RU2634641C1 - Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга и устройство для его осуществления - Google Patents

Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга и устройство для его осуществления Download PDF

Info

Publication number
RU2634641C1
RU2634641C1 RU2016137551A RU2016137551A RU2634641C1 RU 2634641 C1 RU2634641 C1 RU 2634641C1 RU 2016137551 A RU2016137551 A RU 2016137551A RU 2016137551 A RU2016137551 A RU 2016137551A RU 2634641 C1 RU2634641 C1 RU 2634641C1
Authority
RU
Russia
Prior art keywords
spinal cord
spiral
micro
microradiator
radiator
Prior art date
Application number
RU2016137551A
Other languages
English (en)
Inventor
Кузьма Александрович Чертков
Александр Кузьмич Чертков
Original Assignee
Общество с ограниченной ответственностью "ОРФО" (ООО "ОРФО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ОРФО" (ООО "ОРФО") filed Critical Общество с ограниченной ответственностью "ОРФО" (ООО "ОРФО")
Priority to RU2016137551A priority Critical patent/RU2634641C1/ru
Application granted granted Critical
Publication of RU2634641C1 publication Critical patent/RU2634641C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor

Abstract

Группа изобретений относится к нейрохирургии и может быть применима для стабилизации позвоночника, профилактики и лечения отека спинного мозга. В межпозвоночный промежуток устанавливают устройство микрорадиатор, выполненное в виде спирали, жестко соединенной с вентральной пластиной, которую фиксируют к смежным позвонкам так, чтобы спираль контактировала с твердой мозговой оболочкой. Концы спирали соединяют с холодовыми магистралями, которые выводят через отдельные мини-разрезы наружу и подключают к насосу с емкостью хладагента. Процесс циркуляции охлажденного до 3-5 градусов хладагента осуществляют по замкнутому контуру. Температуру в микрорадиаторе контролируют с помощью термодатчика, расположенного в отводящей магистрали, по окончании гипотермии холодовые магистрали отсоединяют от микрорадиатора. Группа изобретений обеспечивает профилактику и лечение отёка спинного мозга одновременно с надёжной стабилизацией. 2 н.п. ф-лы, 2 ил.

