниками сверху, защищающая от сверхкоротких импульсов

Similar Documents

Publication Publication Date Title
RU2607252C1 (ru) Меандровая микрополосковая линия задержки, защищающая от сверхкоротких импульсов
RU2606709C1 (ru) Меандровая линия задержки с лицевой связью, защищающая от сверхкоротких импульсов
RU2656834C2 (ru) Усовершенствованная линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью
Surovtsev et al. Pulse decomposition in the turn of meander line as a new concept of protection against UWB pulses
RU2556438C1 (ru) Линия задержки, неискажающая импульс
Surovtsev et al. Simple method of protection against UWB pulses based on a turn of meander microstrip line
Kim et al. Ultrashort pulse decomposition in hybrid protection devices based on the cascade-connected modal filter and meander line with broad-side coupling
RU2624465C2 (ru) Четырехпроводная зеркально-симметричная структура, защищающая от сверхкоротких импульсов
RU2691844C1 (ru) Усовершенствованная меандровая микрополосковая линия задержки, защищающая от электростатического разряда
RU2637484C1 (ru) Линия задержки, защищающая от сверхкоротких импульсов с увеличенной длительностью
RU2724970C1 (ru) Меандровая линия задержки с лицевой связью из двух витков, защищающая от сверхкоротких импульсов
RU2600098C1 (ru) Меандровая линия задержки из двух витков, защищающая от сверхкоротких импульсов
Nosov et al. Revealing new possibilities of ultrashort pulse decomposition in a turn of asymmetrical meander delay line
RU2724972C1 (ru) Меандровая микрополосковая линия задержки из двух витков, защищающая от сверхкоротких импульсов
RU2597940C1 (ru) Линия задержки, защищающая от сверхкоротких импульсов
RU2742049C1 (ru) Меандровая линия задержки с лицевой связью, защищающая от сверхкоротких импульсов с увеличенной длительностью
RU2724983C1 (ru) Усовершенствованная меандровая линия задержки с лицевой связью, защищающая от сверхкоротких импульсов
RU2769104C1 (ru) Меандровая микрополосковая линия с двумя пассивными проводниками, защищающая от сверхкоротких импульсов
RU2789435C1 (ru) Меандровая линия задержки с лицевой связью из четырёх витков, защищающая от сверхкоротких импульсов
Surovtsev et al. Protection against ultrashort pulses based on a turn of meander microstrip line
Belousov et al. Maximization of duration of ultrashort pulse that is completely decomposed in multiconductor modal filters
Nosov et al. Investigation of possibility of protection against electrostatic discharge using meander microstrip line
RU2767975C1 (ru) Меандровая линия с лицевой связью и пассивным проводником, защищающая от сверхкоротких импульсов
Chernikova et al. Method for detecting additional pulses in the time response of structures with modal decomposition
RU2726743C1 (ru) Зеркально-симметричная меандровая линия, защищающая от сверхкоротких импульсов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191022