Description

Изобретение относится к медицине, а именно к нейрохирургии, и может быть использовано при лечении позвоночно-спинномозговой травмы шейного, грудного, поясничного отделов позвоночника с нестабильностью в травмированных сегментах.
Известно, что в остром периоде позвоночно-спинномозговой травмы шейного, грудного, поясничного отделов позвоночника ведущими патофизиологическими синдромами, приводящими к фатальным исходам, являются компрессия спинного мозга, его сосудов и корешков, а также выраженная нестабильность в травмированных сегментах, поддерживающая дисциркуляцию в спинном мозге и прогрессирование отека спинного мозга. Также известно, что при выполнении срочных декомпрессий спинного мозга и стабилизации травмированных сегментов во всех случаях прогрессирует развитие отека спинного мозга с развитием ишемии и последующей гибели нейронов и проводящих путей. При травме шейного отдела позвоночника отек мозга, как правило, имеет восходящий характер с распространением на стволовые структуры. Для предотвращения и лечения прогрессирующего отека спинного мозга используются различные реабилитационные мероприятия.
Известен способ лечения спинальной травмы при стенозирующих вертеброгенных синдромах, включающий использование лекарственных препаратов при поступлении больного в стационар и в послеоперационный период [1]. Карасев С.А. с соавт. Перкутанная транслюминальная локальная фармакоперфузия в лечении вертеброгенных стенозирующих поражений // II съезд нейрохирургов РФ. - С-Пб., 1998. - С. 287.
Однако медикаментозная терапия при травме позвоночника не всегда оказывает должное воздействие на восстановление функции поврежденного спинного мозга, что может привести к его ишемическим расстройствам.
Известен способ интраоперационной гипотермии при тяжелой спинальной травме с нарушением функции спинного мозга и его корешков (RU 2317782, 2008). В способе после декомпрессии спинного мозга и стабилизации поврежденных позвоночных сегментов создают ледяное депо, накладывая на твердую мозговую оболочку кусочки льда.
Однако снижение температуры при таянии льда происходит не равномерно, что требует постоянного подкладывания кусочков льда, так как действие гипертермии может прекратится. Кроме того, лед укладывают сзади, после проведения ламинэктомии, поэтому охлаждаются временно только задние структуры спинного мозга, в то время как при спинальной травме (переломы тел и вывихи тел позвонков) сдавливанию и ушибу подвергнуты передние структуры спинного мозга (моторные передние и боковые пути спинного мозга), которые не получают эффекта гипотермии и остается риск возникновения послеоперационных осложнений.
Известен способ локальной гипотермии спинного мозга при осложненных травматических повреждениях шейного отдела позвоночника (RU 2475281, 2013). Способ включает резекцию тела поврежденного позвонка, декомпрессию спинного мозга, установку в эпидуральное пространство двух катетеров, через которые после стабилизации имплантом поврежденного позвоночного сегмента осуществляют перфузию спинного мозга 0,9% раствором натрия хлорида, охлаждая спинной мозг, что снижает риск возникновения послеоперационных осложнений.
Однако способ довольно трудоемкий, катетеры необходимо устанавливать перед стабилизацией позвоночного сегмента, в последующем необходимо контролировать их положение. В послеоперационном периоде перед лечебным курсом гипотермии требуется проводить пробные сеансы с мониторингом состояния пациента, а после курса гипотермии катетеры необходимо удалять. Кроме того, при разобщенности катетеров требуется контроль за количеством вводимого хладагента, так как в эпидуральном пространстве возможно накопление раствора натрия хлорида, что может привести к дополнительному сдавлению спинного мозга "подушкой" из хладагента.
Известно термоэлектрическое устройство для локальной гипотермии спинного мозга (RU 2382617, 2010), состоящее из сборных сегментов, каждый сегмент имеет изогнутое теплоотводящее ребро в виде тепловой трубы с прямой и изогнутой частями и жидкостной теплообменник. Система изменения температуры каждого теплоотводящего ребра состоит из полупроводникового термоэлектрического модуля, расположенного в прямой части теплоотводящего ребра. В криволинейно изогнутой части теплоотводящего ребра расположена термопара, подключенная к входу блока управления, выход которого связан с источником тока, питающим полупроводниковые электрические модули. Устройство крепится к мягким тканям.
Устройство довольно сложно в управлении процессом охлаждения, возможны сбои в управлении из-за недостаточно жесткой фиксация устройства, необходима дополнительная его фиксация. Устройство предназначено для охлаждения спинного мозга и прилежащих тканей в процессе оперативного вмешательства, уменьшая кровотечение в операционной ране, и не предусмотрено его использование в качестве имплантата для стабилизации поврежденного позвоночного сегмента.
Задачей заявляемого изобретения является повышение эффективности лечения позвоночно-спинномозговой травмы шейного, грудного, поясничного отделов позвоночника с нестабильностью в травмированных сегментах за счет одновременной стабилизации поврежденного позвоночного сегмента и охлаждения спинного мозга.
Поставленная задача решается тем, что в способе стабилизации позвоночника, профилактики и лечения отека спинного мозга после резекции поврежденных структур позвоночного сегмента и декомпрессии спинного мозга в межтеловой дефект устанавливают устройство - микрорадиатор, выполненный в виде спирали, микрорадиатор жестко крепят к вентральной пластине, которую фиксируют к смежным позвонкам так, чтобы спираль контактировала с твердой мозговой оболочкой, концы спирали соединяют с холодовыми магистралями, которые выводят через отдельные 2-3 мм разрезы наружу и подключают к насосу с емкостью хладагента, причем процесс циркуляции охлажденного до 3-5 градусов хладагента осуществляют по замкнутому контуру, контролируя величину температуры в микрорадиаторе датчиком температуры, расположенным в отводящей магистрали, по окончании гипотермии холодовые магистрали отсоединяют от микрорадиатора.
Устройство-микрорадиатор согласно изобретению выполнено в виде спирали из полой титановой трубки, концы которой выведены на поверхность вентральной пластины для соединения с холодовыми магистралями, спираль жестко соединена с вентральной пластиной, имеющей отверстия под фиксирующие винты, при этом спираль микрорадиатора имеет несколько типоразмеров.
Установка в межтеловой дефект позвоночного сегмента устройства-микрорадиатора позволяет совместить свойства протезирующего элемента и стабилизирующей межпозвонковой опоры с одновременным охлаждением спинного мозга как интраоперационно, так и в послеоперационном периоде при одном хирургическом вмешательстве.
Выполнение спирали микрорадиатора различных типоразмеров учитывает высоту межпозвонкового промежутка, в который необходимо установить протезирующий элемент и отдел позвоночника (шейный, грудной и поясничный), а контакт с мозговой оболочкой позволяет при гипотермии непосредственно влиять на охлаждение спинного мозга.
Использование вентральной пластины позволяет соединять и удерживать смежные позвонки от смещения, жестко крепить к ней микрорадиатор, что повышает надежность стабилизации позвоночного сегмента и исключает смещения микрорадиатора (протезирующего элемента) в межпозвонковом пространстве.
Возможность подключения концов спирали («вход» «выход») к холодовым магистралям позволяет использовать устройство как микрохолодильник для проведения гипотермии спинного мозга, осуществляя процесс циркуляции охлажденного до 3-5 градусов хладагента по замкнутому контуру. Общеизвестно, что при снижении температуры на каждый градус Цельсия клеточный обмен замедляется на 5-7% и замедляется потребление кислорода. Именно замедление процесса нарушения гомеостаза, вызванное блокадой кровообращения, считается основой способности гипотермии сводить к минимуму повреждение биологической ткани в зоне травмы и около нее. Кроме того, гипотермия снижает реперфузионные повреждения спинного мозга, которые наблюдаются после освобождения спинного мозга при операциях декомпрессии спинного мозга при травме. Возникающую при реперфузии активизацию перекисления (перекисного окисления) гипотермия сводит к минимуму, тем самым оказывая мембраностабилизирующее действие.
Возможность осуществления процесса циркуляции хладагента позволяет осуществлять гипотермию как интраоперационно, так и в послеоперационный период. Расположение датчика температуры микрорадиатора в отводящей магистрали упрощает процесс контроля за температурой хладагента в микрорадиаторе и соответственно за величиной температуры охлаждения спинного мозга. Датчик по окончании гипотермии удаляется вместе с магистралями.
Таким образом предлагаемый способ прост в исполнении, обеспечивает надежную стабилизацию позвоночного сегмента и проведение локальной гипотермии как интраоперационно, так и в послеоперационном периоде, что снижает риск послеоперационных осложнений и повышает эффективность лечения позвоночно-спинномозговой травмы.
Способ осуществляют следующим образом.
При срочной операции у травмированных пациентов с позвоночно-спинномозговой травмой осуществляют декомпрессию спинного мозга (шейный, грудной, поясничный отделы), резекцию фрагментов костных отломков сломанного позвонка и смежных дисков. Затем в сформированный межтеловой дефект устанавливают подобранный по высоте и ширине микрорадиатор (протезирующий элемент позвонка), выполненный в виде спирали. Спираль жестко соединяют с вентральной (передней) пластиной, так чтобы концы спирали находились на поверхности пластины, а задняя часть контактировала с твердой мозговой оболочкой. Пластину фиксируют к смежным (не травмированным: верхнему и нижнему) позвонкам, восстанавливая стабильность позвоночного сегмента. Далее соединяют концы спирали («вход» и «выход») микрорадиатора с холодовыми магистралями (подающей и отводящей), при этом в отводящую магистраль устанавливают термодатчик. Холодовые магистрали выводят через отдельные 2-3 мм разрезы наружу, например боковую поверхность шеи. Подключают насос с емкостью стерильного физраствора температурой 3-5 градусов по Цельсию. Процесс циркуляции хладагента осуществляют по замкнутому контуру с охлаждением микрохолодильником, установленным перед насосом. Контроль температуры в микрорадиаторе проводят по данным термодатчика, расположенного в отводящей магистрали.
Длительность гипотермии спинного мозга и его корешков зависит от общего состояния пациента, моторного дефицита, показателей гемодинамики и сатурации. По окончании периода гипотермии спинного мозга (как правило, на 6-7 сутки) холодовые магистрали удаляют простым вытягиванием с концов микрорадиатора, т.е. удаление магистралей не требует дополнительных инвазивных мероприятий (дополнительной операции).
Устройство-микрорадиатор (фиг. 1 - вид на устройство со стороны спинного мозга; фиг. 2 - вид на устройство сверху) состоит из полой биосовместимой титановой трубки с внутренним диаметром 2,0 мм, изготовленной в виде спирали (1) с различным внешним диаметром: 13 мм для шейного отдела позвоночника, 16 мм для грудного и 20 мм для поясничного отдела позвоночника. Высоту (h) микрорадиатора выбирают в зависимости от величины повреждения позвоночника из ряда: 21, 24, 27, 30, 33 и 36 мм (изготовление спирали с шагом 3 мм). Спираль (1) жестко соединена с вентральной пластиной (2), на которую выведены ее концы (3, 4) для соединения с холодовыми магистралями (подающей и отводящей хладагент). Вентральная пластина имеет отверстия под фиксирующие винты.
После установки микрорадиатора в межпозвонковый промежуток концы спирали (3, 4) микрорадиатора соединяют с гипотермической магистралью, по которой с помощью насоса подается стерильный физиологический раствор под определенным давлением, используют роликовый насос HX-801DA с регуляцией давления 0,1-0,8 атм. Для охлаждения физраствора используют микрохолодильник МКГ-МГ4, установленный перед насосом. Температуру хладагента на выходе контролируют термодатчиком, например тип ТП-А-0188-П. При отсутствии соответствующего оборудования (роликового насоса, микрохолодильника) процесс циркуляции физраствора 3-5 градусов по Цельсию можно осуществлять и по открытому контуру - сливая физраствор в стерильный контейнер с отводящей магистрали.
Таким образом предлагаемый способ прост в исполнении, позволяет надежно стабилизировать травмированные сегменты позвоночника и одновременно осуществлять профилактику и лечение отека спинного мозга как интраоперационно, так и в послеоперационном периоде.

Claims (2)

1. Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга, включающий резекцию поврежденных структур позвоночного сегмента, декомпрессию спинного мозга, отличающийся тем, что в межпозвоночный промежуток устанавливают устройство микрорадиатор, выполненное в виде спирали, жестко соединенной с вентральной пластиной, которую фиксируют к смежным позвонкам так, чтобы спираль контактировала с твердой мозговой оболочкой, концы спирали соединяют с холодовыми магистралями, которые выводят через отдельные мини-разрезы наружу и подключают к насосу с емкостью хладагента, процесс циркуляции охлажденного до 3-5 градусов хладагента осуществляют по замкнутому контуру, причем температуру в микрорадиаторе контролируют с помощью термодатчика, расположенного в отводящей магистрали, по окончании гипотермии холодовые магистрали отсоединяют от микрорадиатора.
2. Устройство-микрорадиатор для стабилизации позвоночника, профилактики и лечения отека спинного мозга, отличающееся тем, что микрорадиатор выполнен в виде спирали из полой титановой трубки, при этом внешний диаметр титановой трубки имеет несколько типоразмеров, спираль жестко соединена с вентральной пластиной, на поверхность которой выведены ее концы для соединения с холодовыми магистралями, вентральная пластина имеет отверстия под фиксирующие винты.
RU2016137551A 2016-09-20 2016-09-20 Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга и устройство для его осуществления RU2634641C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016137551A RU2634641C1 (ru) 2016-09-20 2016-09-20 Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016137551A RU2634641C1 (ru) 2016-09-20 2016-09-20 Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2634641C1 true RU2634641C1 (ru) 2017-11-02

Family

ID=60263697

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016137551A RU2634641C1 (ru) 2016-09-20 2016-09-20 Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2634641C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681261C1 (ru) * 2017-12-19 2019-03-05 Иван Александрович Доценко Устройство для лечения повреждений позвоночника и отека спинного мозга
RU2735061C1 (ru) * 2020-05-29 2020-10-27 Общество с ограниченной ответственностью "Мультиимплантат" Многофункциональное устройство для восстановления позвоночника при травматических повреждениях

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2382617C1 (ru) * 2008-07-17 2010-02-27 Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Термоэлектрическое устройство для локальной гипотермии спинного мозга
EP1198208B1 (en) * 1999-05-05 2013-07-10 Warsaw Orthopedic, Inc. Nested interbody spinal fusion implants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198208B1 (en) * 1999-05-05 2013-07-10 Warsaw Orthopedic, Inc. Nested interbody spinal fusion implants
RU2382617C1 (ru) * 2008-07-17 2010-02-27 Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Термоэлектрическое устройство для локальной гипотермии спинного мозга

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ROBERT R. HANSEBOUT et al. Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J Neurosurg: Spine 2014, May, v.20, 550-561. *
ГАРМИШ А.Р. и др. Применение динамической системы межостистой стабилизации ("U"-имплантат) в лечении стеноза позвоночного канала на уровне поясничного отдела. Украiнський нейрохiругiчний журнал, 2007, 1, 59-63. *
ГАРМИШ А.Р. и др. Применение динамической системы межостистой стабилизации ("U"-имплантат) в лечении стеноза позвоночного канала на уровне поясничного отдела. Украiнський нейрохiругiчний журнал, 2007, 1, 59-63. ROBERT R. HANSEBOUT et al. Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J Neurosurg: Spine 2014, May, v.20, 550-561. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681261C1 (ru) * 2017-12-19 2019-03-05 Иван Александрович Доценко Устройство для лечения повреждений позвоночника и отека спинного мозга
RU2735061C1 (ru) * 2020-05-29 2020-10-27 Общество с ограниченной ответственностью "Мультиимплантат" Многофункциональное устройство для восстановления позвоночника при травматических повреждениях

Similar Documents

Publication Publication Date Title
CA2799473C (en) Methods and devices for cooling spinal tissue
US10772759B2 (en) Central nervous system treatment device and methodology
US10772760B2 (en) Implantable devices for thermal therapy and related methods
US11123222B2 (en) Methods and devices for applying localized thermal therapy
US6758832B2 (en) Medical device for intrathecal cerebral cooling and methods of use
US11534336B2 (en) Selective central nervous system treatment catheter and a method of using the same
US20110029050A1 (en) Intra-ventricular brain cooling catheter
US8721642B1 (en) Tissue cooling clamps and related methods
US10952771B2 (en) Vertebral ablation system
RU2634641C1 (ru) Способ стабилизации позвоночника, профилактики и лечения отека спинного мозга и устройство для его осуществления
Bredow et al. Anterior spinal artery syndrome: reversible paraplegia after minimally invasive spine surgery
RU177347U1 (ru) Устройство для локальной гипотермии спинного мозга и восстановления стабильности позвоночника при травматических повреждениях
RU2735061C1 (ru) Многофункциональное устройство для восстановления позвоночника при травматических повреждениях
RU2681261C1 (ru) Устройство для лечения повреждений позвоночника и отека спинного мозга
Suehiro et al. Neurosurgical Technique and Approach
Jenny et al. Optimizing Transfusion-Related Postoperative Outcomes in Craniosynostosis Repair
RU2593581C1 (ru) Способ локальной гипотермии спинного мозга при травматических повреждениях верхнешейного отдела позвоночника
Matheus et al. 8.5 Posterior lumbar interbody fusion
Denaro et al. General Complications Related to Patient Positioning

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180921